首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
Small rho GTPases regulate antigen presentation in dendritic cells   总被引:2,自引:0,他引:2  
Dendritic cells (DC) are involved in the regulation of innate and adaptive immunity. However, the molecular mechanisms maintaining DC function remain to be elucidated. In this study, we report on the role of small Rho GTPases: Cdc42, Rac1, and RhoA in the regulation of DC adherence, Ag presentation, migration, chemotaxis, and endocytosis. Murine DC were transfected with vaccinia virus-based constructs, encoding dominant-negative or constitutively active (ca) mutant forms of Rho GTPases. We demonstrate that Cdc42 plays a major role in the regulation of DC adhesion, because caCdc42-transfected DC had significant up-regulation of adhesion to extracellular matrix, which was blocked by the Rho GTPase inhibitor toxin B (ToxB). In contrast, caRho-transfected DC only modestly elevated DC adhesion, and caRac had no effect. Additionally, caCdc42 and caRho increased the ability of DC to present OVA peptide to specific T cells. This effect was abrogated by ToxB. Activation of Cdc42 in DC significantly inhibited spontaneous and chemokine-induced DC migration. Furthermore, uptake of dextran 40 by DC was significantly enhanced by Rho GTPase activators cytotoxic necrotizing factor 1 and PMA, and reduced by ToxB. caCdc42 also increased endocytotic activity of DC, whereas dominant-negative Cdc42 blocked it. Thus, Rho GTPases Cdc42, RhoA, and Rac1 regulate DC functions that are critical for DC-mediated immune responses in vivo.  相似文献   

3.
Chlamydiae are gram-negative obligate intracellular pathogens to which access to an intracellular environment is paramount to their survival and replication. To this end, chlamydiae have evolved extremely efficient means of invading nonphagocytic cells. To elucidate the host cell machinery utilized by Chlamydia trachomatis in invasion, we examined the roles of the Rho GTPase family members in the internalization of chlamydial elementary bodies. Upon binding of elementary bodies on the cell surface, actin is rapidly recruited to the sites of internalization. Members of the Rho GTPase family are frequently involved in localized recruitment of actin. Clostridial Toxin B, which is a known enzymatic inhibitor of Rac, Cdc42 and Rho GTPases, significantly reduced chlamydial invasion of HeLa cells. Expression of dominant negative constructs in HeLa cells revealed that chlamydial uptake was dependent on Rac, but not on Cdc42 or RhoA. Rac but not Cdc42 was found to be activated by chlamydial attachment. The effect of dominant negative Rac expression on chlamydial uptake is manifested through the inhibition of actin recruitment to the sites of chlamydial entry. Studies utilizing Green Fluorescent Protein fusion constructs of Rac, Cdc42 and RhoA, showed Rac to be the sole member of the Rho GTPase family recruited to the site of chlamydial entry.  相似文献   

4.
5.
Epithelial intercellular junctions regulate cell-cell contact and mucosal barrier function. Both tight junctions (TJs) and adherens junctions (AJs) are regulated in part by their affiliation with the F-actin cytoskeleton. The cytoskeleton in turn is influenced by Rho family small GTPases such as RhoA, Rac1, and Cdc42, all of which constitute eukaryotic targets for several pathogenic organisms. With a tetracycline-repressible system to achieve regulated expression in Madin-Darby canine kidney (MDCK) epithelial cells, we used dominant-negative (DN) and constitutively active (CA) forms of RhoA, Rac1, and Cdc42 as tools to evaluate the precise contribution of each GTPase to epithelial structure and barrier function. All mutant GTPases induced time-dependent disruptions in epithelial gate function and distinct morphological alterations in apical and basal F-actin pools. TJ proteins occludin, ZO-1, claudin-1, claudin-2, and junctional adhesion molecule (JAM)-1 were dramatically redistributed in the presence of CA RhoA or CA Cdc42, whereas only claudins-1 and -2 were redistributed in response to CA Rac1. DN Rac1 expression also induced selective redistribution of claudins-1 and -2 in addition to JAM-1, whereas DN Cdc42 influenced only claudin-2 and DN RhoA had no effect. AJ protein localization was unaffected by any mutant GTPase, but DN Rac1 induced a reduction in E-cadherin detergent solubility. All CA GTPases increased the detergent solubility of claudins-1 and -2, but CA RhoA alone reduced claudin-2 and ZO-1 partitioning to detergent-insoluble membrane rafts. We conclude that Rho family GTPases regulate epithelial intercellular junctions via distinct morphological and biochemical mechanisms and that perturbations in barrier function reflect any imbalance in active/resting GTPase levels rather than simply loss or gain of GTPase activity. epithelium; tight junctions; paracellular permeability; Madin-Darby canine kidney cells  相似文献   

6.
Ras plays an essential role in activation of Raf kinase which is directly responsible for activation of the MEK-ERK kinase pathway. A direct protein-protein interaction between Ras and the N-terminal regulatory domain of Raf is critical for Raf activation. However, association with Ras is not sufficient to activate Raf in vitro, indicating that Ras must activate some other biochemical events leading to activation of Raf. We have observed that RasV12Y32F and RasV12T35S mutants fail to activate Raf, yet retain the ability to interact with Raf. In this report, we showed that RasV12Y32F and RasV12T35S can cooperate with members of the Rho family GTPases to activate Raf while alone the Rho family GTPase is not effective in Raf activation. A dominant negative mutant of Rac or RhoA can block Raf activation by Ras. The effect of Rac or Cdc42 can be substituted by the Pak kinase, which is a direct downstream target of Rac/Cdc42. Furthermore, expression of a kinase inactive mutant of Pak or the N-terminal inhibitory domain of Pak1 can block the effect of Rac or Cdc42. In contrast, Pak appears to play no direct role in relaying the signal from RhoA to Raf, indicating that RhoA utilizes a different mechanism than Rac/Cdc42. Membrane-associated but not cytoplasmic Raf can be activated by Rac or RhoA. Our data support a model by which the Rho family small GTPases play an important role to mediate the activation of Raf by Ras. Ras, at least, has two distinct functions in Raf activation, recruitment of Raf to the plasma membrane by direct binding and stimulation of Raf activating kinases via the Rho family GTPases.  相似文献   

7.
Host cell invasion of the food-borne pathogen Campylobacter jejuni is one of the primary reasons of tissue damage in humans but molecular mechanisms are widely unclear. Here, we show that C. jejuni triggers membrane ruffling in the eukaryotic cell followed by invasion in a very specific manner first with its tip followed by the flagellar end. To pinpoint important signalling events involved in the C. jejuni invasion process, we examined the role of small Rho family GTPases. Using specific GTPase-modifying toxins, inhibitors and GTPase expression constructs we show that Rac1 and Cdc42, but not RhoA, are involved in C. jejuni invasion. In agreement with these observations, we found that internalization of C. jejuni is accompanied by a time-dependent activation of both Rac1 and Cdc42. Finally, we show that the activation of these GTPases involves different host cell kinases and the bacterial fibronectin-binding protein CadF. Thus, CadF is a bifunctional protein which triggers bacterial binding to host cells as well as signalling leading to GTPase activation. Collectively, our results suggest that C. jejuni invade host target cells by a unique mechanism and the activation of the Rho GTPase members Rac1 and Cdc42 plays a crucial role in this entry process.  相似文献   

8.
The activity of the Na(+)/H(+) exchanger NHE3 isoform, which is found primarily in epithelial cells, is sensitive to the state of actin polymerization. Actin assembly, in turn, is controlled by members of the small GTPase Rho family, namely Rac1, Cdc42, and RhoA. We therefore investigated the possible role of these GTPases in modulating NHE3 activity. Cells stably expressing NHE3 were transiently transfected with inhibitory forms of Rac1, Cdc42, or RhoA and transport activity was assessed using microfluorimetry. NHE3 activity was not adversely affected by either dominant-negative Rac1 or Cdc42. By contrast, the inhibitory form of RhoA greatly depressed NHE3 activity, without noticeably altering its subcellular distribution. NHE3 activity was equally reduced by inhibiting p160 Rho-associated kinase I (ROK), a downstream effector of RhoA, with the selective antagonist Y-27632 and a dominant-negative form of ROK. Furthermore, inhibition of ROK reduced the phosphorylation of myosin light chain. A comparable net dephosphorylation was achieved by the myosin light chain kinase inhibitor ML9, which similarly inhibited NHE3. These data suggest that optimal NHE3 activity requires a functional RhoA-ROK signaling pathway which acts, at least partly, by controlling the phosphorylation of myosin light chain and, ultimately, the organization of the actin cytoskeleton.  相似文献   

9.
Integrin-mediated adhesion is a critical regulator of cell migration. Here we demonstrate that integrin-mediated adhesion to high fibronectin concentrations induces a stop signal for cell migration by inhibiting cell polarization and protrusion. On fibronectin, the stop signal is generated through alpha 5 beta 1 integrin-mediated signaling to the Rho family of GTPases. Specifically, Cdc42 and Rac1 activation exhibits a biphasic dependence on fibronectin concentration that parallels optimum cell polarization and protrusion. In contrast, RhoA activity increases with increasing substratum concentration. We find that cross talk between Cdc42 and Rac1 is required for substratum-stimulated protrusion, whereas RhoA activity is inhibitory. We also show that Cdc42 activity is inhibited by Rac1 activation, suggesting that Rac1 activity may down-regulate Cdc42 activity and promote the formation of stabilized rather than transient protrusion. Furthermore, expression of RhoA down-regulates Cdc42 and Rac1 activity, providing a mechanism whereby RhoA may inhibit cell polarization and protrusion. These findings implicate adhesion-dependent signaling as a mechanism to stop cell migration by regulating cell polarity and protrusion via the Rho family of GTPases.  相似文献   

10.
Evidence is provided for direct protein-protein interactions between protein kinase C (PKC) alpha, betaI, betaII, gamma, delta, epsilon, and zeta and members of the Rho family of small GTPases. Previous investigations, based on the immunoprecipitation approach, have provided evidence consistent with a direct interaction, but this remained to be proven. In the study presented here, an in vitro assay, consisting only of purified proteins and the requisite PKC activators and cofactors, was used to determine the effects of Rho GTPases on the activities of the different PKC isoforms. It was found that the activity of PKCalpha was potently enhanced by RhoA and Cdc42 and to a lesser extent by Rac1, whereas the effects on the activities of PKCbetaI, -betaII, -gamma, -delta, -epsilon, and -zeta were much reduced. These results indicate a direct interaction between PKCalpha and each of the Rho GTPases. However, the Rho GTPase concentration dependencies for the potentiating effects on PKCalpha activity differed for each Rho GTPase and were in the following order: RhoA > Cdc42 > Rac1. PKCalpha was activated in a phorbol ester- and Ca(2+)-dependent manner. This was reflected by a substantial decrease in the phorbol ester concentration requirements for activity in the presence of Ca(2+), which for each Rho GTPase was induced within a low nanomolar phorbol ester concentration range. The activity of PKCalpha also was found to be dependent on the nature of the GTP- or GDP-bound state of the Rho GTPases, suggesting that the interaction may be regulated by conformational changes in both PKCalpha and Rho GTPases. Such an interaction could result in significant cross-talk between the distinct pathways regulated by these two signaling elements.  相似文献   

11.
Integrins and cadherins are transmembrane adhesion receptors that are necessary for cells to interact with the extracellular matrix or adjacent cells, respectively. Integrins and cadherins initiate signaling pathways that modulate the activity of Rho family GTPases. The Rho proteins Cdc42, Rac1, and RhoA regulate the actin cytoskeleton. Cdc42 and Rac1 are primarily involved in the formation of protrusive structures, while RhoA generates myosin-based contractility. Here we examine the differential regulation of RhoA, Cdc42, and Rac1 by integrin and cadherin signaling. Integrin and cadherin signaling leads to a decrease in RhoA activity and activation of Cdc42 and Rac1. When the normal RhoA suppression is antagonized or RhoA signaling is increased, cells exhibited impaired spreading on the matrix protein fibronectin and decreased cell-cell adhesion. Spreading on fibronectin and the formation of cell-cell adhesions is decreased in cells expressing dominant negative forms of Cdc42 or Rac1. These data demonstrate that integrins and cadherins regulate Rho proteins in a comparable manner and lead us to speculate that these changes in Rho protein activity participate in a feedback mechanism that promotes further cell-matrix or cell-cell interaction, respectively.  相似文献   

12.
Rho family small GTPase plays a key role in the regulation of cell shape and migration in mammalian cells. Constitutive activation of Rho GTPase leads to the aberrant cell morphology and migration. We identified nm23-H2 as a binding partner of Lbc proto-oncogene product, which specifically activates RhoA, and revealed that nm23-H2 could act as a negative regulator of Rho activity. Furthermore, we found that Lbc, nm23-H2 and ICAP1-α could form tertial complex in cells, and this complex formation was thought to be critical for cell migration stimulated by integrin. It is reported that nm23-H1 bound to Tiam1 and Dbl, which activates Rac and Cdc42 small GTPase, respectively. We discuss the role of nm23 in the regulation of cell morphology and cell migration via Rho family GTPases.  相似文献   

13.
Members of the Rho subfamily of GTP-binding proteins regulate phospholipase D1 (PLD1) activity and signaling. In previous work, we demonstrated that binding of the Rho family member Cdc42 to PLD1 and the subsequent stimulation of its enzymatic activity are distinct events. Deletion of the insert helix from Cdc42 does not interfere with its switch I-mediated, GTP-dependent binding to PLD1 but inhibits Cdc42-stimulated PLD1 activity. To understand the mechanism of the insert-mediated activation of PLD1 by Cdc42 and to develop reagents to study Cdc42-activated PLD1 in cellular signaling events, we have undertaken a mutational analysis of the Rho insert region of Cdc42 and examined the specificity of the insert helix requirement in the other Rho family members, RhoA and Rac1. Here, we identify a critical residue, serine 124, in the Cdc42 insert helix central to its activation mechanism. Further, we examine this activation mechanism with respect to other members of the Rho family and demonstrate that each Rho protein activates PLD by distinct mechanisms, potentially allowing for unique signaling outcomes in the cell.  相似文献   

14.
The Rho family of GTP-binding proteins plays a critical role in a variety of cellular processes, including cytoskeletal reorganization and activation of kinases such as p38 and C-jun N-terminal kinase (JNK) MAPKs. We report here that dominant negative forms of Rac1 and Cdc42Hs inhibit the expression of the muscle-specific genes myogenin, troponin T, and myosin heavy chain in L6 and C2 myoblasts. Such inhibition correlates with decreased p38 activity. Active RhoA, RhoG, Rac1, and Cdc42Hs also prevent myoblast-to-myotube transition but affect distinct stages: RhoG, Rac1, and Cdc42Hs inhibit the expression of all muscle-specific genes analyzed, whereas active RhoA potentiates their expression but prevents the myoblast fusion process. We further show by two different approaches that the inhibitory effects of active Rac1 and Cdc42Hs are independent of their morphogenic activities. Rather, myogenesis inhibition is mediated by the JNK pathway, which also leads to a cytoplasmic redistribution of Myf5. We propose that although Rho proteins are required for the commitment of myogenesis, they differentially influence this process, positively for RhoA and Rac1/Cdc42Hs through the activation of the SRF and p38 pathways, respectively, and negatively for Rac1/Cdc42Hs through the activation of the JNK pathway.  相似文献   

15.
16.
The Wiskott-Aldrich syndrome protein (WASP) and neural WASP (N-WASP) are key players in regulating actin cytoskeleton via the Arp2/3 complex. It has been widely reported that the WASP proteins are activated by Rho family small GTPase Cdc42 and that Rac1 acts through SCAR/WAVE proteins. However, a systematic study of the specificity of different GTPases for different Arp2/3 activators has not been conducted. In this study, we have expressed, purified, and characterized completely soluble, highly active, and autoinhibited full-length human WASP and N-WASP from mammalian cells. We show a novel N-WASP activation by Rho family small GTPase Rac1. This GTPase exclusively stimulates N-WASP and has no effects on WASP. Rac1 is a significantly more potent N-WASP activator than Cdc42. In contrast, Cdc42 is a more effective activator of WASP than N-WASP. Lipid vesicles containing PIP2 significantly improve actin nucleation by the Arp2/3 complex and N-WASP in the presence of Rac1 or Cdc42. PIP2 vesicles have no effect on WASP activity alone. Moreover, the inhibition of WASP-stimulated actin nucleation in the presence of Cdc42 and PIP2 vesicles has been observed. We found that adaptor proteins Nck1 or Nck2 are the most potent WASP and N-WASP activators with distinct effects on the WASP family members. Our in vitro data demonstrates differential regulation of full-length WASP and N-WASP by cellular activators that highlights fundamental differences of response at the protein-protein level.  相似文献   

17.
Cross-talk between Rho GTPase family members (Rho, Rac, and Cdc42) plays important roles in modulating and coordinating downstream cellular responses resulting from Rho GTPase signaling. The NADPH oxidase of phagocytes and nonphagocytic cells is a Rac GTPase-regulated system that generates reactive oxygen species (ROS) for the purposes of innate immunity and intracellular signaling. We recently demonstrated that NADPH oxidase activation involves sequential interactions between Rac and the flavocytochrome b(558) and p67(phox) oxidase components to regulate electron transfer from NADPH to molecular oxygen. Here we identify an antagonistic interaction between Rac and the closely related GTPase Cdc42 at the level of flavocytochrome b(558) that regulates the formation of ROS. Cdc42 is unable to stimulate ROS formation by NADPH oxidase, but Cdc42, like Rac1 and Rac2, was able to specifically bind to flavocytochrome b(558) in vitro. Cdc42 acted as a competitive inhibitor of Rac1- and Rac2-mediated ROS formation in a recombinant cell-free oxidase system. Inhibition was dependent on the Cdc42 insert domain but not the Switch I region. Transient expression of Cdc42Q61L inhibited ROS formation induced by constitutively active Rac1 in an NADPH oxidase-expressing Cos7 cell line. Inhibition of Cdc42 activity by transduction of the Cdc42-binding domain of Wiscott-Aldrich syndrome protein into human neutrophils resulted in an enhanced fMetLeuPhe-induced oxidative response, consistent with inhibitory cross-talk between Rac and Cdc42 in activated neutrophils. We propose here a novel antagonism between Rac and Cdc42 GTPases at the level of the Nox proteins that modulates the generation of ROS used for host defense, cell signaling, and transformation.  相似文献   

18.
Sphingosine-1-phosphate mediates migration of mature dendritic cells   总被引:4,自引:0,他引:4  
Sphingosine-1-phosphate (S1P) represents a potent modulator of diverse cellular activities, including lymphocyte trafficking and maintenance of lymphocyte homeostasis. The five known receptors for S1P (S1P(1-5)) belong to the family of G protein-coupled receptors. Upon binding S1P, they act downstream via heterotrimeric G proteins on members of the small GTPase family (Cdc42/Rac/Rho), evoking a S1P receptor-dependent activation pattern of Cdc42, Rac, and Rho, respectively. This, in turn, triggers cytoskeletal rearrangements determining cellular morphology and movement. In this study we investigated the effects of S1P on murine dendritic cells (DC). Mature DC, but not immature in vitro differentiated DC, were found to migrate to S1P, a phenomenon that correlated to the up-regulation of S1P1 and S1P3 in maturing DC. The same pattern of S1P receptor regulation could be observed in vivo on skin DC after their activation and migration into the lymph node. The migration-inducing effect of S1P could be severely hampered by application of the S1P analogon FTY720 in vitro and in vivo. A similar, yet more pronounced, block was observed upon preventing Cdc42/Rac and/or Rho activation by specific inhibitors. These results suggest that S1P-mediated signaling plays a pivotal role in the life cycle of DC.  相似文献   

19.
Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism   总被引:21,自引:0,他引:21  
The Rho family GTPases Cdc42, Rac1 and RhoA control many of the changes in the actin cytoskeleton that are triggered when growth factor receptors and integrins bind their ligands [1] [2]. Rac1 and Cdc42 stimulate the formation of protrusive structures such as membrane ruffles, lamellipodia and filopodia. RhoA regulates contractility and assembly of actin stress fibers and focal adhesions. Although prolonged integrin engagement can stimulate RhoA [3] [4] [5], regulation of this GTPase by early integrin-mediated signals is poorly understood. Here we show that integrin engagement initially inactivates RhoA, in a c-Src-dependent manner, but has no effect on Cdc42 or Rac1 activity. Additionally, early integrin signaling induces activation and tyrosine phosphorylation of p190RhoGAP via a mechanism that requires c-Src. Dynamic modulation of RhoA activity appears to have a role in motility, as both inhibition and activation of RhoA hinder migration [6] [7] [8]. Transient suppression of RhoA by integrins may alleviate contractile forces that would otherwise impede protrusion at the leading edge of migrating cells.  相似文献   

20.
Vav and Vav2 are members of the Dbl family of proteins that act as guanine nucleotide exchange factors (GEFs) for Rho family proteins. Whereas Vav expression is restricted to cells of hematopoietic origin, Vav2 is widely expressed. Although Vav and Vav2 share highly related structural similarities and high sequence identity in their Dbl homology domains, it has been reported that they are active GEFs with distinct substrate specificities toward Rho family members. Whereas Vav displayed GEF activity for Rac1, Cdc42, RhoA, and RhoG, Vav2 was reported to exhibit GEF activity for RhoA, RhoB, and RhoG but not for Rac1 or Cdc42. Consistent with their distinct substrate targets, it was found that constitutively activated versions of Vav and Vav2 caused distinct transformed phenotypes when expressed in NIH 3T3 cells. In contrast to the previous findings, we found that Vav2 can act as a potent GEF for Cdc42, Rac1, and RhoA in vitro. Furthermore, we found that NH(2)-terminally truncated and activated Vav and Vav2 caused indistinguishable transforming actions in NIH 3T3 cells that required Cdc42, Rac1, and RhoA function. In addition, like Vav and Rac1, we found that Vav2 activated the Jun NH(2)-terminal kinase cascade and also caused the formation of lamellipodia and membrane ruffles in NIH 3T3 cells. Finally, Vav2-transformed NIH 3T3 cells showed up-regulated levels of Rac-GTP. We conclude that Vav2 and Vav share overlapping downstream targets and are activators of multiple Rho family proteins. Therefore, Vav2 may mediate the same cellular consequences in nonhematopoietic cells as Vav does in hematopoietic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号