首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Absorptions by non-phytoplankton particles and phytoplankton, and chromophoric dissolved organic matter (CDOM) were measured at 50 sites in large, shallow, Lake Taihu in winter and summer 2006 to study their seasonal and spatial variations, and their relative contributions to total absorption. The CDOM absorption was significantly higher in winter than in summer, due to degradation and release of fixed carbon in phytoplankton and submerged aquatic vegetation (SAV). The hyperbolic model was used to model the spectral absorption of CDOM, and the mean spectral slope of 6.38 nm−1 was obtained. At most sites, the spectral absorption of non-phytoplankton particles was similar to that of the total particles, demonstrating that the absorption of the total particles is dominated by the absorption of non-phytoplankton particles. In summer, phytoplankton absorption increased markedly, due to frequent algal blooms especially in Meiliang Bay. In winter, the significant increase in non-phytoplankton particle absorption resulted from the increase of inorganic particulate matter caused by sediment resuspension. Strong linear relationships were found between a d(440) and total suspended matter (TSM), organic suspended matter (OSM), and inorganic suspended matter (ISM). Strong linear relationships were also found between a ph(440), a ph(675) and chlorophyll a (Chl-a) concentration. The total relative contributions of non-phytoplankton particles over the range of photosynthetically active radiation (PAR) (400–700 nm) were 48.4 and 79.9% in summer and winter respectively. Non-phytoplankton particle absorption dominated the total absorption, especially in winter, in Lake Taihu, due to frequent sediment resuspension in the large shallow lake as a result of strong windy conditions. The results indicate that strong absorption by CDOM and non-phytoplankton particles at the blue wavelength has an impact on the spectral availability, and acts as a selection factor for the composition of the phytoplankton community, with cyanobacteria being the dominate species in Lake Taihu. Handling editor: L. Naselli-Flores  相似文献   

2.
Phytoplankton pigment distributions during the spring isothermal periods of 1998 and 1999 and their association with episodic sediment resuspension were characterized in coastal waters of southern Lake Michigan. Total and phylogenetic group chl a concentrations (derived using chemical taxonomy matrix factorization of diagnostic carotenoids) corresponded with assemblage and group biovolumes estimated from microscopic enumeration (P≤ 0.001). Diatoms and cryptophytes dominated assemblages and together typically comprised greater than 85% of relative chl a. Total chl a concentrations and both fucoxanthin·chl a ? 1 and alloxanthin·chl a ? 1 ratios were similar across depths (P> 0.05), indicating uniform distributions of and photophysiological states for assemblages and diatoms and cryptophytes, respectively, throughout the mixed water column. Total chl a concentrations were not always spatially uniform from near‐shore to offshore waters, with the greatest variability reflecting the influence of tributary inflows upon coastal assemblages. Sediment resuspension strongly influenced water column particle density and light climate; however, total and group chl a concentrations did not correspond with coefficients of Kd and suspended particulate matter concentrations (P> 0.05). The correspondence of both light attenuation and suspended particulate matter concentration with relative diatom chl a (P≤ 0.001) indicated an apparent association between sediment resuspension and diatoms. This, and the negative association (P≤ 0.0001) between relative diatom and cryptophyte chl a, corresponded with the spatial dominance of diatom and cryptophyte chl a in near‐shore and offshore waters, respectively. The presence of viable chl a and fucoxanthin within the surficial sediment layer, established this layer as a potential source of meroplanktonic diatoms for near‐shore assemblages.  相似文献   

3.
The objective of this study was to obtain information on the transfer of radiocobalt in freshwater environments that can be used to predict its environmental distribution. The sediment-water behaviour of 60Co in freshwater systems was studied through adsorption and desorption experiments undertaken using sediments and water from Fratel Reservoir in the Tejo River. The suspended sediment concentrations (Cs: 500–2000 mg 1–1) and Co distribution coefficient (Kd) were inversely related: Kd = 2211–2001 ln [Cs]; Kd ranged from 4000 to 8000 ml g–1. With a suspended sediment concentration of 1000 mg 1–1, the 60Co concentration remaining in solution (Ct) was given by: Ct = 49.4 e–0.584t + 46.3 e–0.014t; where t is the time in days and the half-life periods are 1.2 and 50 days. In a closed system, desorption of 60Co could be described by a one-component relation with a half-life of 104 days, and a two component relation (half-life 5 hours and 45 days) in an open system. In river water the 60Co was found to be almost 100% in cationic forms, however, in the presence of sediment there was a decrease in the proportion of cationic forms (to 50%), with some anionic forms appearing.  相似文献   

4.
Arsenic transport between water and sediments   总被引:1,自引:1,他引:0  
Cornett  Jack  Chant  Lorna  Risto  Bert 《Hydrobiologia》1992,(1):533-544
Arsenic discharged into the Moira River has accumulated in the sediments of Moira Lake during the past century. The chronology of arsenic concentrations in the sediments, established using Pb-210 dating, has a subsurface concentration maximum (> 1000 g g–1) that reflects higher inputs to the lake 15 to 45 years ago. The distribution coefficient (Kd) of arsenic in the surficial sediments was low (4000–6000 L kg–1) and decreased below the sediment water interface. Higher concentrations of exchangeable As also were extracted deeper in the sediments. As a result, arsenic is mobile in the sediment column and the flux of arsenic via diffusion and particle resuspension from the sediments into the water is greater than current external loading from the Moira River. Less than 20% of the external input of arsenic is buried in the lake sediments. Using these flux measurements and a one dimensional model of arsenic transport in the sediment column, we constructed the history of arsenic exchange between water and sediments throughout the past century. The simulations predict that arsenic input into the water from the sediments has been > 20 % of external loading for the past 25 years and will continue to be important in the future as diffusion and resuspension regenerate arsenic from the mixed layer of the sediments into the overlying water.  相似文献   

5.
In the eastern Seto Inland Sea, Japan, phytoplankton abundance in the surface water has gradually declined, whereas Secchi depth has risen in recent years, particularly in offshore areas. Therefore, it may be hypothesized that phytoplankton dominate light attenuation in the offshore area, and that other constituents are less important. To test this hypothesis, we examined the roles of seawater, colored dissolved organic matter (CDOM), non-algal particles (tripton), and phytoplankton in the light attenuation at an offshore station of Harima Sound in the eastern Sea. The magnitude of light attenuation was then determined from the attenuation coefficient of photosynthetically available radiation (PAR) through the water column (K d). During a 13-month period, K d ranged from 0.179 to 0.507 m?1, with a mean of 0.262 m?1. The mean relative contributions of seawater (15%) and CDOM (13%) to K d were small, while the most dominant K d constituent was tripton (45%). The mean contribution of phytoplankton to K d (27%) was consequently less than that of tripton. However, 75% of the temporal variability in K d was attributed to phytoplankton, measured as chlorophyll a. Our results emphasize that the main component of light attenuation does not always govern the temporal variation of light attenuation in coastal regions.  相似文献   

6.
1. As supported by field data, turbidity recorded by light scattering sensors could reliably be converted into concentration of suspended particulate matter (SPM) and coefficient of vertical light attenuation (Kd) in Lake Balaton. 2. Autocorrelation analysis revealed that proper determination of SPM concentration and Kd required daily sampling. To approximate daily rate of resuspension, 15 min or more frequent measurements were needed. Thus, routine monitoring provides very little insight into environmental variability of shallow lakes as habitats for phytoplankton. 3. The internal P load was estimated from daily rate of resuspension and P desorption capacity of sediments. The latter was assumed to be proportionate to the potentially mobile inorganic P content of SPM. A comparison with net primary production and nutrient status of phytoplankton showed that the proposed method of estimating time series of internal P load captured seasonal trends. 4. The daily rate of resuspension was high whereas that of internal P load was low in Lake Balaton relative to other shallow lakes. The latter reflects favourable behaviour of the calcite‐rich sediments. As a consequence, carrying capacity of Basin 1 of Lake Balaton was P‐determined. 5. The timing of external and internal loads was radically different. While the former showed mostly seasonal changes, large pulses characterised the latter. As a consequence, internal load may supply more P to phytoplankton growth during the critical summer months than external load. However, the relative importance of these sources may show substantial interannual variability. 6. Large resuspension events often followed each other during periods of 10–15 days. It has been shown that disturbances in this frequency range are of key importance in maintaining the diversity of phytoplankton. We propose that resuspension can be perceived not only as a disturbance factor but also as a factor that periodically relaxes nutrient stress. The former feature may dominate the instantaneous effect, whereas the latter may determine the persistent effect of resuspension on succession of phytoplankton.  相似文献   

7.
We examined sediment resuspension and light attenuation in relation to the potential for macrophytes to improve water quality conditions in Peoria Lake, Illinois (U.S.A.). The lake exhibited high total suspended solids (TSS) loading and retention of predominantly fine-grained particles in 2000. Large fetches along prevailing wind rose, coupled with shallow morphometry and sediment particles composed of >90% silt and clay resulted in frequent periods of sediment resuspension. As calculated (wave theory) shear stress increased above the critical shear stress (measured experimentally), turbidity increased substantially at a resuspension monitoring station. Resuspension model explorations suggested that establishment of submersed aquatic macrophytes could substantially reduce sediment resuspension in Peoria Lake. However, K d is currently very high, while Secchi transparency low, at in-lake stations. Thus, in order to establish a persistent macrophyte population in the lake to control resuspension, the underwater light regime will have to improve quite dramatically.  相似文献   

8.
The kinetics of radiocesium (137Cs) uptake by natural suspended matter collected from coastal waters in the southern Baltic has been studied under laboratory conditions. The uptake of radiocesium from seawater by the suspended matter took place immediately after introduction of the isotope and attained equilibrium within a few hours. Summer and winter suspended matter displayed equal Kd values, indicating similar sorption characteristics of radiocesium. The amounts of radiocesium sorbed from sea water were proportional to the suspended matter concentration studied,i.e. up to 312 mg dry wt dm–3. The relative uptake of radiocesium by live and dead plankton appeared to be the same. The desorption of radiocesium from dead plankton proceeded more rapidly and more intensively than sorption. There are no significant differences between the Kd values for plankton determined in laboratory experiments and those found for plankton populations under field conditions.  相似文献   

9.
Relationships between water clarity, light attenuation, and concentration of suspended particulates are important in water optics and remote sensing, but are not well described yet, especially for optically complex turbid inland waters. In this study, based on 3-year data from Chinese lakes (Lake Taihu, Lake Chaohu, and Three Gorges reservoir), we propose a new approach to describe the inter-relationships of these bio-optical variables. This approach includes a pre-classification step of the waters into three types based on a semi-analytical parameter C s before establishing the relationships. Our results showed that the pre-classification of waters increased model accuracies both for Z SD (Secchi depth) versus K d (diffuse attenuation coefficient) and K d versus TSM (total suspended matter concentration). The quasi-theoretical model described better the relationship between Z SD and K d than the empirical model. For the K d versus TSM relationship, linear models proved suitable for the Type 2 and Type 3 waters, whereas the power function model gave a better fit for the Type 1 water. Testing of the proposed relations with an independent dataset showed mean absolute percentage errors (MAPE) mostly below 30%. The findings of this study clarify the relationships between Z SD, K d, and TSM, and improve our bio-optical understanding of complex turbid inland waters.  相似文献   

10.
1. Wind‐induced sediment resuspension in shallow lakes affects many physical and biological processes, including food gathering by zooplankton. The effects of suspended sediment on clearance rate were determined for a dominant cladoceran, Daphnia carinata, and calanoid copepod, Boeckella hamata, in Lake Waihola, New Zealand. 2. Animals were incubated at multiple densities for 4 days in lake water containing different amounts of suspended lake sediment. Rates of harvest of major food organisms were determined for each sediment level (turbidity) from changes in net growth rate with grazer density. 3. Daphnia cleared all food organisms 7–40 μm in length at similar rates, but was less efficient in its removal of free bacteria, phytoplankton <7 μm, and large cyanobacterial filaments. Elevation of sediment turbidity from 2 to 10 nephelometric turbidity units (NTU) (63 mg DW L?1 added sediment) reduced Daphnia clearance of phytoplankton, heterotrophic flagellates and ciliates by 72–100%, and of amoebae and attached bacteria by 21–44%. Further inhibition occurred at higher turbidity. 4. Boeckella hamata removed microzooplankton primarily, rather than phytoplankton. The rate at which it cleared rotifers was reduced by 56% when turbidity was increased from 2.5 to 100 NTU. 5. In the absence of macrozooplankton, algal growth increased with sediment turbidity, suggesting that sediment also inhibits rotifer grazing. 6. As mid‐day turbidity in Lake Waihola is ≥10 NTU about 40% of the time, sediment resuspension may play a major role in moderating energy flow and structuring pelagic communities in this lake.  相似文献   

11.
Soil water distribution coefficients (K d ) for methyl tert-butyl ether (MTBE) and its primary biodegradation intermediate tert-butyl alcohol (TBA) were determined for seven hyporheic zone soils ranging from 1 to 7% in organic carbon. Samples were collected in the area of the Spring Creek hyporheic zone in Ronan, Montana. Values for K d ranged from 1.5 to 8.7 L kg?1 for MTBE and from 0.15 to 0.41 L kg?1 for TBA, and were highly correlated to the organic carbon content of the solids. However, for TBA the use of non-linear K F values is more appropriate based on the results obtained, and the value of K OC is calculated based on linear K d transformation of the data. Distribution coefficients normalized to the fraction of organic carbon (log K OC ) for MTBE and TBA were determined to be 2.13 ± 0.060 and 0.762 ± 0.088, respectively.  相似文献   

12.
Samples of suspended particulate matter (SPM) collected from the Humber Estuary had higher concentrations of particulate metals than SPM from Holderness coastal waters (U.K.). Characterised SPM from both sources was used in laboratory experiments involving the uptake of radiotracer109Cd,137Cs,54Mn and65Zn. Kinetic experiments, over five days, showed that the rate and extent of uptake was highly dependent on particle type, with109Cd,54Mn and65Zn being more reactive with Humber Estuary particles than those from Holderness and137Cs having the opposite trend. Adsorption experiments were also carried out on suspensions in which SPM from the Humber Estuary and Holderness coastal water were mixed in various proportions. These experiments revealed that Kd for65Zn increased linearly with the proportion of Humber SPM, Kd for137Cs decreased linearly with increase in Humber SPM and Kd for54Mn and109Cd displayed non-linear behaviour. The results of the study were used to develop an algorithm for predicting the partition coefficients in the Humber Plume based on the extent of particle mixing from the two source regions. The use of206/207Pb ratios in determining the extent of particle mixing is discussed, along with the application of the algorithm to the modelling of particulate trace metal behaviour in the Humber-Wash coastal zone.  相似文献   

13.
The adsorption equilibrium between air bubbles and isoelectric coagula of casein was affected by the superficial air velocity and particle size of coagula. An increase in the superficial air velocity Vs increased the affinity between the air bubbles and casein particles, but decreased the maximum surface concentration. On the other hand, an increase in particle size dp decreased the affinity, but increased the maximum surface concentration. The optimum operating conditions of Vs and dp existed because of the conflicting effects of them. These results also explain the selective separation of particles of different sizes.  相似文献   

14.
A natural wetland in Mexico City Metropolitan Area is one of the main suppliers of crops and flowers, and in consequence its canals hold a high concentration of organochlorine (OC) and organophosphorus (OP) pesticides. There is also an extensive population of water hyacinth (Eichhornia crassipes), which is considered a plague; but literature suggests water hyacinth may be used as a phytoremediator. This study demonstrates bioaccumulation difference for the OC in vivo suggesting their bioaccumulation is ruled by their log Kow, while all the OP showed bioaccumulation regardless of their log Kow. The higher bioaccumulation factors (BAF) of the accumulated OC pesticides cannot be explained by their log Kow, suggesting that the OC pesticides may also be transported passively into the plant. Translocation ratios showed that water hyacinth is an accumulating plant with phytoremediation potential for all organophosphorus pesticides studied and some organochlorine pesticides. An equation for free water surface wetlands with floating macrophytes, commonly used for the construction of water-cleaning wetlands, showed removal of the pesticides by the wetland with room for improvement with appropriate management.  相似文献   

15.
ABSTRACT

Sediments composed of oil-particle aggregates (OPAs) have unique physical characteristics. These in situ deposited sediments develop at locations where a continual or nearly continual discharge of non-aqueous phase liquids (NAPLs) have occurred, or are occurring through time. The NAPL discharged into the surface water body interacts with suspended particles in the water column. The particles adhere to the suspended NAPL, which generally is in the form of a bead, and produce a discrete aggregate. As the aggregate grows in response to additional particle adherence, the density of the unit increases and deposition occurs. The resulting sediment consists of a collection of discrete OPAs that form a network with small pores, where oil is tightly bound and/or contained. Porosity, water content, and dry bulk density measurements indicate the sediment formed by OPA deposition is physically unique. Although the sediment consists of a very open pore structure, the pore openings are relatively small, typically being less than 5 microns in diameter. These small pores inhibit fluid movement. Results of physical property testing suggest the OPA structure is retained upon deposition. Although the sediment contains NAPL, this original OPA structure inhibits the oil beads from coalescing, which would enable NAPL flow.  相似文献   

16.
1. Wind‐induced sediment resuspension can affect planktonic primary productivity by influencing light penetration and nutrient availability, and by contributing meroplankton (algae resuspended from the lake bed) to the water column. We established relationships between sediment resuspension, light and nutrient availability to phytoplankton in a shallow lake on four occasions. 2. The effects of additions of surficial sediments and nutrients on the productivity of phytoplankton communities were measured in 300 mL gas‐tight bottles attached to rotating plankton wheels and exposed to a light gradient, in 24 h incubations at in situ temperatures. 3. While sediment resuspension always increased primary productivity, resuspension released phytoplankton from nutrient limitation in only two of the four experiments because the amount of available nitrogen and phosphorus entrained from the sediments was small compared with typical baseline levels in the water column. In contrast, chlorophyll a entrainment was substantial compared with baseline water column concentrations and the contribution of meroplankton to primary production was important at times, especially when seasonal irradiance in the lake was high. 4. Comparison of the in situ light climate with the threshold of light‐limitation of the phytoplankton indicated that phytoplankton in the lake were only likely to be light‐limited at times of extreme turbidity (e.g. >200 nephelometric turbidity units), particularly when these occur in winter. Therefore, resuspension influenced phytoplankton production mainly via effects on available nutrients and by entraining algae. The importance of each of these varied in time. 5. The partitioning of primary productivity between the water column and sediments in shallow lakes greatly influences the outcome of resuspension events for water column primary productivity.  相似文献   

17.
The magnitude and frequency of events leading to changes in turbidity have been studied in a large (61 km2), shallow (mean depth 3.4 m) wind-exposed lake basin at the western end of Lake Mälaren, Sweden. In this paper we couple changes in suspended particulate inorganic material (SPIM) resulting from wind driven sediment resuspension, and variations in the discharge and sediment load, to spectral variations in subsurface light and estimates of photosynthetically active radiation (PAR). To accomplish this we use a semi-analytical model which predicts the spectral variations in downwelling irradiance (E d()) and the attenuation coefficient of downwelling irradiance (K d()), as a function of the concentrations of chlorophyll, dissolved yellow substances, and suspended inorganic and organic particulate material. Unusually high river discharge, led to large inputs of yellow substances and large in lake yellow substance concentrations (a ys(420) 20 m–1), causing variations in yellow substance concentration to have the greatest role in influencing temporal trends in the attenuation of PAR and variations in the depth of the euphotic zone (Z eup). In spite of this, variations in SPIM could account for approximately 60% of the variation in Z eup attributed to changes in yellow substances alone. Our results show that changes in suspended sediment concentration leads to both long-term and short-term changes in the attenuation of PAR, even in the presence of high concentrations of dissolved yellow substances.  相似文献   

18.
We investigated the pathways by which water clarity increases following fish removal by evaluating the effects of a benthivorous fish reduction in a large, shallow, eutrophic, wetland in a predominately agricultural watershed in Iowa, U.S.A. Phytoplankton was phosphorus limited prior to manipulation. After a substantial fish removal was obtained, water clarity increased as a result of decreased suspended sediment and phytoplankton biomass. Trophic cascading, mitigated by release from fish predation and decreased physical interference from suspended sediments, appears to determine water clarity. Inorganic suspended solids declined immediately after fish were removed but the biomass of Daphnia and Ceriodaphnia did not increase until a few weeks after fish removal. High grazing by zooplankton likely reduced phytoplankton biomass during the height of the clear-water phase. Phytoplankton appeared to be limited by zooplankton grazing for approximately two months before reverting to bottom-up control. An increase in suspended sediment and/or increased predation pressure on zooplankton, due to the return of juvenile carp, appears to account for the decline of larger-bodied zooplankters and the switch back to bottom-up control. Macrophyte diversity and density increased substantially after the initiation of the clear-water phase.  相似文献   

19.
The small strongly stratified hard-water hypertrophic lake Verevi (max. depth 11.0 m, surface area 12.6 ha, mean depth 3.6 m) was investigated in 2000 and in 2001. The lake is sheltered from winds, and the role of waves in mixing the water column is minimal. Eutrophication favours the strengthening of stratification. Early warm springs cause a fast stagnation of the water column forming partly meromictic conditions. Seston content of water and in sediment traps in 3 layers was measured several times during the formation of stratification. Besides measuring particulate matter, in 2001, the nutrient content of the trapped sediment was analysed. During the first 7 days of the investigation, 30% of the total particle sedimentation took place. The sedimentation rate of particulate matter was 0.4–6.3 g m–2 d−1 dry weight in different layers of the water column. Daily average sedimentation loss rate was 27% of the total amount of seston of the epilimnion, whilst from the meta- and hypolimnion the settling was much slower (9.6 and 7.3%, respectively). In our experiments with twin sediment traps, to one of which formaldehyde was added, the PO43−-P concentration was 19% smaller in the trap without formaldehyde, probably due to planktonic uptake. The relationship between primary and export production is loop-like. The shape was irregular, indicating a high grazing rate of zooplankton.  相似文献   

20.
Eleven lakes in the South Island of New Zealand were sampled in summer 1996. Water column profiles of ultraviolet radiation (UVR) at four wavelengths and photosynthetically available radiation (PAR) were obtained, along with analyses of dissolved organic carbon (DOC) concentration, total suspended solids (TSS), and catchment vegetation, including forest and natural grassland. Downward attenuation coefficients (K d) and lake water transparency (1/K d) for UVR were examined in relation to these variables. Consistent with other regions of the world, DOC concentration and variables related to DOC were the best predictors of UVR penetration. With our data set, we calculated ratios of water column integrals (RI) of UVR/PAR irradiance, using equations from the literature. At DOC concentrations below 4 g m−3, a progressive increase in RI shows that lakes become increasingly transparent to UVR. We also normalized chromophoric dissolved organic matter (CDOM) absorption of UVR at 380 nm (a 380) to DOC concentration and found that the UVR-absorbing capacity per unit DOC increases with increasing percentage of forest in the catchment area. This indicates that not only DOC concentration but also DOC type or composition is important in determining the transparency of lake water to UVR, and that qualitative differences in DOC are dictated by the type and amount of vegetation present in the lake's catchment area. Received: September 18, 2000 / Accepted: December 14, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号