首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both developmental and neurophysiological research suggest a common coding between perceived and generated actions. This shared representational network is innately wired in humans. We review psychological evidence concerning the imitative behaviour of newborn human infants. We suggest that the mechanisms involved in infant imitation provide the foundation for understanding that others are 'like me' and underlie the development of theory of mind and empathy for others. We also analyse functional neuroimaging studies that explore the neurophysiological substrate of imitation in adults. We marshal evidence that imitation recruits not only shared neural representations between the self and the other but also cortical regions in the parietal cortex that are crucial for distinguishing between the perspective of self and other. Imitation is doubly revealing: it is used by infants to learn about adults, and by scientists to understand the organization and functioning of the brain.  相似文献   

2.
While empathy is a century‐old psychological concept, its study in non‐human animals has become the focus of much recent scientific interest, as it promises to provide the clues to understand the evolutionary origins of our social and moral nature. A review of the comparative study of empathy is thus timely to complement and constrain anthropocentric views, and to integrate current findings. However, this is not an easy task. The study of animal empathy has developed using different paradigms, different concepts of the phenomena involved, and the absence of a systematic program. Herein, we carry out a comprehensive review of the literature on complex forms of empathy in non‐human animals: sympathetic concern and empathic perspective‐taking. In particular, we focus on consolation and targeted helping, as the best examples of each category. In so doing, we try to shed light on the current debate concerning whether these phenomena are exclusively human traits. First, we try to clarify the terminology and taxonomy of forms of empathy, providing operative criteria for these phenomena that are applicable to both human and non‐human animals. Second, we discuss whether the available evidence qualifies such behaviour as empathic. Third, we aim to provide an integrative view of the field, clarifying the challenges and conditions to satisfy. We also hope to highlight the importance of the study of these processes for elucidating the evolutionary history of this capacity across the animal kingdom.  相似文献   

3.
Empathy has long attracted the attention of philosophers and psychologists, and more recently, of evolutionary biologists. Interestingly, studies suggest that empathy is a phylogenetically continuous phenomenon, ranging across animals from automatic emotional activation in response to the emotions of others, to perspective-taking that becomes increasingly complex with increasing brain size. Although suggestions have been made that the domestic dog may have the capacity to empathize with humans, no discussion has yet addressed the topic, nor have experimental routes been proposed to further explore the level of emotional and cognitive processing underlying dogs' seemingly empathic behaviour towards humans. In this opinion piece, we begin by contextualizing our topic of interest within the larger body of literature on empathy. Thereafter we: (i) outline the reasons for why we believe dogs may be capable of empathizing with humans, perhaps even at some level beyond emotional contagion; (ii) review available evidence both pro and against our opinion; and (iii) propose routes for future studies to accurately address the topic. Also, we consider the use of dogs to further explore open questions regarding empathy in humans.  相似文献   

4.
The ability to share the other's feelings, known as empathy, has recently become the focus of social neuroscience studies. We review converging evidence that empathy with, for example, the pain of another person, activates part of the neural pain network of the empathizer, without first hand pain stimulation to the empathizer's body. The amplitude of empathic brain responses is modulated by the intensity of the displayed emotion, the appraisal of the situation, characteristics of the suffering person such as perceived fairness, and features of the empathizer such as gender or previous experience with pain-inflicting situations. Future studies in the field should address inter-individual differences in empathy, development and plasticity of the empathic brain over the life span, and the link between empathy, compassionate motivation, and prosocial behavior.  相似文献   

5.
The ability to empathize with other people is a critical component of human social relationships. Empathic processing varies across the human population, however it is currently unclear how personality traits are associated with empathic processing. This study was designed to test the hypothesis that specific personality traits are associated with behavioral and biological indicators of improved empathy. Extraversion and Agreeableness are personality traits designed to measure individual differences in social-cognitive functioning, however each trait-dimension includes elements that represent interpersonal social functioning and elements that do not represent interpersonal social functioning. We tested the prediction that interpersonal elements of Extraversion (Warmth) and Agreeableness (Altruism) are associated with empathy and non-interpersonal elements of Extraversion and Agreeableness are not associated with empathy. We quantified empathic processing behaviorally (empathic accuracy task using video vignettes) and within the brain (fMRI and an emotional perspective taking task) in 50 healthy subjects. Converging evidence shows that highly warm and altruistic people are well skilled in recognizing the emotional states of other people and exhibit greater activity in brain regions important for empathy (temporoparietal junction and medial prefrontal cortex) during emotional perspective taking. A mediation analysis further supported the association between warm-altruistic personality and empathic processing; indicating that one reason why highly warm-altruistic individuals may be skilled empathizers is that they engage the temporoparietal junction and medial prefrontal cortex more. Together, these findings advance the way the behavioral and neural basis of empathy is understood and demonstrates the efficacy of personality scales to measure individual differences in interpersonal social function.  相似文献   

6.
Empathy enables social mammals to recognize and share emotion with others and is well‐documented in non‐human primates. During the past few years, systematic observations have showed that a primal form of empathy also exists in rodents, indicating that empathy has an evolutionary continuity. Now, using rodents exhibiting emotional empathy, the molecular and cellular study of empathy in animals has begun in earnest. In this article, we will review recent reports that indicate that rodents can share states of fear with others, and will try to highlight new understandings of the neural circuitry, biochemistry and genetics of empathic fear. We hope that the use of rodent models will enhance understanding of the mechanisms of human empathy and provide insights into how to treat social deficits in neuropsychiatric disorders characterized by empathy impairment.  相似文献   

7.
How do we understand the actions of other individuals if we can only hear them? Auditory mirror neurons respond both while monkeys perform hand or mouth actions and while they listen to sounds of similar actions . This system might be critical for auditory action understanding and language evolution . Preliminary evidence suggests that a similar system may exist in humans . Using fMRI, we searched for brain areas that respond both during motor execution and when individuals listened to the sound of an action made by the same effector. We show that a left hemispheric temporo-parieto-premotor circuit is activated in both cases, providing evidence for a human auditory mirror system. In the left premotor cortex, a somatotopic pattern of activation was also observed: A dorsal cluster was more involved during listening and execution of hand actions, and a ventral cluster was more involved during listening and execution of mouth actions. Most of this system appears to be multimodal because it also responds to the sight of similar actions. Finally, individuals who scored higher on an empathy scale activated this system more strongly, adding evidence for a possible link between the motor mirror system and empathy.  相似文献   

8.
Empathy, the capacity to recognize and share feelings experienced by another individual, is an important trait in humans, but is not the same as pro-sociality, the tendency to behave so as to benefit another individual. Given the importance of understanding empathy''s evolutionary emergence, it is unsurprising that many studies attempt to find evidence for it in other species. To address the question of what should constitute evidence for empathy, we offer a critical comparison of two recent studies of rescuing behaviour that report similar phenomena but are interpreted very differently by their authors. In one of the studies, rescue behaviour in rats was interpreted as providing evidence for empathy, whereas in the other, rescue behaviour in ants was interpreted without reference to sharing of emotions. Evidence for empathy requires showing that actor individuals possess a representation of the receiver''s emotional state and are driven by the psychological goal of improving its wellbeing. Proving psychological goal-directedness by current standards involves goal-devaluation and causal sensitivity protocols, which, in our view, have not been implemented in available publications. Empathy has profound significance not only for cognitive and behavioural sciences but also for philosophy and ethics and, in our view, remains unproven outside humans.  相似文献   

9.
We review the evidence that an ability to achieve a precise balance between representing the self and representing other people is crucial in social interaction. This ability is required for imitation, perspective-taking, theory of mind and empathy; and disruption to this ability may contribute to the symptoms of clinical and sub-clinical conditions, including autism spectrum disorder and mirror-touch synaesthesia. Moving beyond correlational approaches, a recent intervention study demonstrated that training participants to control representations of the self and others improves their ability to control imitative behaviour, and to take another''s visual perspective. However, it is unclear whether these effects apply to other areas of social interaction, such as the ability to empathize with others. We report original data showing that participants trained to increase self–other control in the motor domain demonstrated increased empathic corticospinal responses (Experiment 1) and self-reported empathy (Experiment 2), as well as an increased ability to control imitation. These results suggest that the ability to control self and other representations contributes to empathy as well as to other types of social interaction.  相似文献   

10.
Temporal integration in the visual system causes fast-moving objects to generate static, oriented traces (‘motion streaks’), which could be used to help judge direction of motion. While human psychophysics and single-unit studies in non-human primates are consistent with this hypothesis, direct neural evidence from the human cortex is still lacking. First, we provide psychophysical evidence that faster and slower motions are processed by distinct neural mechanisms: faster motion raised human perceptual thresholds for static orientations parallel to the direction of motion, whereas slower motion raised thresholds for orthogonal orientations. We then used functional magnetic resonance imaging to measure brain activity while human observers viewed either fast (‘streaky’) or slow random dot stimuli moving in different directions, or corresponding static-oriented stimuli. We found that local spatial patterns of brain activity in early retinotopic visual cortex reliably distinguished between static orientations. Critically, a multivariate pattern classifier trained on brain activity evoked by these static stimuli could then successfully distinguish the direction of fast (‘streaky’) but not slow motion. Thus, signals encoding static-oriented streak information are present in human early visual cortex when viewing fast motion. These experiments show that motion streaks are present in the human visual system for faster motion.  相似文献   

11.
Sleep-dependent learning and memory consolidation   总被引:20,自引:0,他引:20  
Walker MP  Stickgold R 《Neuron》2004,44(1):121-133
While the functions of sleep remain largely unknown, one of the most exciting and contentious hypotheses is that sleep contributes importantly to memory. A large number of studies offer a substantive body of evidence supporting this role of sleep in what is becoming known as sleep-dependent memory processing. This review will provide evidence of sleep-dependent memory consolidation and sleep-dependent brain plasticity and is divided into five sections: (1) an overview of sleep stages, memory categories, and the distinct stages of memory development; (2) a review of the specific relationships between sleep and memory, both in humans and animals; (3) a survey of evidence describing sleep-dependent brain plasticity, including human brain imaging studies as well as animal studies of cellular neurophysiology and molecular biology. We close (4) with a consideration of unanswered questions as well as existing arguments against the role of sleep in learning and memory and (5) a concluding summary.  相似文献   

12.
Empathy is the ability to recognize and share in the emotions of others. It can be considered a multifaceted concept with cognitive and emotional aspects. Little is known regarding the underlying neurochemistry of empathy and in the current study we used a neurogenetic approach to explore possible brain neurotransmitter pathways contributing to cognitive and emotional empathy. Both the oxytocin receptor (OXTR) and the arginine vasopressin receptor 1a (AVPR1a) genes contribute to social cognition in both animals and humans and hence are prominent candidates for contributing to empathy. The following research examined the associations between polymorphisms in these two genes and individual differences in emotional and cognitive empathy in a sample of 367 young adults. Intriguingly, we found that emotional empathy was associated solely with OXTR, whereas cognitive empathy was associated solely with AVPR1a. Moreover, no interaction was observed between the two genes and measures of empathy. The current findings contribute to our understanding of the distinct neurogenetic pathways involved in cognitive and emotional empathy and underscore the pervasive role of both oxytocin and vasopressin in modulating human emotions.  相似文献   

13.
As functional magnetic resonance imaging (fMRI) studies have yielded increasing amounts of information about the brain’s spontaneous activity, they have revealed fMRI’s potential to locate changes in brain hemodynamics that are associated with neuropsychiatric disorders. In this paper, we review studies that support the notion that changes in brain spontaneous activity observed by fMRI can be used as potential biomarkers for diagnosis and treatment evaluation in neuropsychiatric disorders. We first review the methods used to study spontaneous activity from the perspectives of (1) the properties of local spontaneous activity, (2) the spatial pattern of spontaneous activity, and (3) the topological properties of brain networks. We also summarize the major findings associated with major neuropsychiatric disorders obtained using these methods. Then we review the pilot studies that have used spontaneous activity to discriminate patients from normal controls. Finally, we discuss current challenges and potential research directions to further elucidate the clinical use of spontaneous brain activity in neuropsychiatric disorders.  相似文献   

14.
The hunting and gathering lifestyle adopted by human ancestors around 2 Ma required a large increase in aerobic activity. High levels of physical activity altered the shape of the human body, enabling access to new food resources (e.g. animal protein) in a changing environment. Recent experimental work provides strong evidence that both acute bouts of exercise and long-term exercise training increase the size of brain components and improve cognitive performance in humans and other taxa. However, to date, researchers have not explored the possibility that the increases in aerobic capacity and physical activity that occurred during human evolution directly influenced the human brain. Here, we hypothesize that proximate mechanisms linking physical activity and neurobiology in living species may help to explain changes in brain size and cognitive function during human evolution. We review evidence that selection acting on endurance increased baseline neurotrophin and growth factor signalling (compounds responsible for both brain growth and for metabolic regulation during exercise) in some mammals, which in turn led to increased overall brain growth and development. This hypothesis suggests that a significant portion of human neurobiology evolved due to selection acting on features unrelated to cognitive performance.  相似文献   

15.
Positron emission tomography (PET) is a powerful clinical and research tool that, in the past two decades, has provided a great amount of novel data on the pathophysiology and functional consequences of human epilepsy. PET studies revealed cortical and subcortical brain dysfunction of a widespread brain circuitry, providing an unprecedented insight in the complex functional abnormalities of the epileptic brain. Correlation of metabolic and neuroreceptor PET abnormalities with electroclinical variables helped identify parts of this circuitry, some of which are directly related to primary epileptogenesis, while others, adjacent to or remote from the primary epileptic focus, may be secondary to longstanding epilepsy. PET studies have also provided detailed data on the functional anatomy of cognitive and behavioral abnormalities associated with epilepsy. PET, along with other neuroimaging modalities, can measure longitudinal changes in brain function attributed to chronic seizures as well as therapeutic interventions. This review demonstrates how development of more specific PET tracers and application of multimodality imaging by combining structural and functional neuroimaging with electrophysiological data can further improve our understanding of human partial epilepsy, and helps more effective application of PET in presurgical evaluation of patients with intractable seizures.  相似文献   

16.

Background  

Data of syncytin 1 and 2 env gene expression in human placenta and participation in the syncytialisation phenomena has been reported. However, there are not many studies on simultaneous changes in expression of both syncytins in culture. We sought evidence on the relative expression of syncytins and syncytin 1 receptors in trophoblast cell culture treated with a differentiation inducing factor (forskolin).  相似文献   

17.

Background  

Pure akinesia (PA) is a distinct form of parkinsonism characterized by freezing phenomena. Little is known about brain tumor-associated PA. We highlight the clinicoradiological changes in a patient with PA and central nervous system (CNS) metastases of natural killer/T-cell lymphoma (NKTL).  相似文献   

18.
When encoding yields remembering: insights from event-related neuroimaging.   总被引:16,自引:0,他引:16  
To understand human memory, it is important to determine why some experiences are remembered whereas others are forgotten. Until recently, insights into the neural bases of human memory encoding, the processes by which information is transformed into an enduring memory trace, have primarily been derived from neuropsychological studies of humans with select brain lesions. The advent of functional neuroimaging methods, such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), has provided a new opportunity to gain additional understanding of how the brain supports memory formation. Importantly, the recent development of event-related fMRI methods now allows for examination of trial-by-trial differences in neural activity during encoding and of the consequences of these differences for later remembering. In this review, we consider the contributions of PET and fMRI studies to the understanding of memory encoding, placing a particular emphasis on recent event-related fMRI studies of the Dm effect: that is, differences in neural activity during encoding that are related to differences in subsequent memory. We then turn our attention to the rich literature on the Dm effect that has emerged from studies using event-related potentials (ERPs). It is hoped that the integration of findings from ERP studies, which offer higher temporal resolution, with those from event-related fMRI studies, which offer higher spatial resolution, will shed new light on when and why encoding yields subsequent remembering.  相似文献   

19.
Aims It is a huge challenge to understand the blood–brain barrier (BBB), which is a key element in neuroinflammation associated with many brain diseases. The BBB also regulates the passage of xenobiotics into the central nervous system (CNS), and therefore influences drug efficacy. This may be due to the presence of ATP binding cassette transporters such as P-glycoprotein (Pgp) on the BBB, which are efflux pumps known to transport many drugs. The peptide endothelin 1 (ET-1) is involved in different kinds of CNS diseases and neuroinflammation, and is known to modulate Pgp transport activity. Although there are data from animal models, data from human models are scarce. We evaluated Pgp expression and transport activity in adult human brain microvascular endothelial cells (HBMECs) when exposing an adult human in vitro BBB model to ET-1. Methods Adult HBMECs were cocultured with human adult glial cells on a TranswellsR to mimic blood and CNS compartments. These human in vitro BBBs were exposed for 24 h to 100 nM and 10 nM ET-1. Pgp expression was assessed by flow cytometry and its transport activity by measuring radiolabelled digoxin passage. Results After exposure to ET-1, flow cytometry showed no shift of fluorescence intensity for a Pgp specific antibody. The passage of digoxin increased with a significant decrease of Q ratio for 10 nM ET-1. Conclusion Our results show that ET-1 has no effect on Pgp expression of adult HBMECs, but does modulate Pgp transport activity.  相似文献   

20.
The human brain is the continuous subject of extensive investigation aimed at understanding its behavior and function. Despite a clear evidence that mechanical factors play an important role in regulating brain activity, current research efforts focus mainly on the biochemical or electrophysiological activity of the brain. Here, we show that classical mechanical concepts including deformations, stretch, strain, strain rate, pressure, and stress play a crucial role in modulating both brain form and brain function. This opinion piece synthesizes expertise in applied mathematics, solid and fluid mechanics, biomechanics, experimentation, material sciences, neuropathology, and neurosurgery to address today’s open questions at the forefront of neuromechanics. We critically review the current literature and discuss challenges related to neurodevelopment, cerebral edema, lissencephaly, polymicrogyria, hydrocephaly, craniectomy, spinal cord injury, tumor growth, traumatic brain injury, and shaken baby syndrome. The multi-disciplinary analysis of these various phenomena and pathologies presents new opportunities and suggests that mechanical modeling is a central tool to bridge the scales by synthesizing information from the molecular via the cellular and tissue all the way to the organ level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号