首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclooxygenase-2 (COX-2) content is increased in many types of tumor cells. We have investigated the mechanism by which resveratrol, a stilbene that is pro-apoptotic in many tumor cell lines, causes apoptosis in human head and neck squamous cell carcinoma UMSCC-22B cells by a mechanism involving cellular COX-2. UMSCC-22B cells treated with resveratrol for 24 h, with or without selected inhibitors, were examined: (1) for the presence of nuclear activated ERK1/2, p53 and COX-2, (2) for evidence of apoptosis, and (3) by chromatin immunoprecipitation to demonstrate p53 binding to the p21 promoter. Stilbene-induced apoptosis was concentration-dependent, and associated with ERK1/2 activation, serine-15 p53 phosphorylation and nuclear accumulation of these proteins. These effects were blocked by inhibition of either ERK1/2 or p53 activation. Resveratrol also caused p53 binding to the p21 promoter and increased abundance of COX-2 protein in UMSCC-22B cell nuclei. Resveratrol-induced nuclear COX-2 accumulation was dependent upon ERK1/2 activation, but not p53 activation. Activation of p53 and p53-dependent apoptosis were blocked by the COX-2 inhibitor, NS398, and by transfection of cells with COX-2-siRNA. In UMSCC-22B cells, resveratrol-induced apoptosis and induction of nuclear COX-2 accumulation share dependence on the ERK1/2 signal transduction pathway. Resveratrol-inducible nuclear accumulation of COX-2 is essential for p53 activation and p53-dependent apoptosis in these cancer cells.  相似文献   

2.
p53 antibodies are a new serological parameter of unknown potential in patients with malignancies. Their occurrence has been described in various types of cancer patients. The mechanism underlying the immunization process is still unclear. We investigated the incidence of p53 serum antibodies in 143 head and neck cancer patients with an enzyme-linked immunosorbent assay. The post-therapy course of two matched study groups (n = 38 each), one p53-antibody-seropositive and one p53-antibody-seronegative, was followed up for 24 months. Thirty-nine head and neck cancer patients (27.3%) were seropositive for p53 antibodies. During the follow-up, the p53-antibody-seropositive patients accounted for more local tumor recurrences (n = 12 versus n = 8) and more tumor-related deaths (n = 11 versus n = 5) than did seronegative patients, and second primary tumors (n = 9 versus n = 0) occurred exclusively in seropositive patients. In total, therapy failures (recurrences, tumor-related deaths, second primaries) were observed in 17/38 cases (44.7%) in the p53-antibody-seropositive group and in 8/38 cases (21.1%) in the p53-antibody-seronegative group. These results, after a follow-up of 2 years, seem to indicate a prognostic value of p53 serum antibodies for therapy failure in patients with head and neck cancer. Received: 5 December 1996 / Accepted: 4 January 1997  相似文献   

3.
4.
5.
We have studied the effects of different concentrations of H(2)O(2) on the proliferation of PC-3 prostate carcinoma cells. Since this cell line lacks functional p53, we sought to characterize whether apoptotic response to the oxidative insult was altered such that, unlike in cells containing functional p53 apoptosis may be reduced and replaced by other mechanisms of cellular arrest and death. We did not observe necrosis in PC-3 cells treated with H(2)O(2) concentrations of up to 500 microM. In the presence of 50 microM H(2)O(2), arrest was observed in the G2-phase of the cell cycle, along with p53-independent apoptosis. In the presence of 500 microM H(2)O(2), addition of l-buthionine sulfoximine increased the percentage of apoptotic cell death. Senescence-associated cell arrest was never observed. Moreover, some of the treated cells seemed to be resistant to oxidative damage. These cells re-entered the cell cycle and proliferated normally. Analysis of the expression of p21(waf1) and of p21 protein levels, as well as the activity of caspase-3 and caspase-8, allowed us to characterize some aspects of the arrest of PC-3 cells in G2 and the apoptotic response to oxidative stress in the absence of functional p53.  相似文献   

6.
Sporadic human tumors and the hereditary cancer predisposition syndrome Li-Fraumeni are frequently associated with mutations in the p53 tumor suppressor gene that compromise its ability to function as a DNA damage checkpoint. A subset of Li-Fraumeni patients with wild-type p53 alleles have mutations in chk2/hcds1, one of the genes signaling the presence of DNA damage to the p53 protein. This suggests that p53 may be kept inactive in human cancer by mutations targeting DNA damage signaling pathways. Melanoma cells are highly radioresistant, yet they express wild-type p53 protein, raising the possibility of defects in the pathways that activate p53 in response to DNA damage. We have described a chk2/hcds1-independent DNA damage signaling pathway that targets Ser-376 within the COOH terminus of p53 for dephosphorylation and leads to increased p53 functional activity. We now report that in several human melanoma cell lines that express wild-type p53, the phosphorylation state of Ser-376 was not regulated by DNA damage. In these cell lines, neither the endogenous wild-type p53 protein nor high levels of ectopic wild-type p53 led to cell cycle arrest or apoptosis. Thus, defective activation of p53 in response to DNA damage may underlie the radioresistance of human melanoma cells.  相似文献   

7.
8.
We have investigated the roles of the antioxidant glutathione and p53 in the response of embryonic stem (ES) cells to oxidative stress. ES cells express gammaGCS, a critical enzyme in glutathione (GSH) biosynthesis. Treatment with the pro-oxidant menadione led to elevation of GSH, a strong apoptotic response and reduced clonogenic survival. Addition of BSO, a specific gammaGCS inhibitor depleted GSH pools and prevented the menadione-induced increase in GSH, sensitizing cells to oxidative insult. Although p53 status had no bearing on either the basal levels of GSH or the menadione-induced GSH response, the levels of menadione-induced apoptosis were reduced in the absence of p53. We conclude that the pathways involving p53 and GSH act independently to protect against the deleterious effects of oxidative damage. Furthermore, the presence of an intact p53 pathway confers a long-term growth advantage post oxidative stress. Thus, in the absence of p53 ES cells bearing genotoxic damage are less likely to be propagated, suggesting that p53-dependent apoptosis acts to limit the deleterious effects of oxidative stress during early development.  相似文献   

9.
10.
The p53 tumour suppressor protein lies at the crossroads of multiple cellular response pathways that control the fate of the cell in response to endogenous or exogenous stresses and inactivation of the p53 tumour suppressor signalling pathway is seen in most human cancers. Such aberrant p53 activity may be caused by mutations in the TP53 gene sequence producing truncated or inactive mutant proteins, or by aberrant production of other proteins that regulate p53 activity, such as gene amplification and overexpression of MDM2 or viral proteins that inhibit or degrade p53. Recent studies have also suggested that inherited genetic polymorphisms in the p53 pathway influence tumour formation, progression and/or response to therapy. In some cases, these variants are clearly associated with clinico-pathological variables or prognosis of cancer, whereas in other cases the evidence is less conclusive. Here, we review the evidence that common polymorphisms in various aspects of p53 biology have important consequences for overall tumour susceptibility, clinico-pathology and prognosis. We also suggest reasons for some of the reported discrepancies in the effects of common polymorphisms on tumourigenesis, which relate to the complexity of effects on tumour formation in combination with other oncogenic changes and other polymorphisms. It is likely that future studies of combinations of polymorphisms in the p53 pathway will be useful for predicting tumour susceptibility in the human population and may serve as predictive biomarkers of tumour response to standard therapies.  相似文献   

11.
The p53 tumour suppressor gene is activated following cellular exposure to DNA-damaging agents. The functions of wild-type p53 protein include transient blocking of cell cycle progression, direct or indirect stimulation of DNA repair machinery and triggering of apoptosis if DNA repair fails. Therefore, the status of p53 protein may be critically associated with tumour cell radiosensitivity.
In the present study we examine the intrinsic radiosensitivity of 20 human carcinoma cell lines derived from 15 patients with different types of head and neck tumour. Radiosensitivities were measured in a 96-well plate clonogenic assay in terms of the mean inactivation dose, surviving fraction at 2 Gy, and constants α and β in the linear quadratic survival curve. The p53 allele status was determined by amplifying exons 4–10 by the polymerase chain reaction (PCR), screening for mutations using single-strand conformation polymorphism (SSCP) analysis and determining the exact type and location of a mutation by direct sequencing. The results showed that prevalence of p53 mutations in squamous cell carcinoma (SCC) cell lines is high (80%), and that deletion of one or both wild-type alleles is common (75%). Intrinsic radiosensitivity of the cell lines varied greatly in terms of mean inactivation dose, from 1.4±0.1 to 2.6±0.2 Gy. Radiosensitivity correlated well with the p53 allele status so that cell lines carrying a wild-type p53 allele were significantly ( P <0.01) more radioresistant (mean inactivation dose 2.23±0.15 Gy) than cell lines which lacked a wild-type gene (1.82±0.24 Gy).
Evaluation of our own results and those published in the literature lead us to conclude that absence of the wild-type p53 allele in human head and neck cancer cell lines is associated with increased radiosensitivity. However, the sensitivity is also strongly dependent on the exact type and location of the p53 mutation.  相似文献   

12.
13.
14.
Oxidative stress and mitochondrial dysfunction in cancer cells represent features that may be exploited therapeutically. We determined whether agents that induce mitochondrial dysfunction, such as zidovudine (AZT) and cisplatin (CIS), could enhance killing of human head and neck cancer cells via oxidative stress. AZT- and/or CIS-induced cytotoxicity was determined using clonogenic survival, mitochondrial membrane potential was analyzed to investigate mitochondrial function, and glutathione was measured to determine thiol metabolism perturbations. AZT+CIS significantly increased toxicity and reduced mitochondrial membrane potential in FaDu, Cal-27, and SQ20B head and neck cancer cells while increasing the percentage of glutathione disulfide (%GSSG). Treatment with the thiol antioxidant N-acetylcysteine (NAC) reversed the loss of mitochondrial membrane potential and the increase in %GSSG and partially protected FaDu and Cal-27 cells from AZT+CIS. Finally, an inhibitor of glutathione synthesis, l-buthionine-[S,R]-sulfoximine, sensitized the cells to AZT+CIS-induced cytotoxicity, which was partially reversed by NAC. These results suggest that exposure of cancer cells to agents that induce mitochondrial dysfunction, such as AZT, causes significant sensitization to CIS-induced toxicity via disruptions in thiol metabolism and oxidative stress. These findings provide a biochemical rationale for evaluating agents that induce mitochondrial dysfunction in combination with chemotherapy and inhibitors of glutathione metabolism in head and neck cancer.  相似文献   

15.
Overexpression of the tumor suppressor gene, wild-type p53 (wtp53), using adenoviral vectors (Adp53) has been suggested to kill cancer cells by hydroperoxide-mediated oxidative stress [1,2] and nutrient distress induced by the glucose analog, 2-deoxyglucose (2DG), has been suggested to enhance tumor cell killing by agents that induce oxidative stress via disrupting hydroperoxide metabolism [3,4]. In the current study clonogenic cell killing of PC-3 and DU-145 human prostate cancer cells (lacking functional p53) mediated by 4 h exposure to 50 plaque forming units (pfus)/cell of Adp53 (that caused the enforced overexpression of wtp53) was significantly enhanced by treatment with 2DG. Accumulation of glutathione disulfide was found to be significantly greater in both cell lines treated with 2DG+Adp53 and both cell lines treated with 2DG+Adp53 showed a approximately 2-fold increases in dihydroethidine (DHE) and 5-(and-6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate (CDCFH(2)) oxidation, indicative of increased steady-state levels of O(2)(.-) and hydroperoxides, respectively. Finally, overexpression of catalase or glutathione peroxidase using adenoviral vectors partially, but significantly, protected DU-145 cells from the toxicity induced by 2DG+Adp53 treatment. These results show that treatment of human prostate cancer cells with the combination of 2DG (a nutrient stress) and overexpression of the tumor suppressor gene, wtp53, enhances clonogenic cell killing by a mechanism that involves oxidative stress as well as allowing for the speculation that inhibitors of glucose and hydroperoxide metabolism can be used in combination with Adp53 gene therapy to enhance therapeutic responses.  相似文献   

16.
17.
A mitochondrial matrix-specific p53 construct (termed p53-290) in HepG2 cells was utilized to determine the impact of p53 in the mitochondrial matrix following oxidative stress. H2O2 exposure reduced cellular proliferation similarly in both p53-290 and vector cells, and p53-290 cells demonstrating decreased cell viability at 1 mM H2O2 (~ 85% viable). Mitochondrial DNA (mtDNA) abundance was decreased in a dose-dependent manner in p53-290 cells while no change was observed in vector cells. Oximetric analysis revealed reduced maximal respiration and reserve capacity in p53-290 cells. Our results demonstrate that mitochondrial matrix p53 sensitizes cells to oxidative stress by reducing mtDNA abundance and mitochondrial function.  相似文献   

18.
19.
Head and neck cancer (HNC), one of the most common cancers worldwide, frequently involves mutation of the TP53 gene and dysregulation of the p53 pathway. Overexpression of MDM2 or MDM4 inactivates the tumor-suppressive function of p53. Restoration of p53 function that counteracts these p53 repressors can lead to in vivo tumor regression. Therefore, the present study assessed the ability of the small molecule p53 activator XI-011 (NSC146109) to induce apoptosis in HNC by restoring p53 function. We tested the effects of XI-011 treatment in HNC cell lines, either individually or in combination with cisplatin and assessed growth suppression, cell cycle arrest, and apoptosis. The drug effects on in vivo growth of HNC cells were examined in mice xenograft model. XI-011 exerted the highest growth suppression in tumor cells that overexpress MDM4, in which p53 is degraded. XI-011 treatment downregulated MDM4 mRNA and protein levels, and upregulated expression of proapoptotic genes and promoted apoptosis, in a dose-dependent manner. The apoptotic response was blocked by inhibition of p53 or expression of MDM4, demonstrating that the effects of XI-011 depend on p53 and MDM4. In combination treatments, XI-011 acted synergistically with cisplatin to inhibit growth of HNC cells in vitro and in vivo. MDM4 inhibition and functional restoration of p53 by XI-011 effectively enhanced cisplatin-induced cytotoxicity in HNC cells, an activity that suggests a promising strategy for treating HNC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号