首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular and body scale structure of a new armored dinoflagellate Heterocapsa huensis , collected from Hue, Vietnam were investigated. Morphology of motile cell was observed by light, fluorescent and scanning electron microscopy, and body scale structure was examined by whole mounts of transmission electron microscopy. Cells of H. huensis were ellipsoid with a spherical nucleus located in the posterior and multiple pyrenoids located above the nucleus; this arrangement was similar to that of Heterocapsa pygmaea . Transmission electron microscopy revealed ultrastructure of the body scales consisted of a rounded triangular basal plate and three-dimensional ornaments. Structure of the basal plate resembles that of Heterocapsa illdefina ; however, the number of the peripheral spine is different from that of H. illdefina and this structure has never been reported from Heterocapsa species. A new Heterocapsa species, H. huensis Iwataki et Matsuoka sp. nov., is described based on positions of organelles and body scale ultrastructure.  相似文献   

2.
A new armored dinoflagellate species, Heterocapsa psammophila Tamura, Iwataki et Horiguchi sp. nov. is described from Kenmin‐no‐hama beach, Hiroshima, Japan using light and electron microscopy. This dinoflagellate possesses the typical thecal plate arrangement of the genus Heterocapsa, Po, cp, 5′, 3a, 7′′, 6c, 5s, 5′′′, 2′′′′; and the 3‐D body scales of Heterocapsa on the plasma membrane. The cell shape is ovoidal. The spherical nucleus and the pyrenoid are situated in the hypotheca and the epitheca, respectively. The ultrastructure of H. psammophila is typical of dinoflagellates and the pyrenoid is invaginated by cytoplasmic tubules. H. psammophila is distinguished from all other hitherto‐described Heterocapsa species by the cell shape, the relative position of the nucleus and pyrenoid and the structure of the body scale. The habitat and behavior of this new species in culture suggest that the organism is truly a sand‐dwelling species.  相似文献   

3.
During daily monitoring in Yongho Bay off Busan, Korea in 2019, an isolate of the dinoflagellate genus Heterocapsa was established in clonal culture. Light and electron microscopic examination revealed that the isolate was ellipsoid in shape, exhibiting a thecal plate arrangement (Po, cp, X, 5′, 3a, 7″, 6c, 5s, 5‴, 2ʹʹʹʹ) consistent with most other Heterocapsa species. A large, elongated nucleus was positioned on the left side of the cell, a single reticulate chloroplast was located peripherally, and a single, starch-sheathed, spherical pyrenoid was present in the episome or near the cingulum. Morphologically, the isolate most closely resembles H. circularisquama and H. illdefina. Transmission electron microscopic examination of whole mounts revealed that the isolate had two body scale types, one of which was a complex, three-dimensional, fine structure distinct from other Heterocapsa species, whereas the other simpler type was structurally similar to the scales of H. horiguchii. Molecular phylogeny based on rRNA sequences revealed that the isolate was distantly related to morphologically similar species, but formed a sister lineage to H. horiguchii, a species characterized by a similar body scale morphology. Based on morphological, ultrastructural, and molecular data, we proposed it as a new species, Heterocapsa busanensis sp. nov.  相似文献   

4.
5.
Heterocapsa circularisquama Horiguchi sp. nov. is described from Ago Bay, central Japan. The dinoflagellate produced large-scale red tides in the bays of central and western Japan and caused mass mortality of bivalves, notably the pearl oysters. The cell is small and is composed of a conical epitheca and a hemi-spheroidal hypothecs. The chloroplast is single and is connected to the single pyrenoid. The nucleus is elongated and is located in the left side of the cell. Thecal plate arrangement has been determined as: Po, cp, 5′, 3a, 7″, 6c, 5s, 5″′, 2″″. Heterocapsa circularisquama is morphologically very similar to Heterocapsa illdefina and it is almost impossible to distinguish these two species at light microscopical level. The characteristics which can be used to distinguish these two species are the morphology of body scales and the ultrastructure of the pyrenoid matrix. The body scales of H. circularisquama possess six radiating ridges on the circular basal plate; no such ridges can be observed on the roughly triangular basal plate of the scales of H. illdefina. Furthermore, the scales of the latter species possess substantially shorter spines compared to those of H. circularisquama. The pyrenoid matrix of H. circularisquama is hardly perforated by cytoplasmic tubules, while in H. tlldefina the pyrenoid matrix is always penetrated by many cytoplasmic tubules. Based on the arrangement of thecal plates, morphology of body scales, and ultra-structure of the pyrenoid, I am placing H. circularisquama sp nov. into the genus Heterocapsa.  相似文献   

6.
The dinoflagellate order Peridiniales encompasses several well circumscribed families. However, the family level of some genera, such as Bysmatrum and Vulcanodinium, has remained elusive for many years. Four Peridinium-like strains were established from the Atlantic coast of France and North Sulawesi, Indonesia through cyst germination or isolation of single cells. The cyst-theca relationship was established on specimens from the French Atlantic. Their morphologies were examined using light, scanning and transmission electron microscopy. The cells were characterized by a much larger epitheca relative to the hypotheca, a large anterior sulcal (Sa) plate deeply intruding the epitheca and a small first anterior intercalary plate. The plate formula was identified as Po, cp, X, 4′, 3a, 7′′, 6C, 5S, 5′′′, 2′′′′, shared by Apocalathium, Chimonodinium, Fusiperidinium and Scrippsiella of the family Thoracosphaeraceae but the configuration of Sa plate and anterior intercalary plates is different. Transmission electron microscopy showed that the eyespot was located within a chloroplast comprising two rows of lipid globules and thus belongs to type A. All four strains were classified within a new genus Caladoa as C. arcachonensis gen. et sp. nov. Small subunit ribosomal DNA (SSU rDNA), partial large subunit ribosomal DNA (LSU rDNA) and internal transcribed spacer ribosomal DNA (ITS rDNA) sequences were obtained from all strains. Genetic distance based on ITS rDNA sequences between French and Indonesian strains reached 0.17, suggesting cryptic speciation in C. arcachonensis. The maximum likelihood and Bayesian inference analysis based on concatenated data from SSU and LSU rDNA sequences revealed that Caladoa is monophyletic and closest to Bysmatrum. Our results supported that Caladoa and Bysmatrum are members of the order Peridiniales but their family level remains to be determined. Our results also support that Vulcanodinium is closest to the family Peridiniaceae.  相似文献   

7.
A new species, Alexandrium camurascutulum sp. nov. MacKenzie et Todd, is described from specimens collected from Tasman Bay and the Marlborough Sounds New Zealand. These small (26–28 μm long × 21–24 μm wide) cells can be discriminated from other species in the Alexandrium minutum group by three distinctive morphological features. The sixth pre-cingular plate (6′′) is up to 1.6 times wider than high and the left side of the plate is concave resulting in a markedly ‘hooked’ appearance. In all specimens observed, the first apical plate (1′) does not directly connect with the apical pore plate (Po) and the posterior sulcal plate (S.p.) is markedly different from the usual A. minutum form and may contain a posterior attachment pore (pap) connected to the right side plate margin. The cells may or may not have an anterior attachment pore (aap) in the apical pore plate (Po). The cells display a prominent list along the left sulcal margin and the thecal surface is perforated with numerous areolated pores. A. camurascutulum sp. nov. has been observed occasionally over a number of years in coastal waters of the northern South Island of New Zealand. There is circumstantial evidence that suggests it is not toxic.  相似文献   

8.
The dinophycean genus Heterocapsa is of considerable interest as it contains a number of bloom-forming and/or harmful species. Fine structure of organic body scales is regarded as the most important morphological feature for species determination but currently is unknown for the species H. minima described by Pomroy 25 years ago. Availability of a culture of H. minima collected in the south-west of Ireland allowed us to provide important information for this species, including cell size, cell organelle location, thecal plate pattern, body scale fine structure and molecular phylogeny. Light microscopy revealed the presence of one reticulate chloroplast, an elongated centrally located nucleus, and the presence of one pyrenoid surrounded by a starch sheath. Scanning electron microscopy (SEM) of the thecal plate pattern indicated that Pomroy erroneously designated the narrow first cingular plate as a sulcal plate. In addition, SEM revealed as yet unreported details of the apical pore complex and uncommon ornamentations of hypothecal plates. Organic body scales of H. minima were about 400 nm in size, roundish, with a small central hole and one central, six peripheral and three radiating spines. They differ from other body scales described within this genus allowing for positive identification of H. minima. Heterocapsa minima shares gross cell morphological features (hyposome smaller than episome, elongated nucleus in the middle of the cell, one pyrenoid located in the episome on its left side) with H. arctica (both subspecies H. arctica subsp. arctica and H. arctica subsp. frigida), H. lanceolata and H. rotundata. These relationships are reflected in the phylogenetic trees based on LSU and ITS rDNA sequence data, which identified H. arctica (both subspecies), H. rotundata and H. lanceolata as close relatives of H. minima.  相似文献   

9.
A new, sand-dwelling, armored dinoflagellate, Roscoffia minor sp. nov., is described from Ishikari beach, Hokkaido, Japan. The dinoflagellate has been collected from sand samples taken both near the water's edge and further upshore (25 m from the water's edge at a depth of 1 m), indicating that it is a true sand-dwelling species. Roscoffia minor is heterotrophic and lacks both a chloroplast and an eye-spot. The cell consists of a flattened cap-shaped epitheca and a large hemispheroidal hypotheca, and it is quite different from cells of the typical armored dinoflagellates. The thecal plate formula is: Po, 3′, la, 5″, 3c, 3s, 5″, 1″″. Its distinct cell shape and the thecal plate arrangement indicate affinity to the monotypic genus Roscoffia. Roscoffia minor is distinguished from Roscoffia capitata, the type species, by its smaller size and the possession of a finger-like apical projection. The thecal arrangement of the epitheca is similar to those of the members of the family Podolampaceae, while the hypothecal arrangement is the same as that of members of the subfamily Diplopsalioideae (family Congruentidiaceae). The organism seems to be positioned somewhere intermediate between these two families, but the family to which this dinoflagellate should be affiliated could not be determined.  相似文献   

10.
Species belonging to the dinophyte genus Scrippsiella are frequently reported in marine waters, but information on their distribution in brackish environments is limited. Here we describe a new species, S. plana, through incubation of non-calcified cysts from sediments collected in the South China Sea and Caspian Sea. The vegetative cells consist of a conical epitheca and a rounded hypotheca with the plate formula of Po, X, 4′, 3a, 7′′, 5C+t, 5S, 5′′′, 2′′′′. It differs from other Scrippsiella species by its flattened body in dorsoventral view and a small first anterior intercalary (1a) plate (half the size of plate 3a). Scrippsiella plana strains from the South China Sea and Caspian Sea share identical internal transcribed spacer (ITS) sequences, and show phenotypic plasticity and local adaptation in growth rate at various salinities, consistent with the environments in which they originated. In addition, two strains of S. spinifera were obtained by incubating ellipsoid cysts with calcareous spines from sediments collected along the Turkish and Hawaiian coast. They also share identical ITS sequences and differ from Duboscquodinium collinii (a parasite of tintinnids) only at two base pair positions (in the ITS2 region). Molecular phylogeny based on ITS and large subunit ribosomal DNA (LSU rDNA) sequences revealed that S. plana was nested within the Calciodinellum (CAL) clade and S. spinifera within the S. trochoidea (STR) clade. The phylogenetic position of ‘Peridiniumwisconsinense is reported for the first time, which supports multiple transitions of the Peridiniales to freshwater.  相似文献   

11.
Amphidiniopsis is a benthic, heterotrophic and thecate dinoflagellate genus that has a smaller epitheca and larger hypotheca. The genus contains 24 described species, but is considered to be polyphyletic based on morphological characters and molecular phylogenetics. In this study, two new species were discovered from two distant sampling localities, Amphidiniopsis crumena sp. nov. from Japan, and Amphidiniopsis nileribanjensis sp. nov., from Australia. These species have a uniquely shaped, additional second postcingular plate. Both species are dorsoventrally flattened, an apical hook is present, and have six postcingular plates. The plate formula is: APC 4′ 3a 7″ ?C 4?S 6″′ 2″″. The cells of these species were examined with LM and SEM, and molecular phylogenic analyses were performed using 18S and 28S rDNA. These species are distinguished by the presence of spines on the hypotheca and touching of the sixth postcingular plate and the anterior sulcal plate. Their shape and disposition of several thecal plates also differ. Molecular phylogenetic analyses showed that the two new species formed a monophyletic clade and did not belong to any morphogroup proposed by previous studies. Considering the morphological features and the molecular phylogenetic results, a new morphogroup is proposed, Amphidiniopsis morphogroup VI (‘crumena group’).  相似文献   

12.
13.
A new dinoflagellate Durinskia capensis Pienaar, Sakai et Horiguchi sp. nov. (Peridiniales, Dinophyceae), from tidal pools along the west coast of the Cape Peninsula, Republic of South Africa, is described. The dinoflagellate produces characteristic dense orange-red colored blooms in tidal pools. The organism is characterized by having a eukaryotic endosymbiotic alga. Ultrastructure study revealed the organism has a cellular construction similar to that of other diatom-harboring dinoflagellates. The cell is thecate and the plate formula is: Po, x, 4', 2a, 6', 5c, 4s, 5', 2', which is the same as that of Durinskia baltica, the type species of the genus Durinskia. D. capensis can, however, be distinguished from D. baltica by overall cell shape, the relative size of the 1a and 2a plates, the degree of cingular displacement, and the shape of the eyespot. Our molecular analysis based on SSU rDNA revealed that D. capensis is closely allied to D. baltica, thus supporting the assignment of this new species to this genus. This Durinskia clade takes a sister position to another diatom-harboring dinoflagellate clade, which includes Kryptoperidinium foliaceum and Galeidinium rugatum. Molecular analysis based on the rbcL gene sequence and ultrastructure study revealed that the endosymbiont of D. capensis is a diatom. The SSU rDNA gene trees indicated that four species with a diatom endosymbiont formed a clade, suggesting a single endosymbiotic origin.  相似文献   

14.
A new species of Amphidinium, A. cupulatisquama Tamura et Horiguchi, from sand samples from Ikei Island, Okinawa Prefecture in subtropical Japan, is described based on light, scanning and transmission electron microscopy and the partial sequencing of the large subunit rDNA gene. The species has a typical morphology for the genus, but is distinguished from previously described species by having a combination of the following characteristics: (i) a relatively large cell (over 30 µm in length); (ii) possessing an eyespot on the dorsal side of the cingulum; (iii) the longitudinal flagellum emerging from a point close to the cingulum; (iv) cell division taking place in the motile phase; and (v) possessing body scales. This is the third species of this genus to possess body scales. The body scales of A. cupulatisquama are uniform and cup‐shaped in side view and elliptical in face view. Their dimensions are 136.4 nm by 91.0 nm by 81.8 nm high. In side view, the scale is seen to have a thick lower half and a thin upper half. This scale type is very different from those of previously reported Amphidinium species (HG114 and HG115). The molecular tree indicated that A. cupulatisquama and the two other strains of body scale‐bearing Amphidinium are distantly related within the Amphidinium clade.  相似文献   

15.
Xylodon subflaviporus (Hymenochaetales, Basidiomycota) is described as a new species collected from tropical and subtropical regions of East Asia. This new species is characterized by resupinate basidiocarps, a poroid hymenophore, pseudodimitic hyphal system, nodose-septate hyphae, four types of cystidia (capitate, acicular to cylindrical, subulate to ventricose, and apically-encrusted), and thin-walled, colorless, smooth and ellipsoid basidiospores. Bayesian, Maximum Likelihood and Maximum Parsimony algorithms were used to construct phylogenies inferred from the internal transcribed spacer (ITS) region of rDNA. Morphological and molecular studies, along with intercompatibility tests, confirmed the independent status of this species. Also, based on morphological and molecular evidence, six new combinations of Xylodon are proposed to accommodate species originally classified under Hyphodontia s.l., i.e. X. bubalinus, X. chinensis, X. mollissimus, X. nongravis, X. reticulatus and X. subtropicus. A key to known species of Hyphodontia s.l. with poroid, irpicoid or raduloid hymenophores is provided for the convenience in identification.  相似文献   

16.
The number of cingular plates has been used to differentiate Protoperidinium from Peridinium and related genera. Protoperidinium is characterized by the presence of three cingular plates plus a transitional plate (3C+t). However, many Protoperidinium species have been described that exhibit different cingular plate tabulations. How these species should be classified within the genus remains unclear. To address this question, the phylogenetic relationship of four Protoperidinium species, with three or four cingular plates and lacking a transitional plate, were examined in relationship to other Protoperidinium species. These four species were germinated from cysts deposited in surface sediments collected from the East China Sea, the Bohai Sea and the Yellow Sea. Three of the isolated species, P. tricingulatum, P. americanum and P. parthenopes, were described previously. The fourth is here described as P. haizhouense sp. nov. with the plate formula Po, X, 4′, 3a, 7′′, 3C, 6S, 5′′′, 2′′′′. Differences in the cyst stages of these four species, which can be taxonomically informative, were compared. Partial large subunit ribosomal DNA sequences were obtained by single‐cell polymerase chain reaction. Maximum‐likelihood and Bayesian inference showed that these four species, P. fukuyoi and Islandinium minutum form a monophyletic clade with maximal support. The genus as a whole, however, appeared polyphyletic. Our results suggest that the presence/absence of a transitional plate is significant in the phylogeny of Protoperidinium.  相似文献   

17.
Psydrax multiflora, a new species of Vanguerieae collected in the Palawan, Luzon Island, Philippines is herein described and illustrated. Morphological observation showed that P. multilfora approaches three Malesian Psydrax species, namely P. amplifolia, P. nitida and P. puberula. However, P. multiflora can be delineated from these three by its caudate leaf apex, 20–30‐flowered umbellate inflorescences and broadly triangular corolla lobes.  相似文献   

18.
Nepenthes robcantleyi Cheek sp. nov. from Mindanao, Philippines is described and illustrated in the Regiae group of Danser, as the second taxon of that group known from the Philippines. The conservation status of the species is assessed as ‘Critically Endangered’ (CR) as the only known population, found in 1997, has allready been logged and the species may then has gone extinct in the wild.  相似文献   

19.
The heterotrophic sand-dwelling dinoflagellate Thecadinium inclinatum has been re-examined by light and scanning electron microscopy in order to resolve the discrepancies on its plate pattern from the literature, and to obtain its phylogenetic information single-cell PCR technique has been used. The comparison of morphological and molecular information available for other Thecadinium species confirms the genus is polyphyletic and T. inclinatum seems not related to other representatives of the genus sensu lato. Thus, a new genus and combination for the species, Psammodinium inclinatum gen. nov., comb. nov. is proposed. Cells are heterotrophic and strongly laterally flattened, with sulcal pocket. The revised tabulation is: APC 3' 7” 7c 7s? 5”' 1p 2”” with a long-shank fishhook-shaped apical pore and descending cingulum. The cingulum inclines ventrally and declines on the right lateral side producing an asymmetrical epitheca. The epitheca is much smaller than the hypotheca. The phylogenetic results showed a strong relationship with the autotrophic epiphytic genera Gambierdiscus and Fukuyoa, being closely related with the latter. The Gambierdiscus species typically have a tropical and sub-tropical distribution and produce ciguatoxins, causing thousands of intoxications every year by consumption of contaminated fish. Fukuyoa representatives have a wider distribution including warm and temperate waters, and it has been demonstrated that they are also able to produce ciguatoxins, even though at lower amounts. P. inclinatum, which potential toxicity remains to be determined, represents an interesting independent evolutionary branch that resulted in the loss of chloroplasts, the strong lateral compression and the adaptation to sandy habitats in temperate and cold waters.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号