首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Basement membranes (BMs) are thin layers of extracellular matrix (ECM) found at the basal surface of many cell types, including epithelial cells. BMs present growth, differentiation, and anti-apoptotic signals and provide structural support to cells, compartmentalize tissues, and serve as filters. The structure and function of BMs depend on their complement of laminins, a family of alpha beta gamma heterotrimeric glycoproteins. We found that laminins containing the alpha2 and alpha4 chains are the major laminins in pancreatic acinar BMs. Importantly, these laminins were required for proper basal localization on acinar cells of two laminin receptors, dystroglycan and integrin alpha6beta4 .  相似文献   

2.
Basement membranes (BMs) are thin dense sheets of extracellular matrix that surround most tissues. When the BMs of neighboring tissues come into contact, they usually slide along one another and act to separate tissues and organs into distinct compartments. However, in certain specialized regions, the BMs of neighboring tissues link, helping to bring tissues together. These BM connections can be transient, such as during tissue fusion events in development, or long-term, as with adult tissues involved with filtration, including the blood brain barrier and kidney glomerulus. The transitory nature of these connections in development and the complexity of tissue filtration systems in adults have hindered the understanding of how juxtaposed BMs fasten together. The recent identification of a BM-BM adhesion system in C. elegans, termed B-LINK (BM linkage), however, is revealing cellular and extracellular matrix components of a nascent tissue adhesion system. We discuss insights gained from studying the B-LINK tissue adhesion system in C. elegans, compare this adhesion with other BM-BM connections in Drosophila and vertebrates, and outline important future directions towards elucidating this fascinating and poorly understood mode of adhesion that joins neighboring tissues.  相似文献   

3.
Basement membranes (BMs) are resilient polymer structures that surround organs in all animals. Tissues, however, undergo extensive morphological changes during development. It is not known whether the assembly of BM components plays an active morphogenetic role. To study in?vivo the biogenesis and assembly of Collagen IV, the main constituent of BMs, we used a GFP-based RNAi method (iGFPi) designed to knock down any GFP-trapped protein in Drosophila. We found with this method that Collagen IV is synthesized by the fat body, secreted to the hemolymph (insect blood), and continuously incorporated into the BMs of the larva. We also show that incorporation of Collagen IV determines organ shape, first by mechanically constricting cells and second through recruitment of Perlecan, which counters constriction by Collagen IV. Our results uncover incorporation of Collagen IV and Perlecan into BMs as a major determinant of organ shape and animal form.  相似文献   

4.
Two novel monoclonal antibodies were raised and used to study the expression of laminin (Ln) α1-chain in developing and adult human tissues. In both fetal and adult kidney, a distinct immunoreactivity was seen in basement membranes (BM) of most proximal tubules but not in the distal tubular or glomerular BM or in the basal laminae of blood vessels. Immunoprecipitation of metabolically labeled cultured human renal proximal tubular cells showed an abundant production and deposition of Ln α1-chain to the extracellular matrix, suggestive of an epithelial origin of kidney Ln-1. Quantitative cell adhesion experiments with JAR choriocarcinoma cells showed that purified human Ln-1 is a good substrate for cell adhesion that it is differently recognized by integrin receptors when compared to mouse Ln-1. In fetal and adult testes immunoreactivity was solely confined to BM of the seminiferous epithelium. In the airways BM-confined reaction was only seen in fetal budding bronchial tubules (16–19 weeks) at the pseudoglandular stage of development. In the skin a distinct immunoreactivity was confined to BM of developing hair buds but not in epithelial BMs of adult epidermis or of epidermal appendages. In other adult tissues, immunoreactivity was found in BMs of thyroid, salivary, and mammary glands as well as in BMs of endometrium and endocervix, but not of ectocervix or vagina. No immunoreactivity was found in BMs of most of the digestive tract, including the liver and pancreas, except for BMs of esophageal submucosal glands and duodenal Brunner's glands. In fetal specimens, BMs of the bottoms of the intestinal and gastric glands were positive. Basal laminae of blood vessels were generally negative for Ln α1 chain with the exception of specimens of both fetal and adult central nervous system in which immunoreactivity for Ln α1 chain was prominently confined to capillary walls. The results suggest that outside the central nervous system, Ln α1 chain shows a restricted and developmentally regulated expression in BMs of distinct epithelial tissues.  相似文献   

5.
Two novel monoclonal antibodies were raised and used to study the expression of laminin (Ln) alpha1-chain in developing and adult human tissues. In both fetal and adult kidney, a distinct immunoreactivity was seen in basement membranes (BM) of most proximal tubules but not in the distal tubular or glomerular BM or in the basal laminae of blood vessels. Immunoprecipitation of metabolically labeled cultured human renal proximal tubular cells showed an abundant production and deposition of Ln alpha1-chain to the extracellular matrix, suggestive of an epithelial origin of kidney Ln-1. Quantitative cell adhesion experiments with JAR choriocarcinoma cells showed that purified human Ln-1 is a good substrate for cell adhesion that it is differently recognized by integrin receptors when compared to mouse Ln-1. In fetal and adult testes immunoreactivity was solely confined to BM of the seminiferous epithelium. In the airways BM-confined reaction was only seen in fetal budding bronchial tubules (16-19 weeks) at the pseudoglandular stage of development. In the skin a distinct immunoreactivity was confined to BM of developing hair buds but not in epithelial BMs of adult epidermis or of epidermal appendages. In other adult tissues, immunoreactivity was found in BMs of thyroid, salivary, and mammary glands as well as in BMs of endometrium and endocervix, but not of ectocervix or vagina. No immunoreactivity was found in BMs of most of the digestive tract, including the liver and pancreas, except for BMs of esophageal submucosal glands and duodenal Brunner's glands. In fetal specimens, BMs of the bottoms of the intestinal and gastric glands were positive. Basal laminae of blood vessels were generally negative for Ln alpha1 chain with the exception of specimens of both fetal and adult central nervous system in which immunoreactivity for Ln alpha1 chain was prominently confined to capillary walls. The results suggest that outside the central nervous system, Ln alpha1 chain shows a restricted and developmentally regulated expression in BMs of distinct epithelial tissues.  相似文献   

6.
Gicerin is a cell adhesion molecule in the immunoglobulin (Ig) superfamily and plays an important role during development through its adhesive properties. Gicerin has two isoforms that differ in their cytoplasmic domains; s-gicerin is the shorter and l-gicerin the longer form of the protein. Gicerin is over-expressed in some sporadic tumors as well as in developing tissues. To provide direct evidence that gicerin has the potential to participate in malignant aspects of tumor cell behavior, a gicerin cDNA was introduced into L-929 cells, an endogenous gicerin-negative mouse fibroblast and subsequently analyzed for changes in their invasive and metastatic potential by implantation into nude mice and chick embryos. Compared with parental cells, both gicerin isoform transfectants showed an enhanced cell growth and invaded deeply into surrounding tissues from implanted sites in both animal models. Furthermore, l-gicerin transfectants markedly enhanced metastasis to the lung. These findings suggest that gicerin promotes the tumor growth and invasion, and the isoform bearing the longer cytoplasmic domain may play a role in metastasis.  相似文献   

7.
Cells are the principal component of tissues and can drive morphogenesis through dynamic changes in structure and interaction. During gastrulation, the primary morphogenetic event of early development, cells change shape, exchange neighbors, and migrate long distances to establish cell layers that will form the tissues of the adult animal. Outside of Drosophila, little is known about how changes in cell behavior might drive gastrulation among arthropods. Here, we focus on three cell populations that form two aggregations during early gastrulation in the crustacean Parhyale hawaiensis. Using cytoskeletal markers and lineage tracing we observe bottle cells in anterior and visceral mesoderm precursors as gastrulation commences, and find that both Cytochalasin D, an inhibitor of actin polymerization, and ROCKOUT, an inhibitor of Rho-kinase activity, prevent gastrulation. Furthermore, by ablating specific cells, we show that each of the three populations acts independently during gastrulation, confirming previous hypotheses that cell behavior during Parhyale gastrulation relies on intrinsic signals instead of an inductive mechanism.  相似文献   

8.
During animal development, organ size is determined primarily by the amount of cell proliferation, which must be tightly regulated to ensure the generation of properly proportioned organs. However, little is known about the molecular pathways that direct cells to stop proliferating when an organ has attained its proper size. We have identified mutations in a novel gene, shar-pei, that is required for proper termination of cell proliferation during Drosophila imaginal disc development. Clones of shar-pei mutant cells in imaginal discs produce enlarged tissues containing more cells of normal size. We show that this phenotype is the result of both increased cell proliferation and reduced apoptosis. Hence, shar-pei restricts cell proliferation and promotes apoptosis. By contrast, shar-pei is not required for cell differentiation and pattern formation of adult tissue. Shar-pei is also not required for cell cycle exit during terminal differentiation, indicating that the mechanisms directing cell proliferation arrest during organ growth are distinct from those directing cell cycle exit during terminal differentiation. shar-pei encodes a WW-domain-containing protein that has homologs in worms, mice and humans, suggesting that mechanisms of organ growth control are evolutionarily conserved.  相似文献   

9.
Mechanical modulation of osteochondroprogenitor cell fate   总被引:1,自引:0,他引:1  
Mesenchymal cells are natural tissue builders. They exhibit an extraordinary capacity to metamorphize into differentiated cells, using extrinsic spatial and temporal inputs and intrinsic algorithms, as well as to build and adapt their own habitat. In addition to providing a habitat for osteoprogenitor cells, tissues of the skeletal system provide mechanical support and protection for the multiple organs of vertebrate organisms. This review examines the role of mechanics on determination of cell fate during pre-, peri- and postnatal development of the skeleton as well as during tissue genesis and repair in postnatal life. The role of cell mechanics is examined and brought into context of intrinsic cues during mesenchymal condensation. Remarkable new insights regarding structure function relationships in mesenchymal stem cells, and their influence on determination of cell fate are integrated in the context of de novo tissue generation and postnatal repair. Key differences in the formation of osteogenic and chondrogenic condensations are discussed in relation to direct intramembranous and indirect endochondral ossification. New approaches are discussed to elucidate and exploit extrinsic cues to generate tissues in the laboratory and in the clinic.  相似文献   

10.
11.
Structure and function of basement membranes   总被引:2,自引:0,他引:2  
Basement membranes (BMs) are present in every tissue of the human body. All epithelium and endothelium is in direct association with BMs. BMs are a composite of several large glycoproteins and form an organized scaffold to provide structural support to the tissue and also offer functional input to modulate cellular function. While collagen I is the most abundant protein in the human body, type IV collagen is the most abundant protein in BMs. Matrigel is commonly used as surrogate for BMs in many experiments, but this is a tumor-derived BM-like material and does not contain all of the components that natural BMs possess. The structure of BMs and their functional role in tissues are unique and unlike any other class of proteins in the human body. Increasing evidence suggests that BMs are unique signal input devices that likely fine tune cellular function. Additionally, the resulting endothelial and epithelial heterogeneity in human body is a direct contribution of cell-matrix interaction facilitated by the diverse compositions of BMs.  相似文献   

12.
Although human T cells enter the peripheral lymphoid tissues early during fetal development, the adaptive immune system in the fetus has largely been regarded as functionally immature and unresponsive to stimulation. In this study, we show that depletion of fetal CD4+CD25(high) T regulatory (T(Reg)) cells, which are present at high frequency in fetal lymphoid tissues, results in vigorous T cell proliferation and cytokine production in vitro, even in the absence of exogenous stimulation. Analysis of CD4+ and CD8(+) T cell populations revealed a large subset of cells that expressed the early activation Ag, CD69. We show that this population represents a subset of highly reactive fetal T cells actively suppressed by fetal CD4+CD25(high) T(Reg) cells during development. These findings indicate that fetal T cells are, in the absence of CD4+CD25(high) T(Reg) cells, highly responsive to stimulation and provide evidence for an important role for CD4+CD25(high) T(Reg) cells in controlling T cell responses in utero.  相似文献   

13.
Gliomas are characterized by a marked glycolytic metabolism with a consequent production of massive amounts of lactate, even in the presence of normal levels of oxygen, associated to increased invasion capacity and to higher resistance to conventional treatment. This work aimed to understand how the metabolic modulation can influence tumour aggressive features and its potential to be used as complementary therapy. We assessed the effect of bioenergetic modulators (BMs) targeting different metabolic pathways in glioma cell characteristics. The in vivo effect of BMs was evaluated using the chicken chorioallantoic membrane model. Additionally, the effect of pre‐treatment with BMs in the response to the antitumour drug temozolomide (TMZ) was analysed in vitro. Cell treatment with the BMs induced a decrease in cell viability and in migratory/invasion abilities, as well as modifications in metabolic parameters (glucose, lactate and ATP) and increased the cytotoxicity of the conventional drug TMZ. Furthermore, all BMs decreased the tumour growth and the number of blood vessels in an in vivo model. Our results demonstrate that metabolic modulation has the potential to be used as therapy to decrease the aggressiveness of the tumours or to be combined with conventional drugs used in glioma treatment.  相似文献   

14.
Basement membranes (BMs) evolved together with the first metazoan species approximately 500 million years ago. Main functions of BMs are stabilizing epithelial cell layers and connecting different types of tissues to functional, multicellular organisms. Mutations of BM proteins from worms to humans are either embryonic lethal or result in severe diseases, including muscular dystrophy, blindness, deafness, kidney defects, cardio-vascular abnormalities or retinal and cortical malformations. In vivo-derived BMs are difficult to come by; they are very thin and sticky and, therefore, difficult to handle and probe. In addition, BMs are difficult to solubilize complicating their biochemical analysis. For these reasons, most of our knowledge of BM biology is based on studies of the BM-like extracellular matrix (ECM) of mouse yolk sac tumors or from studies of the lens capsule, an unusually thick BM. Recently, isolation procedures for a variety of BMs have been described, and new techniques have been developed to directly analyze the protein compositions, the biomechanical properties and the biological functions of BMs. New findings show that native BMs consist of approximately 20 proteins. BMs are four times thicker than previously recorded, and proteoglycans are mainly responsible to determine the thickness of BMs by binding large quantities of water to the matrix. The mechanical stiffness of BMs is similar to that of articular cartilage. In mice with mutation of BM proteins, the stiffness of BMs is often reduced. As a consequence, these BMs rupture due to mechanical instability explaining many of the pathological phenotypes. Finally, the morphology and protein composition of human BMs changes with age, thus BMs are dynamic in their structure, composition and biomechanical properties.  相似文献   

15.
Localization of laminin alpha4-chain in developing and adult human tissues.   总被引:3,自引:0,他引:3  
Recent studies suggest important functions for laminin-8 (Ln-8; alpha4beta1gamma1) in vascular and blood cell biology, but its distribution in human tissues has remained elusive. We have raised a monoclonal antibody (MAb) FC10, and by enzyme-linked immunoassay (EIA) and Western blotting techniques we show that it recognizes the human Ln alpha4-chain. Immunoreactivity for the Ln alpha4-chain was localized in tissues of mesodermal origin, such as basement membranes (BMs) of endothelia, adipocytes, and skeletal, smooth, and cardiac muscle cells. In addition, the Ln alpha4-chain was found in regions of some epithelial BMs, including epidermis, salivary glands, pancreas, esophageal and gastric glands, intestinal crypts, and some renal medullary tubules. Developmental differences in the distribution of Ln alpha4-chain were detected in skeletal muscle, walls of vessels, and intestinal crypts. Ln alpha4- and Ln alpha2-chains co-localized in BMs of fetal skeletal muscle cells and in some epithelial BMs, e.g., in gastric glands and acini of pancreas. Cultured human pulmonary artery endothelial (HPAE) cells produced Ln alpha4-chain as M(r) 180,000 and 200,000 doublet and rapidly deposited it to the growth substratum. In cell-free extracellular matrices of human kidney and lung, Ln alpha4-chain was found as M(r) 180,000 protein.  相似文献   

16.
Perlecan is a heparan sulfate proteoglycan that is expressed in all basement membranes (BMs), in cartilage, and several other mesenchymal tissues during development. Perlecan binds growth factors and interacts with various extracellular matrix proteins and cell adhesion molecules. Homozygous mice with a null mutation in the perlecan gene exhibit normal formation of BMs. However, BMs deteriorate in regions with increased mechanical stress such as the contracting myocardium and the expanding brain vesicles showing that perlecan is crucial for maintaining BM integrity. As a consequence, small clefts are formed in the cardiac muscle leading to blood leakage into the pericardial cavity and an arrest of heart function. The defects in the BM separating the brain from the adjacent mesenchyme caused invasion of brain tissue into the overlaying ectoderm leading to abnormal expansion of neuroepithelium, neuronal ectopias, and exencephaly. Finally, homozygotes developed a severe defect in cartilage, a tissue that lacks BMs. The chondrodysplasia is characterized by a reduction of the fibrillar collagen network, shortened collagen fibers, and elevated expression of cartilage extracellular matrix genes, suggesting that perlecan protects cartilage extracellular matrix from degradation.  相似文献   

17.
Multinucleate cells are widespread in nature, yet the mechanism by which cells fuse their plasma membranes is poorly understood. To identify animal fusogens, we performed new screens for mutations that abolish cell fusion within tissues of C. elegans throughout development. We identified the gene eff-1, which is expressed as cells acquire fusion competence and encodes a novel integral membrane protein. EFF-1 sequence motifs suggest physicochemical actions that could cause adjacent bilayers to fuse. Mutations in the extracellular domain of EFF-1 completely block epithelial cell membrane fusion without affecting other perfusion events such as cell generation, patterning, differentiation, and adhesion. Thus, EFF-1 is a key component in the mechanism of cell fusion, a process essential to normal animal development.  相似文献   

18.
The molecular cues that generate spinal motoneurons in early embryonic development are well defined. Motoneurons are generated in excess and consequently undergo a natural period of programmed cell death. Although it is not known exactly how motoneurons compete for survival in embryonic development, it is hypothesized that they rely on the ability to access limited amounts of trophic factors from peripheral tissues, a process that is tightly regulated by skeletal muscle activity. Attempts to elucidate the molecular mechanisms that underlie motoneuron generation and programmed cell death in embryos have led to various effective strategies for treating injury and disease in animal models. Such studies provide great hope for the amelioration of human amyotrophic lateral sclerosis (ALS), a devastating progressive motoneuron degenerative disease. Here we review the clinical relevance of studying motoneuron specification and death during embryonic development.  相似文献   

19.
《遗传学报》2022,49(11):1002-1015
Extensive studies have been performed to describe the phenotypic changes occurring during malignant transformation of the prostate. However, the cell types and associated changes that contribute to the development of prostate diseases and cancer remain elusive, largely due to the heterogeneous composition of prostatic tissues. Here, we conduct a comprehensive evaluation of four human prostate tissues by single-cell RNA sequencing (scRNA-seq) to analyze their cellular compositions. We identify 18 clusters of cell types, each with distinct gene expression profiles and unique features; of these, one cluster of epithelial cells (Ep) is found to be associated with immune function. In addition, we characterize a special cluster of fibroblasts and aberrant signaling changes associated with prostate cancer (PCa). Moreover, we provide insights into the epithelial changes that occur during the cellular senescence and aging. These results expand our understanding of the unique functional associations between the diverse prostatic cell types and the contributions of specific cell clusters to the malignant transformation of prostate tissues and PCa development.  相似文献   

20.
Embryonic stem (ES) cells were used to investigate the target cell specificity and consequences of c-fos when expressed ectopically during embryonic development. Chimeric mice generated with different ES cell clones selected for high exogenous c-fos expression were not affected during embryonic development; however, a high frequency of cartilage tumours developed as early as 3-4 weeks of age apparently independent of the extent of chimerism. The tumours originated from cartilagenous tissues and contained many chondrocytes. Expression of exogenous c-fos RNA and Fos protein was observed during development but was highest in tumour tissues, predominantly in differentiating chondrocytes. A number of primary and clonal tumour-derived cell lines were established which expressed high levels of c-fos, c-jun as well as the cartilage-specific gene type II collagen and which gave rise to cartilage tumours in vivo, some of which also contained bone. Interestingly, the levels of c-Fos and c-Jun appeared to be coordinately regulated in the cell lines as well as in chimeric tissues. Thus, we demonstrate that chondrogenic cells and earlier progenitors are specially transformed by Fos/Jun and therefore represent a novel mesenchymal target cell for c-fos overexpression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号