首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colland F  Daviet L 《Biochimie》2004,86(9-10):625-632
Functional proteomics is a promising technique for the rational identification of novel therapeutic targets by elucidation of the function of newly identified proteins in disease-relevant cellular pathways. Of the recently described high-throughput approaches for analyzing protein-protein interactions, the yeast two-hybrid (Y2H) system has turned out to be one of the most suitable for genome-wide analysis. However, this system presents a challenging technical problem: the high prevalence of false positives and false negatives in datasets due to intrinsic limitations of the technology and the use of a high-throughput, genetic assay. We discuss here the different experimental strategies applied to Y2H assays, their general limitations and advantages. We also address the issue of the contribution of protein interaction mapping to functional biology, especially when combined with complementary genomic and proteomic analyses. Finally, we illustrate how the combination of protein interaction maps with relevant functional assays can provide biological support to large-scale protein interaction datasets and contribute to the identification and validation of potential therapeutic targets.  相似文献   

2.
The yeast two-hybrid (Y2H) system is a powerful method to identify protein-protein inter-actions (PPI) in vivo, requiring minimal prior information of the putative interactors. The time and effort required for each experiment can be significantly reduced if the "bait" and the "prey" proteins are cloned into specific recombination-amenable two-hybrid vectors. We describe the construction of a reading frame-independent vector system for Y2H PPI studies. The described vector system knits together the advantages of site-specific recombination cloning with the Y2H system. The produced plasmids enable recombination-based cloning of genes or gene fragments in all possible reading frames into Y2H library vectors. Thus, Y2H screening libraries can be rapidly constructed and will present more amino termini in the correct reading frame. Additionally, advantageous for small-scale Y2H studies, there is no need to know the natural reading frame of the genes of interest, because the bait and prey genes can be transferred into the vectors by a single reaction and are present in all possible reading frames. Since the Y2H system per se is a positive selection system, only pairs of bait and prey genes harboring the correct reading frames will emerge. We tested the new vectors within the Y2H system and demonstrated full functionality without any undesired effects on the Y2H system itself. Besides the vector construction, we investigated the utility of the system for Y2H analysis and demonstrated clearly its practicability in genome-wide Y2H screenings and the advantage of using additional reading-frame Y2H cDNA libraries. We performed a series of genome-wide Y2H library screenings with the human vitamin D receptor protein (VDR) as bait. We investigated: (i) whether more protein interactors are found by using three instead of one reading-frame destination vectors; (ii) how much overlap between the different reading-frame libraries exists; and (iii) the rate of possible additional autoactivators. We conclude that our vectors deliver significantly more interactors and outperform a single reading-frame library. This new system could enable simple and fast large-scale PPI studies and the construction of high-quality screening libraries.  相似文献   

3.
Pluripotent stem cells have the therapeutic potential in future regenerative medicine applications. Therefore, it is highly important to understand the molecular mechanisms governing the pluripotency and differentiation potential of these cells. Our current knowledge of pluripotent cells is largely limited owing to the candidate gene/protein approach rather than studying the complex interactions of the proteins. Experimentally, yeast two-hybrid system (Y2H) is by far the most useful and widely used method to detect the protein–protein interactions in high-throughput screenings. Unfortunately, currently there is no GAL4-based pluripotent stem cell-specific cDNA library available for screening the interaction proteins impeding the large-scale studies. In this study, we report the construction of Y2H cDNA libraries derived from mouse pluripotent embryonic stem cells (ESCs) and multipotent adult germ-line stem cells (maGSCs) in GAL4-based Y2H vector system with very high transformation efficiency. Furthermore, we have constructed two different baits and screened for interaction partners in an effort to characterize the libraries and also as a part of our ongoing studies. Consequently, many putative interaction proteins were identified in both cases and their interaction was further validated by direct-Y2H. The observed interactions between bait proteins and their respective analyzed putative interaction proteins were further confirmed using two independent approaches in mammalian cells, thus highlighting the biological significance of the identified interactor (s). Finally, we would like to make these cDNA libraries as a resource that can be distributed to the research community.  相似文献   

4.
5.
The nuclear yeast two-hybrid (Y2H) system is the most widely used technology for detecting interactions between proteins. A common approach is to screen specific test proteins (baits) against large compilations of randomly cloned proteins (prey libraries). For eukaryotic organisms, libraries have traditionally been generated using messenger RNA (mRNA) extracted from various tissues and cells. Here we present a library construction strategy made possible by ongoing public efforts to establish collections of full-length protein encoding clones. Our approach generates libraries that are essentially normalized and contain both randomly fragmented as well as full-length inserts. We refer to this type of protein-coding clone-derived library as random and full-length (RAFL) Y2H library. The library described here is based on clones from the Mammalian Gene Collection, but our strategy is compatible with the use of any protein-coding clone collection from any organism in any vector and does not require inserts to be devoid of untranslated regions. We tested our prototype human RAFL library against a set of baits that had previously been searched against multiple cDNA libraries. These Y2H searches yielded a combination of novel as well as expected interactions, indicating that the RAFL library constitutes a valuable complement to Y2H cDNA libraries.  相似文献   

6.
Yeast two-hybrid (Y2H) screening methods are an effective means for the detection of protein-protein interactions. Optimisation and automation has increased the throughput of the method to an extent that allows the systematic mapping of protein-protein interactions on a proteome-wide scale. Since two-hybrid screens fail to detect a great number of interactions, parallel high-throughput approaches are needed for proteome-wide interaction screens. In this review, we discuss and compare different approaches for adaptation of Y2H screening to high-throughput, the limits of the method and possible alternative approaches to complement the mapping of organism-wide protein-protein interactions.  相似文献   

7.
Protein--protein interaction maps: a lead towards cellular functions   总被引:6,自引:0,他引:6  
The availability of complete genome sequences now permits the development of tools for functional biology on a proteomic scale. Several experimental approaches or in silico algorithms aim at clustering proteins into networks with biological significance. Among those, the yeast two-hybrid system is the technology of choice to detect protein-protein interactions. Recently, optimized versions were applied at a genomic scale, leading to databases on the web. However, as with any other 'genetic' assay, yeast two-hybrid assays are prone to false positives and false negatives. Here we discuss these various technologies, their general limitations and the potential advances they make possible, especially when in combination with other functional genomics or bioinformatics analyses.  相似文献   

8.
The analysis of protein-protein interactions is a key focus of proteomics efforts. The yeast two-hybrid system (Y2H) has been the most commonly used method in genome-wide searches for protein interaction partners. However, the throughput of the current yeast two-hybrid array approach is hampered by the involvement of the time-consuming LacZ assay and/or the incompatibility of liquid handling automation due to the requirement for selection of colonies/diploids on agar plates. To facilitate large-scale Y2H assays, we report a novel array approach by coupling a GFP reporter based Y2H system with high throughput flow cytometry that enables the processing of a 96-well plate in as little as 3 min. In this approach, the yEGFP reporter has been established in both AH109 (MATa) and Y187 (MATα) reporter cells. It not only allows the generation of two copies of GFP reporter genes in diploid cells, but also allows the convenient determination of self-activators generated from both bait and prey constructs by flow cytometry. We demonstrate a Y2H array assay procedure that is carried out completely in liquid media in 96-well plates by mating bait and prey cells in liquid YPD media, selecting the diploids containing positive interaction pairs in selective media and analyzing the GFP reporter directly by flow cytometry. We have evaluated this flow cytometry based array procedure by showing that the interaction of the positive control pair P53/T is able to be reproducibly detected at 72 hr postmating compared with the negative control pairs. We conclude that our flow cytometry based yeast two-hybrid approach is robust, convenient, quantitative, and is amenable to large-scale analysis using liquid-handling automation.  相似文献   

9.
Despite the wide acceptance of yeast two-hybrid (Y2H) system for protein-protein interaction analysis and discovery, conventional Y2H assays are not well suited for high-throughput screening of the protein interaction network (“interactome”) on a genomic scale due to several limitations, including labor-intensive agar plating and colony selection methods associated with the use of nutrient selection markers, complicated reporter analysis methods associated with the use of LacZ enzyme reporters, and incompatibility of the liquid handling robots. We recently reported a robust liquid culture Y2H system based on quantitative analysis of yeast-enhanced green fluorescent protein (yEGFP) reporters that greatly increased the analysis throughput and compatibility with liquid handling robots. To further advance its utility in high-throughput complementary DNA (cDNA) library screening, we report the development of a novel surface display Y2H (sdY2H) library screening system with uniquely integrated surface display hemagglutination (sdHA) antigen and yEGFP reporters. By introduction of a surface reporter sdHA into the yEGFP-based Y2H system, positive Y2H targets are quickly isolated from library cells by a simple magnetic separation without a large plating effort. Moreover, the simultaneous scoring of multiple reporters, including sdHA, yEGFP, and conventional nutrient markers, greatly increased the specificity of the Y2H assay. The feasibility of the sdY2H assay on large cDNA library screening was demonstrated by the successful recovery of positive P53/T interaction pairs at a target-to-background ratio of 1:1,000,000. Together with the massive parallel DNA sequencing technology, it may provide a powerful proteomic tool for high-throughput interactome mapping on a genomic scale.  相似文献   

10.
11.
Genomic data provide invaluable, yet unreliable information about protein function. However, if the overlap in information among various genomic datasets is taken into account, one observes an increase in the reliability of the protein-function predictions that can be made. Recently published approaches achieved this either by comparing the same type of data from multiple species (horizontal comparative genomics) or by using subtle, Bayesian methods to compare different types of genomic data from a single species (vertical comparative genomics). In this article, we discuss these methods, illustrating horizontal comparative genomics by comparing yeast two-hybrid (Y2H) data from Saccharomyces cerevisiae with Y2H data from Drosophila melanogaster, and illustrating vertical comparative genomics by comparing RNA expression data with proteomic data from Plasmodium falciparum.  相似文献   

12.
Functional cloning by phage display   总被引:2,自引:0,他引:2  
Jestin JL 《Biochimie》2008,90(9):1273-1278
This review focusses on the isolation of proteins from genomic or cDNA expression products libraries displayed on phage. The use of phage display is highlighted for the characterization of binding proteins with diverse biological functions. Phage display is compared with another strategy, the yeast two-hybrid method. The combination of both strategies is especially powerful to eliminate false positives and to get information on the biochemical functions of proteins.  相似文献   

13.
14.
Barcode fusion genetics (BFG) utilizes deep sequencing to improve the throughput of protein–protein interaction (PPI) screening in pools. BFG has been implemented in Yeast two-hybrid (Y2H) screens (BFG-Y2H). While Y2H requires test protein pairs to localize in the nucleus for reporter reconstruction, dihydrofolate reductase protein-fragment complementation assay (DHFR-PCA) allows proteins to localize in broader subcellular contexts and proves to be largely orthogonal to Y2H. Here, we implemented BFG to DHFR-PCA (BFG-PCA). This plasmid-based system can leverage ORF collections across model organisms to perform comparative analysis, unlike the original DHFR-PCA that requires yeast genomic integration. The scalability and quality of BFG-PCA were demonstrated by screening human and yeast interactions for >11 000 bait-prey pairs. BFG-PCA showed high-sensitivity and high-specificity for capturing known interactions for both species. BFG-Y2H and BFG-PCA capture distinct sets of PPIs, which can partially be explained based on the domain orientation of the reporter tags. BFG-PCA is a high-throughput protein interaction technology to interrogate binary PPIs that exploits clone collections from any species of interest, expanding the scope of PPI assays.  相似文献   

15.
16.
P. James  J. Halladay    E. A. Craig 《Genetics》1996,144(4):1425-1436
The two-hybrid system is a powerful technique for detecting protein-protein interactions that utilizes the well-developed molecular genetics of the yeast Saccharomyces cerevisiae. However, the full potential of this technique has not been realized due to limitations imposed by the components available for use in the system. These limitations include unwieldy plasmid vectors, incomplete or poorly designed two-hybrid libraries, and host strains that result in the selection of large numbers of false positives. We have used a novel multienzyme approach to generate a set of highly representative genomic libraries from S. cerevisiae. In addition, a unique host strain was created that contains three easily assayed reporter genes, each under the control of a different inducible promoter. This host strain is extremely sensitive to weak interactions and eliminates nearly all false positives using simple plate assays. Improved vectors were also constructed that simplify the construction of the gene fusions necessary for the two-hybrid system. Our analysis indicates that the libraries and host strain provide significant improvements in both the number of interacting clones identified and the efficiency of two-hybrid selections.  相似文献   

17.
18.
Yeast two-hybrid (Y2H) has been successfully used for genome-wide screens to identify protein–protein interactions for several model organisms. Nonetheless, the logistics of pair-wise screening has resulted in a cumbersome and incomplete application of this method to complex genomes. Here, we develop a modification of Y2H that eliminates the requirement for pair-wise screening. This is accomplished by incorporating lox sequences into Y2H vectors such that cDNAs encoding interacting partners become physically linked in the presence of Cre recombinase in vivo. Once linked, DNA from complex pools of clones can be processed without losing the identity of the interacting partners. Short linked sequence tags from each pair of interacting partner (binary interaction Tags or BI-Tags) are then recovered and sequenced. To validate the approach, comparisons between interactions found using traditional Y2H and the BI-Tag method were made, which demonstrate that the BI-Tag technology accurately represents the complexity of the interaction partners found in the screens. The technology described here sufficiently improves the throughput of the Y2H approach to make feasible the generation of near comprehensive interaction maps for complex organisms.  相似文献   

19.

Background  

Yeast two-hybrid (Y2H) screens have been among the most powerful methods to detect and analyze protein-protein interactions. However, they suffer from a significant degree of false negatives, i.e. true interactions that are not detected, and to a certain degree from false positives, i.e. interactions that appear to take place only in the context of the Y2H assay. While the fraction of false positives remains difficult to estimate, the fraction of false negatives in typical Y2H screens is on the order of 70-90%. Here we present novel Y2H vectors that significantly decrease the number of false negatives and help to mitigate the false positive problem.  相似文献   

20.

Background  

Identifying all protein-protein interactions in an organism is a major objective of proteomics. A related goal is to know which protein pairs are present in the same protein complex. High-throughput methods such as yeast two-hybrid (Y2H) and affinity purification coupled with mass spectrometry (APMS) have been used to detect interacting proteins on a genomic scale. However, both Y2H and APMS methods have substantial false-positive rates. Aside from high-throughput interaction screens, other gene- or protein-pair characteristics may also be informative of physical interaction. Therefore it is desirable to integrate multiple datasets and utilize their different predictive value for more accurate prediction of co-complexed relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号