共查询到20条相似文献,搜索用时 15 毫秒
1.
Backgrounds and Aims
The stem growth habit, determinate or indeterminate, of soybean, Glycine max, varieties affects various plant morphological and developmental traits. The objective of this study is to identify the effect of stem growth habit in soybean on the stomatal conductance of single leaves in relation to their leaf morphology in order to better understand the ecological and agronomic significance of this plant trait.Methods
The stomatal conductance of leaves on the main stem was measured periodically under favourable field conditions to evaluate gmax, defined as the maximum stomatal conductance at full leaf expansion, for four varieties of soybean and their respective determinate or indeterminate near isogenic lines (NILs). Leaf morphological traits including stomatal density, guard cell length and vein density were also measured.Key Results
The value of gmax ranged from 0·383 to 0·754 mol H2O m−2 s−1 across all the genotypes for both years. For the four pairs of varieties, the indeterminate lines exhibited significantly greater gmax, stomatal density, numbers of epidermal cells per unit area and total vein length per unit area than their respective determinate NILs in both years. The guard cell length, leaf mass per area and single leaf size all tended to be greater in the determinate types. The variation of gmax across genotypes and years was well explained by the product of stomatal density and guard cell length (r = 0·86, P < 0·01).Conclusions
The indeterminate stem growth habit resulted in a greater maximum stomatal conductance for soybean than the determinate habit, and this was attributed to the differences in leaf structure. This raises the further hypothesis that the difference in stem growth habit results in different water use characteristics of soybean plants in the field. Stomatal conductance under favourable conditions can be modified by leaf morphological traits.Key words: Soybean, Glycine max, stem growth habit, stomatal conductance, stomatal density, guard cell length, near isogenic lines 相似文献2.
Exposure to ozone (O(3)) may affect vegetative and reproductive development, although the consequences for yield depend on the effectiveness of the compensatory processes induced. This study examined the impact on reproductive development of exposing Brassica campestris (Wisconsin Fast Plants) to ozone during vegetative growth. Plants were exposed to 70 ppb ozone for 2 d during late vegetative growth or 10 d spanning most of the vegetative phase. Effects on gas exchange, vegetative growth, reproductive development and seed yield were determined. Impacts on gas exchange and foliar injury were related to pre-exposure stomatal conductance. Exposure for 2 d had no effect on growth or reproductive characteristics, whereas 10-d exposure reduced vegetative growth and reproductive site number on the terminal raceme. Mature seed number and weight per pod and per plant were unaffected because seed abortion was reduced. The observation that mature seed yield per plant was unaffected by exposure during the vegetative phase, despite adverse effects on physiological, vegetative and reproductive processes, shows that indeterminate species such as B. campestris possess sufficient compensatory flexibility to avoid reductions in seed production. 相似文献
3.
Naturally occurring high levels of ethylene can be a problem in spaceflight and controlled environment agriculture (CEA) leading to sterility and irregular plant growth. There are engineering and safety advantages of growing plants under hypobaria (low pressure) for space habitation. The goals of this research were to successfully grow lettuce (Lactuca sativa cv. Buttercrunch) in a long-term study from seed to harvest under hypobaric conditions, and to investigate how endogenously produced ethylene affects gas exchange and plant growth from seed germination to harvest under hypobaric and ambient total pressure conditions. Lettuce was grown under two levels of total gas pressure [hypobaric or ambient (25 or 101 kPa)] in a long-term, 32-day study. Significant levels of endogenous ethylene occurred by day-15 causing reductions in photosynthesis, dark-period respiration, and a subsequent decrease in plant growth. Hypobaria did not mitigate the adverse ethylene effects on plant growth. Seed germination was not adversely affected by hypobaria, but was reduced by hypoxia (6 kPa pO2). Under hypoxia, seed germination was higher under hypobaria than ambient total pressure. This research shows that lettuce can be grown from seed to harvest under hypobaria (≅25% of normal earth ambient total pressure). 相似文献
4.
Gasparović H Unić D Sutlić Z Husedzinović I Biocina B Rudez I Nikić N Jelić I 《Collegium antropologicum》2008,32(1):293-298
While the introduction of off-pump myocardial revascularization (OPCAB) has initially shown promise in reducing respiratory complications inherent to conventional coronary surgery, it has failed to eradicate them. Our study focused on quantifying the lactate release from the lungs and the dysfunction at the level of the alveolar-capillary membrane precipitated by OPCAB at different time points after the insult. Furthermore, we aimed to determine the impact of pulmonary lactate production on systemic lactic acid concentrations. The study was conducted in a prospective observational fashion. Forty consecutive patients undergoing OPCAB were analyzed. The mean patient age was 60 +/- 10 years. The mean EUROScore was 3.8 +/- 2.9. The alveolar-arterial O2 gradient increased from 19 [range 9 to 30] to 26 [range 20 to 34] kPa (P < 0.001) and remained elevated up to 6 hours after surgery. It rapidly declined again by 18 hours postoperatively. The observed increase in the pulmonary lactate release (PLR) from a baseline value of 0.022 [range -0.074 to 0.066] to 0.089 [range 0.016 to 0.209] mmol/min/m2 at six hours postoperatively did not reach statistical significance (P = 0.105). The systemic arterial lactate (Ls) concentration increased from 0.94 [range 0.78 to 1.06] to 1.39 [range 0.97 to 2.81] mmol/L (P < 0.001). The venoarterial pCO2 difference showed no significant change in comparison to baseline values. The mortality in the studied group was 2.5% (1/40). The pulmonary lactate production showed a statistically significant correlation with the systemic lactate concentration (R = 0.46; P = 0.003). Pulmonary injury following off pump myocardial revascularization was evidenced by a prompt increase in the alveolar-arterial oxygen gradient. The alveolar-arterial O2 gradient correlated with the duration of mechanical ventilation. 相似文献
5.
6.
7.
The discontinuous gas exchange cycle (DGC) of the pseudoscorpion Garypus californicus is characterized by periodic bursts of CO(2) emission and by high rates of interburst CO(2) emission. We investigated the mechanism that triggers the burst phase by manipulating ambient oxygen partial pressures (Po(2)). The ventilatory trigger in most land animals is hypercapnia; in insects, for example, the burst phase is triggered when endotracheal Pco(2) reaches about 4 kPa. In insects with a DGC, hypoxia induces prolonged interburst phases because spiracular conductance is elevated to supply oxygen to the tissues, thus delaying the onset of the hypercapnia-triggered burst phase because CO(2) accumulates more slowly. In G. californicus, hypoxia induced a decrease in interburst phase length, while hyperoxia increased its duration relative to normoxia. This is opposite to the condition in insects. In addition, CO(2) emission fell during the interburst phase as ambient Po(2) rose, also opposite to the condition in insects. Thus, the burst phase is triggered in G. californicus (and presumably in other pseudoscorpions) not by hypercapnia but by hypoxia, a situation that is seldom encountered in terrestrial animals. 相似文献
8.
9.
Boardman L Terblanche JS Hetz SK Marais E Chown SL 《Proceedings. Biological sciences / The Royal Society》2012,279(1730):893-901
While biochemical mechanisms are typically used by animals to reduce oxidative damage, insects are suspected to employ a higher organizational level, discontinuous gas exchange mechanism to do so. Using a combination of real-time, flow-through respirometry and live-cell fluorescence microscopy, we show that spiracular control associated with the discontinuous gas exchange cycle (DGC) in Samia cynthia pupae is related to reactive oxygen species (ROS). Hyperoxia fails to increase mean ROS production, although minima are elevated above normoxic levels. Furthermore, a negative relationship between mean and mean ROS production indicates that higher ROS production is generally associated with lower . Our results, therefore, suggest a possible signalling role for ROS in DGC, rather than supporting the idea that DGC acts to reduce oxidative damage by regulating ROS production. 相似文献
10.
N-acetyl-L-cysteine affects growth,extracellular polysaccharide production,and bacterial biofilm formation on solid surfaces 总被引:15,自引:0,他引:15
N-Acetyl-L-cysteine (NAC) is used in medical treatment of patients with chronic bronchitis. The positive effects of NAC treatment have primarily been attributed to the mucus-dissolving properties of NAC, as well as its ability to decrease biofilm formation, which reduces bacterial infections. Our results suggest that NAC also may be an interesting candidate for use as an agent to reduce and prevent biofilm formation on stainless steel surfaces in environments typical of paper mill plants. Using 10 different bacterial strains isolated from a paper mill, we found that the mode of action of NAC is chemical, as well as biological, in the case of bacterial adhesion to stainless steel surfaces. The initial adhesion of bacteria is dependent on the wettability of the substratum. NAC was shown to bind to stainless steel, increasing the wettability of the surface. Moreover, NAC decreased bacterial adhesion and even detached bacteria that were adhering to stainless steel surfaces. Growth of various bacteria, as monocultures or in a multispecies community, was inhibited at different concentrations of NAC. We also found that there was no detectable degradation of extracellular polysaccharides (EPS) by NAC, indicating that NAC reduced the production of EPS, in most bacteria tested, even at concentrations at which growth was not affected. Altogether, the presence of NAC changes the texture of the biofilm formed and makes NAC an interesting candidate for use as a general inhibitor of formation of bacterial biofilms on stainless steel surfaces. 相似文献
11.
12.
D. C. E. WURR JANE R. FELLOWS D. GRAY JOYCE R. A. STECKEL 《The Annals of applied biology》1986,108(1):135-144
Seed crops of crisp lettuce were produced in three years with and without gibberellin 4 plus 7 (GA4+7) application to the young seedlings. The effects on seed and seedling characters and field performance of harvesting seed at different times, either by shaking out mature seed or by ‘windrow’ harvests, were assessed. Differences between treatments in seed and seedling characters within any one year were relatively small although those treatments producing large seed gave large seedlings and those giving uniform seed gave uniform seedlings. There were no important effects of seed production treatments on field characters in any one year. However, when different years of seed production were compared directly there was a large effect of year of production on seedling establishment and the size and uniformity of seedlings. Application of GA4+7 resulted in heavier and more uniform seedlings in two of the three years. The results suggest that major differences between commercial seedlots occur as a result of differences in the environment rather than in the technique of seed production. 相似文献
13.
Light-emitting diodes (LEDs) are a promising technology with a potential to improve the irradiance efficiency, light quality, and the light spectrum for increasing plant yield and quality. In this experiment, we investigated the impacts of various LED light qualities, including 100% red, 100% blue, 70% red + 30% blue, and 100% white, on the growth and photosynthesis, phytochemical contents, and mineral element concentrations in lettuce (Lactuca sativa L. cv. ‘Grizzly’) in comparison to normal greenhouse conditions. Photon flux of 300 µmol m?2 s?1 was provided for 14 h by 120 LEDs set on a 60 cm × 60 cm sheet of aluminum platform in the growth chambers, where plants were grown for 60 d. Fresh mass per plant was significantly higher when grown under 100% blue and 70% red + 30% blue LEDs compared to the other environments including greenhouse conditions. Phytochemical concentrations and a nutritive value of lettuce were also significantly affected by the light treatments. Chlorophyll and carotenoid concentrations increased in the plants grown under 70% red + 30% blue LEDs compared to those grown in the greenhouse. Vitamin C content was 2.25-fold higher in the plants grown under 100% blue LEDs compared to those grown in the greenhouse. Higher photosynthesis and maximal quantum yield of PSII photochemistry were also observed in the plants treated with LED lights. The application of LED light led to the elevated concentrations of macro-and micronutrients in lettuce possibly because of the direct effect of LED light and lower stress conditions in the growth chambers compared to the greenhouse. Although the mechanism of the changes in lettuce grown under LED is not well understood, the results of this study demonstrated that LED light could be used to enhance the growth and nutritional value of lettuce in indoor plant production facilities. 相似文献
14.
15.
16.
17.
Cechin I Corniani N de Fátima Fumis T Cataneo AC 《Radiation and environmental biophysics》2008,47(3):405-413
The effects and interaction of drought and UV-B radiation were studied in sunflower plants (Helianthus annuus L. var. Catissol-01), growing in a greenhouse under natural photoperiod conditions. The plants received approximately 1.7 W m(-2) (controls) or 8.6 W m(-2) (+UV-B) of UV-B radiation for 7 h per day. The UV-B and water stress treatments started 18 days after sowing. After a period of 12 days of stress, half of the water-stressed plants (including both UV-B irradiated or non-irradiated) were rehydrated. Both drought and UV-B radiation treatments resulted in lower shoot dry matter per plant, but there was no significant interaction between the two treatments. Water stress and UV-B radiation reduced photosynthesis, stomatal conductance and transpiration. However, the amplitude of the effects of both stressors was dependent on the interactions. This resulted in alleviation of the negative effect of drought on photosynthesis and transpiration by UV-B radiation as the water stress intensified. Intercelluar CO(2) concentration was initially reduced in all treatments compared to control plants but it increased with time. Photosynthetic pigments were not affected by UV-B radiation. Water stress reduced photosynthetic pigments only under high UV-B radiation. The decrease was more accentuated for chlorophyll a than for chlorophyll b. As a measure for the maximum efficiency of photosystem II in darkness F (v)/F (m) was used, which was not affected by drought stress but initially reduced by UV-B radiation. Independent of water supply, UV-B radiation increased the activity of pirogalol peroxidase and did not increase the level of malondialdehyde. On the other hand, water stress did not alter the activity of pirogalol peroxidase and caused membrane damage as assessed by lipid peroxidation. The application of UV-B radiation together with drought seemed to have a protective effect by lowering the intensity of lipid peroxidation caused by water stress. The content of proline was not affected by UV-B radiation but was increased by water stress under both low and high UV-B radiation. After 24 h of rehydration, most of the parameters analyzed recovered to the same level as the unstressed plants. 相似文献
18.
Effect of Cd on growth, photosynthetic gas exchange, and chlorophyll fluorescence of wild and Cd-sensitive mutant rice 总被引:1,自引:2,他引:1
Growth, photosynthetic gas exchange, and chlorophyll fluorescence characteristics were investigated in wild type (WT) and
Cd-sensitive mutant rice (Oryza sativa L.) plants using 50 μM Cd treatment for 12 d followed by a 3-d recovery. Under Cd stress, net dry mass and pigment contents
were significantly lower in the mutant plants than in the WT. The mutant had lower net photosynthetic rate (P
N), transpiration rate (E), and stomatal conductance (g
s) than WT rice, however, it had higher intercellular CO2 concentration (C
i), indicating that non-stomatal factors accounted for the inhibition of P
N. Maximal photochemical efficiency of photosystem 2 (Fv/Fm), effective quantum yield of PS2 (ΦPS2), and photochemical quenching (qP) decreased much in the mutant under Cd stress. Cd content in roots and leaves of the mutant was significantly higher than
those in the WT. Hence Cd toxicity was associated with the marked increases in Cd contents of plant tissue. After the recovery
for 3 d, the WT rice had higher capacity to recover from Cd injury than the mutant. 相似文献
19.
The effects of salinity on growth, leaf nutrient content, water relations, gas exchange parameters and chlorophyll fluorescence
were studied in six-month-old seedlings of citrus (Citrus limonia Osbeck) and rooted cuttings of olive (Olea europaea L. cv. Arbequina). Citrus and olive were grown in a greenhouse and watered with half strength Hoagland’s solution plus 0
or 50 mM NaCl for citrus, or plus 0 or 100 mM NaCl for olive. Salinity increased Cl− and Na+ content in leaves and roots in both species and reduced total plant dry mass, net photosynthetic rate and stomatal conductance.
Decreased growth and gas exchange was apparently due to a toxic effect of Cl− and/or Na+ and not due to osmotic stress since both species were able to osmotically adjust to maintain pressure potential higher than
in non-salinized leaves. Internal CO2 concentration in the mesophyll was not reduced in either species. Salinity decreased leaf chlorophyll a content only in citrus. 相似文献
20.
C. Kiferle M. Lucchesini R. Maggini A. Pardossi A. Mensuali-Sodi 《Biologia Plantarum》2014,58(4):601-610
Five in vitro culture systems with different ventilation rates were used to investigate the influence of vessel environment on photosynthesis, dark respiration, ethylene evolution, and rosmarinic acid (RA) production in sweet basil (Ocimum basilicum L.) micropropagated shoots. The systems under comparison were two bioreactors with either temporary (RITA?) or stationary (Growtek?) immersion, and three types of vessels (Magenta?, Microbox ECO 2 ?, and PCCV25?) that are largely used for plant micropropagation. Shoots of green-leaved cv. Genovese and purple-leaved cv. Dark Opal were cultured on a modified Murashige and Skoog medium containing 0.25 mg dm?3 6-benzylaminopurine. The instantaneous rates of photosynthesis, dark respiration, and ethylene production were determined by gas chromatography measuring CO2 and ethylene concentrations in vessel headspaces. The tissue RA content was determined by HPLC in HCl-methanol extracts. The explant growth and morphology were significantly affected by culture conditions and cultivars. The largest biomass production was observed under the photomixotrophic culture conditions provided by Growtek?, whereas the highest RA content in shoot tissues was found in the RITA? photomixotrophic system, where ethylene accumulated to the greatest extent. 相似文献