首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arp2/3 complex is a key actin filament nucleator that assembles branched actin networks in response to cellular signals. The activity of Arp2/3 complex is regulated by both activating and inhibitory proteins. Coronins make up a large class of actin-binding proteins previously shown to inhibit Arp2/3 complex. Although coronins are known to play a role in controlling actin dynamics in diverse processes, including endocytosis and cell motility, the precise mechanism by which they regulate Arp2/3 complex is unclear. We conducted a detailed biochemical analysis of budding yeast coronin, Crn1, and found that it not only inhibits Arp2/3 complex but also activates it. We mapped regions required for activation and found that Crn1 contains a sequence called CA, which is conserved in WASp/Scar proteins, the prototypical activators of Arp2/3 complex. Point mutations in CA abolished activation of Arp2/3 complex by Crn1 in vitro. Confocal microscopy and quantitative actin patch tracking showed that these mutants had defective endocytic actin patch dynamics in Saccharomyces cerevisiae, indicating that activation of Arp2/3 complex by coronin is required for normal actin dynamics in vivo. The switch between the dual modes of regulation by Crn1 is controlled by concentration, and low concentrations of Crn1 enhance filament binding by Arp2/3 complex, whereas high concentrations block binding. Our data support a direct tethering recruitment model for activation of Arp2/3 complex by Crn1 and suggest that Crn1 indirectly inhibits Arp2/3 complex by blocking it from binding actin filaments.  相似文献   

2.
Cell migration involves many steps, including membrane protrusion and the development of new adhesions. Here we have investigated whether there is a link between actin polymerization and integrin engagement. In response to signals that trigger membrane protrusion, the actin-related protein (Arp)2/3 complex transiently binds to vinculin, an integrin-associated protein. The interaction is regulated, requiring phosphatidylinositol-4,5-bisphosphate and Rac1 activation, and is sufficient to recruit the Arp2/3 complex to new sites of integrin aggregation. Binding of the Arp2/3 complex to vinculin is direct and does not depend on the ability of vinculin to associate with actin. We have mapped the binding site for the Arp2/3 complex to the hinge region of vinculin, and a point mutation in this region selectively blocks binding to the Arp2/3 complex. Compared with WT vinculin, expression of this mutant in vinculin-null cells results in diminished lamellipodial protrusion and spreading on fibronectin. The recruitment of the Arp2/3 complex to vinculin may be one mechanism through which actin polymerization and membrane protrusion are coupled to integrin-mediated adhesion.  相似文献   

3.
Cell migration is initiated by lamellipodia-membrane-enclosed sheets of cytoplasm containing densely packed actin filament networks. Although the molecular details of network turnover remain obscure, recent work points towards key roles in filament nucleation for Arp2/3 complex and its activator WAVE complex. Here, we combine fluorescence recovery after photobleaching (FRAP) of different lamellipodial components with a new method of data analysis to shed light on the dynamics of actin assembly/disassembly. We show that Arp2/3 complex is incorporated into the network exclusively at the lamellipodium tip, like actin, at sites coincident with WAVE complex accumulation. Capping protein likewise showed a turnover similar to actin and Arp2/3 complex, but was confined to the tip. In contrast, cortactin-another prominent Arp2/3 complex regulator-and ADF/cofilin-previously implicated in driving both filament nucleation and disassembly-were rapidly exchanged throughout the lamellipodium. These results suggest that Arp2/3- and WAVE complex-driven actin filament nucleation at the lamellipodium tip is uncoupled from the activities of both cortactin and cofilin. Network turnover is additionally regulated by the spatially segregated activities of capping protein at the tip and cofilin throughout the mesh.  相似文献   

4.
Sphingosine-1-phosphate (S1P) induces capillary formation of endothelial cells on Matrigel in accompany with actin assembly and accumulation of cortactin and Arp2/3 complex at the cell-leading edge. Suppression of cortactin expression with a cortactin antisense oligo significantly impaired S1P-induced capillary formation, migration of endothelial cells, and actin assembly at the cell periphery. Overexpression of wild-type cortactin tagged by green fluorescent protein (GFP) increased the S1P-induced tube formation and cell motility, whereas the cells overexpressing the mutant formed poorly capillary network and became less motile in response to S1P. Analysis of distribution in Triton X-100 insoluble fractions demonstrated that the cortactin mutant inhibited the association of wild-type cortactin and Arp2/3 complex with the actin-enriched complex. Furthermore, actin polymerization at and distribution of Arp2/3 complex as well as endogenous cortactin into the cell-leading edge mediated by S1P was disturbed. These data suggest that the interaction between cortactin and Arp2/3 complex plays an important role in S1P-mediated remodeling of endothelial cells.  相似文献   

5.
We have investigated the role of the Arp2/3 complex in Dictyostelium cell chemotaxis towards cyclic-AMP and in the actin polymerization that is triggered by this chemoattractant. We confirm that the Arp2/3 complex is recruited to the cell perimeter, or into a pseudopod, after cyclic-AMP stimulation and that this is coincident with actin polymerization. This recruitment is inhibited when actin polymerization is blocked using latrunculin suggesting that the complex binds to pre-existing actin filaments, rather than to a membrane associated signaling complex. We show genetically that an intact Arp2/3 complex is essential in Dictyostelium and have produced partially active mutants in two of its subunits. In these mutants both phases of actin polymerization in response to cyclic-AMP are greatly reduced. One mutant projects pseudopodia more slowly than wild type and has impaired chemotaxis, together with slower movement. The second mutant chemotaxes poorly due to an adhesion defect, suggesting that the Arp2/3 complex plays a crucial part in adhering cells to the substratum as they move. We conclude that the Arp2/3 complex largely mediates the actin polymerization response to chemotactic stimulation and contributes to cell motility, pseudopod extension and adhesion in Dictyostelium chemotaxis.  相似文献   

6.
Macroautophagy (hereafter autophagy) is the process by which cytosolic material destined for degradation is enclosed inside a double-membrane cisterna known as the autophagosome and processed for secretion and/or recycling. This process requires a large collection of proteins that converge on certain sites of the ER membrane to generate the autophagosome membrane. Recently, it was shown that actin accumulates around autophagosome precursors and could play a role in this process, but the mechanism and role of actin polymerization in autophagy were unknown. Here, we discuss our recent finding that the nucleation-promoting factor (NPF) WHAMM recruits and activates the Arp2/3 complex for actin assembly at sites of autophagosome formation on the ER. Using high-resolution, live-cell imaging, we showed that WHAMM forms dynamic puncta on the ER that comigrate with several autophagy markers, and propels the spiral movement of these puncta by an Arp2/3 complex-dependent actin comet tail mechanism. In starved cells, WHAMM accumulates at the interface between neighboring autophagosomes, whose number and size increases with WHAMM expression. Conversely, knocking down WHAMM, inhibiting the Arp2/3 complex or interfering with actin polymerization reduces the size and number of autophagosomes. These findings establish a link between Arp2/3 complex-mediated actin assembly and autophagy.  相似文献   

7.
The actin‐related protein 2/3 complex (Arp2/3 complex), a key regulator of actin cytoskeletal dynamics, has been linked to multiple cellular processes, including those associated with response to stress. Herein, the Solanum habrochaites ARPC3 gene, encoding a subunit protein of the Arp2/3 complex, was identified and characterized. ShARPC3 encodes a 174‐amino acid protein possessing a conserved P21‐Arc domain. Silencing of ShARPC3 resulted in enhanced susceptibility to the powdery mildew pathogen Oidium neolycopersici (On‐Lz), demonstrating a role for ShARPC3 in defence signalling. Interestingly, a loss of ShARPC3 coincided with enhanced susceptibility to On‐Lz, a process that we hypothesize is the result of a block in the activity of SA‐mediated defence signalling. Conversely, overexpression of ShARPC3 in Arabidopsis thaliana, followed by inoculation with On‐Lz, showed enhanced resistance, including the rapid induction of hypersensitive cell death and the generation of reactive oxygen. Heterologous expression of ShARPC3 in the arc18 mutant of Saccharomyces cerevisiae (i.e., ?arc18) resulted in complementation of stress‐induced phenotypes, including high‐temperature tolerance. Taken together, these data support a role for ShARPC3 in tomato through positive regulation of plant immunity in response to Oneolycopersici pathogenesis.  相似文献   

8.
Arpin is an Arp2/3 inhibitory protein, which decreases the protrusion lifetime and hence directional persistence in the migration of diverse cells. Arpin is activated by the small GTPase Rac, which controls cell protrusion, thus closing a negative feedback loop that renders the protrusion intrinsically unstable. Because of these properties, it was proposed that Arpin might play a role in directed migration, where directional persistence has to be fine‐tuned. We report here, however, that Arpin‐depleted tumour cells and Arpin knock‐out Dictyostelium amoeba display no obvious defect in chemotaxis. These results do not rule out a potential role of Arpin in other systems, but argue against a general role of Arpin in chemotaxis.  相似文献   

9.
The Arp2/3 complex, which nucleates actin filaments, comprises a stable assembly of seven-protein subunits including two actin-related proteins (Arp2 and Arp3). Previous work showed that Arp2/3 binds to the sides of actin filaments and is concentrated at the leading edges of motile cells. In the present study, we show that the Arp2/3 complex is critical for cytokinesis during early embryonic development in porcine parthenotes. The Arp2/3 complex is concentrated at the cortex of each cell at the 1-, 2-, and 4-cell stages, and at the periphery at the morula stage. The amount of Arp2/3 significantly decreased at the blastocyst stage in parthenogenetically activated porcine embryos. Inhibition of the Arp2/3 complex in the pig embryos by the Arp2/3-specific inhibitor CK666 resulted in abnormal cell division, a decrease in developmental rate and total cell numbers, and an increase in the ratio of trophectoderm cell number to inner cell mass number in blastocyst-stage embryos. In addition, 4-cell stage embryos subjected to CK666 treatment exhibited significantly decreased expression of ZGA genes (Pou5f1, Sox2, and Nanog), suggesting that the Arp2/3 complex plays an important role in early porcine embryo development. Thus, our data demonstrate that the Arp2/3 complex is required for early embryonic development in pigs and appears to regulate the expression of pluripotency genes.  相似文献   

10.
Cadherin junctions arise from the integrated action of cell adhesion, signaling, and the cytoskeleton. At the zonula adherens (ZA), a WAVE2-Arp2/3 actin nucleation apparatus is necessary for junctional tension and integrity. But how this is coordinated with cadherin adhesion is not known. We now identify cortactin as a key scaffold for actin regulation at the ZA, which localizes to the ZA through influences from both E-cadherin and N-WASP. Using cell-free protein expression and fluorescent single molecule coincidence assays, we demonstrate that cortactin binds directly to the cadherin cytoplasmic tail. However, its concentration with cadherin at the apical ZA also requires N-WASP. Cortactin is known to bind Arp2/3 directly (Weed, S. A., Karginov, A. V., Schafer, D. A., Weaver, A. M., Kinley, A. W., Cooper, J. A., and Parsons, J. T. (2000) J. Cell Biol. 151, 29–40). We further show that cortactin can directly bind WAVE2, as well as Arp2/3, and both these interactions are necessary for actin assembly at the ZA. We propose that cortactin serves as a platform that integrates regulators of junctional actin assembly at the ZA.  相似文献   

11.
Actin is a highly ubiquitous protein in eukaryotic cells that plays a crucial role in cell mechanics and motility. Cell motility is driven by assembling actin as polymerizing actin drives cell protrusions in a process closely involving a host of other actin-binding proteins, notably the actin-related protein 2/3 (Arp2/3) complex, which nucleates actin and forms branched filamentous structures. The Arp2/3 complex preferentially binds specific actin networks at the cell leading edge and forms branched filamentous structures, which drive cell protrusions, but the exact regulatory mechanism behind this process is not well understood. Here we show using in vitro imaging and binding assays that a fragment of the actin-binding protein caldesmon added to polymerizing actin increases the Arp2/3-mediated branching activity, whereas it has no effect on branch formation when binding to aged actin filaments. Because this caldesmon effect is shown to be independent of nucleotide hydrolysis and phosphate release from actin, our results suggest a mechanism by which caldesmon maintains newly polymerized actin in a distinct state that has a higher affinity for the Arp2/3 complex. Our data show that this new state does not affect the level of cooperativity of binding by Arp2/3 complex or its distribution on actin. This presents a novel regulatory mechanism by which caldesmon, and potentially other actin-binding proteins, regulates the interactions of actin with its binding partners.  相似文献   

12.
The Arp2/3 complex is a conserved seven-subunit actin-nucleating machine activated by WASp (Wiskott Aldrich syndrome protein). Despite its central importance in a broad range of cellular processes, many critical aspects of the mechanism of the Arp2/3 complex have yet to be resolved. In particular, some of the individual subunits in the complex have not been assigned clear functional roles, including p40/ARPC1. Here, we dissected the structure and function of Saccharomyces cerevisiae p40/ARPC1, which is encoded by the essential ARC40 gene, by analyzing 39 integrated alleles that target its conserved surfaces. We identified three distinct sites on p40/ARPC1 required for function in vivo: one site contacts p19/ARPC4, one contacts p15/ARPC5, and one site resides in an extended structural “arm” of p40/ARPC1. Using a novel strategy, we purified the corresponding lethal mutant Arp2/3 complexes from yeast and compared their actin nucleation activities. Lethal mutations at the contact with p19/ARPC4 specifically impaired WASp-induced nucleation. In contrast, lethal mutations at the contact with p15/ARPC5 led to unregulated (“leaky”) nucleation in the absence of WASp. Lethal mutations in the extended arm drastically reduced nucleation, and the same mutations disrupted the ability of the purified p40/ARPC1 arm domain to bind the VCA domain of WASp. Together, these data indicate that p40/ARPC1 performs at least three distinct, essential functions in regulating Arp2/3 complex-mediated actin assembly: 1) suppression of spontaneous nucleation by the Arp2/3 complex, which requires proper contacts with p15/ARPC5; 2) propagation of WASp activation signals via contacts with p19/ARPC2; and 3) direct facilitation of actin nucleation through interactions of the extended arm with the VCA domain of WASp.  相似文献   

13.
Methamphetamine (METH) is a drug of abuse with neurotoxic and neuroinflammatory effects, which include disruption of the blood-brain barrier (BBB) and alterations of tight junction protein expression. This study focused on the actin cytoskeletal rearrangement as a modulator of METH-induced redistribution of tight junction protein occludin in brain endothelial cells. Exposure to METH resulted in a shift of occludin localization from plasma membranes to endosomes. These changes were accompanied by activation of the actin-related protein 2/3 (Arp2/3) complex, which stimulates actin polymerization by promoting actin nucleation. In addition, METH-induced coronin-1b phosphorylation diminishes the inhibitory effect of nonphosphorylated coronin-1b on actin nucleation. Blocking actin nucleation with CK-666, a specific inhibitor of the Arp2/3 complex, protected against METH-induced occludin internalization and increased transendothelial monocyte migration. Importantly, treatment with CK-666 attenuated a decrease in occludin levels in brain microvessels and BBB permeability of METH-injected mice. These findings indicate that actin cytoskeletal dynamics is detrimental to METH-induced BBB dysfunction by increasing internalization of occludin.  相似文献   

14.
The Arp2/3 complex and filamin A (FLNa) branch actin filaments. To define the role of these actin-binding proteins in cellular actin architecture, we compared the morphology of FLNa-deficient human melanoma (M2) cells and three stable derivatives of these cells expressing normal FLNa concentrations. All the cell lines contain similar amounts of the Arp2/3 complex. Serum addition causes serum-starved M2 cells to extend flat protrusions transiently; thereafter, the protrusions turn into spherical blebs and the cells do not crawl. The short-lived lamellae of M2 cells contain a dense mat of long actin filaments in contrast to a more three-dimensional orthogonal network of shorter actin filaments in lamellae of identically treated FLNa-expressing cells capable of translational locomotion. FLNa-specific antibodies localize throughout the leading lamellae of these cells at junctions between orthogonally intersecting actin filaments. Arp2/3 complex-specific antibodies stain diffusely and label a few, although not the same, actin filament overlap sites as FLNa antibody. We conclude that FLNa is essential in cells that express it for stabilizing orthogonal actin networks suitable for locomotion. Contrary to some proposals, Arp2/3 complex-mediated branching of actin alone is insufficient for establishing an orthogonal actin organization or maintaining mechanical stability at the leading edge.  相似文献   

15.
The migrating monocyte shows dynamic actin polymerization in response to MCP-1. We investigated the involvement of the actin-related protein 2 and 3 complex (Arp2/3 complex) during chemotaxis of a human monocyte cell line (THP-1). To clarify whether the Arp2/3 complex directly polymerizes actin in response to MCP-1 stimulation, THP-1 cells were transfected with complementary DNA constructs encoding ScarWA. In ScarWA-transfected cells, neither recruitment of Arp2/3 complex at the leading edge nor actin polymerization was detected. Indeed, migration induced by MCP-1 was almost completely blocked. At the same time, transfection also interfered with the recruitment of integrin beta-1 at the leading edge and reduced affinity binding to fibronectin. Immunoprecipitation with an anti-Arp2 antibody showed that integrin beta-1 and WASP were co-precipitated under the condition of MCP-1 stimulation. These results indicate that interaction between the Arp2/3 complex and WASP stimulates actin polymerization and integrin beta-1-mediated adhesion during MCP-1-induced chemotaxis of THP-1 cells.  相似文献   

16.
Mechanisms for activating the actin-related protein 2/3 (Arp2/3) complex have been the focus of many recent studies. Here, we identify a novel mode of Arp2/3 complex regulation mediated by the highly conserved actin binding protein coronin. Yeast coronin (Crn1) physically associates with the Arp2/3 complex and inhibits WA- and Abp1-activated actin nucleation in vitro. The inhibition occurs specifically in the absence of preformed actin filaments, suggesting that Crn1 may restrict Arp2/3 complex activity to the sides of filaments. The inhibitory activity of Crn1 resides in its coiled coil domain. Localization of Crn1 to actin patches in vivo and association of Crn1 with the Arp2/3 complex also require its coiled coil domain. Genetic studies provide in vivo evidence for these interactions and activities. Overexpression of CRN1 causes growth arrest and redistribution of Arp2 and Crn1p into aberrant actin loops. These defects are suppressed by deletion of the Crn1 coiled coil domain and by arc35-26, an allele of the p35 subunit of the Arp2/3 complex. Further in vivo evidence that coronin regulates the Arp2/3 complex comes from the observation that crn1 and arp2 mutants display an allele-specific synthetic interaction. This work identifies a new form of regulation of the Arp2/3 complex and an important cellular function for coronin.  相似文献   

17.
Arp2/3 complex is an actin polymerization nucleator and localized in the leading protrusions of migrating cells. It has been unclear how this complex is targeted to the protrusions and whether its localization is functionally important. We previously demonstrated that mRNAs encoding for the subunits of the complex were localized in the protrusions of fibroblasts, suggesting a mechanism to target the complex to the protrusions. We here present data demonstrating the importance of Arp2/3 complex mRNA localization in directional cell migration. Using a novel mechanism by which Dia1 mRNA is targeted to the perinuclear endoplasmic reticulum, we redirected the mRNA encoding Arp2, a subunit of the Arp2/3 complex, to the perinuclear region in fibroblasts. Knockdown of Arp2 alone caused dramatic reduction of the complex and resulted in narrow protrusions, increased random cell migration speed and loss of directionality. Rescue with a protrusion-localizing Arp2 mRNA restored normal cell migration behavior, whereas rescue with a mis-localizing Arp2 mRNA failed to restore speed and directionality. These results demonstrate that localization of Arp2/3 complex mRNAs in the leading protrusions is functionally important for directional cell migration.  相似文献   

18.
The Arp2/3 (actin-related protein 2/3) complex nucleates branched actin filaments involved in multiple cellular functions, including endocytosis and cellular motility. Two subunits (Arp2 and Arp3) in this seven-subunit assembly are closely related to actin and upon activation of the complex form a “cryptic dimer” that stably mimics an actin dimer to nucleate a new filament. Both Arps contain a shared actin core structure, and each Arp contains multiple insertions of unknown function at conserved positions within the core. Here we characterize three key insertions within the actin core of Arp3 and show that each one plays a distinct role in modulating Arp2/3 function. The β4/β5 insert mediates interactions of Arp2/3 complex with actin filaments and “dampers” the nucleation activity of the complex. The Arp3 hydrophobic plug plays an important role in maintaining the integrity of the complex but is not absolutely required for formation of the daughter filament nucleus. Deletion of the αK/β15 insert did not constitutively activate the complex, as previously hypothesized. Instead, it abolished in vitro nucleation activity and caused defects in endocytic actin patch assembly in fission yeast, indicating a role for the αK/β15 insert in the activated state of the complex. Biochemical characterization of each mutant revealed steps in the nucleation pathway influenced by each Arp3-specific insert to provide new insights into the structural basis of activation of the complex.  相似文献   

19.
20.
Phosphorylation of the actin-related protein 2 (Arp2) subunit of the Arp2/3 complex on evolutionarily conserved threonine and tyrosine residues was recently identified and shown to be necessary for nucleating activity of the Arp2/3 complex and membrane protrusion of Drosophila cells. Here we use the Dictyostelium diploid system to replace the essential Arp2 protein with mutants that cannot be phosphorylated at Thr-235/6 and Tyr-200. We found that aggregation of the resulting mutant cells after starvation was substantially slowed with delayed early developmental gene expression and that chemotaxis toward a cAMP gradient was defective with loss of polarity and attenuated F-actin assembly. Chemotaxis toward cAMP was also diminished with reduced cell speed and directionality and shorter pseudopod lifetime when Arp2 phosphorylation mutant cells were allowed to develop longer to a responsive state similar to that of wild-type cells. However, clathrin-mediated endocytosis and chemotaxis under agar to folate in vegetative cells were only subtly affected in Arp2 phosphorylation mutants. Thus, phosphorylation of threonine and tyrosine is important for a subset of the functions of the Arp2/3 complex, in particular an unexpected major role in regulating development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号