首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The mechanisms for the regulation of homeotic genes are poorly understood in most organisms, including plants. We identified BASIC PENTACYSTEINE1 (BPC1) as a regulator of the homeotic Arabidopsis thaliana gene SEEDSTICK (STK), which controls ovule identity, and characterized its mechanism of action. A combination of tethered particle motion analysis and electromobility shift assays revealed that BPC1 is able to induce conformational changes by cooperative binding to purine-rich elements present in the STK regulatory sequence. Analysis of STK expression in the bpc1 mutant showed that STK is upregulated. Our results give insight into the regulation of gene expression in plants and provide the basis for further studies to understand the mechanisms that control ovule identity in Arabidopsis.  相似文献   

3.
Among the many adhesins and toxins expressed by Staphylococcus aureus, protein A is an exceptionally complex virulence factor, known to interact with multiple eukaryotic targets, particularly those with immunological functions. Protein A acts as a ligand that can mimic TNF-alpha to activate TNFR1 and subsequent proinflammatory signaling. It also stimulates the cleavage of TNFR1 from the surface of epithelial cells and macrophages, which serves to limit TNF-alpha signaling. We characterized the signaling pathway responsible for TNFR1 shedding and identified protein A mutants which could activate TNFR1-dependent signaling, but were unable to activate TACE, the TNFR1 sheddase. Activation of TACE was dependent upon a discrete interaction between the previously defined IgG-binding domain of protein A and the epidermal growth factor receptor (EGFR), which in turn induced TACE phosphorylation through a c-Src-erk1/2-mediated cascade. This novel interaction was independent of the autocrine activation of EGFR and protein A-induced TGF-alpha was neither required nor sufficient to activate TNFR1 shedding. Thus, staphylococci exploit the ubiquitous and multifunctional EGFR to regulate the availability of TNFR1 on mucosal and immune cells.  相似文献   

4.
Silencers in abdominal-B, a homeotic Drosophila gene.   总被引:9,自引:3,他引:6       下载免费PDF全文
A Busturia  M Bienz 《The EMBO journal》1993,12(4):1415-1425
  相似文献   

5.
In this study, we investigated osteoblastic differentiation by trichostatin A (TSA), a histone deacetylase inhibitor in mouse undifferentiated mesenchymal cell line. TSA increased the osteopontin (OPN) mRNA level and OPN protein. Deletion analysis of the promoter region revealed TSA-induced luciferase response was regulated by -75 to -65 of the OPN promoter. There was an AP1-binding sequence at the site of the OPN promoter. In an electrophoretic mobility shift assay, bands of the complexes were supershifted by addition of antibody to c-fos and phosphorylated c-jun. These data suggested that AP1 plays a crucial role in the TSA-induced OPN expression.  相似文献   

6.
7.
8.
9.
M Levine  G M Rubin  R Tjian 《Cell》1984,38(3):667-673
Several human DNA sequences were isolated by virtue of homology to a highly conserved region that has been identified in a number of homeotic genes in Drosophila. Structural analysis of the human DNAs indicate that two separate and distinct regions sharing a high degree of homology with the homeo box sequences of Drosophila are separated by only 5 kb in the human genome. Sequence determination of these regions reveals that both human DNA sequences contain a region capable of coding 61 amino acids, which shares greater than 90% homology with the peptide sequences specified by the homeo box domain of Drosophila homeotic genes, Antennapedia, fushi tarazu, and Ultrabithorax. By contrast, the human DNA sequences lying outside of the 190 nucleotide homeo box region share virtually no sequence homology, either with the flanking sequences of the other human clones or with flanking regions of the known Drosophila homeotic genes.  相似文献   

10.
Polycomb group (PcG) proteins repress homeotic genes in cells where these genes must remain inactive during development. This repression requires cis-acting silencers, also called PcG response elements. Currently, these silencers are ill-defined sequences and it is not known how PcG proteins associate with DNA. Here, we show that the Drosophila PcG protein Pleiohomeotic binds to specific sites in a silencer of the homeotic gene Ultrabithorax. In an Ultrabithorax reporter gene, point mutations in these Pleiohomeotic binding sites abolish PcG repression in vivo. Hence, DNA-bound Pleiohomeotic protein may function in the recruitment of other non-DNA-binding PcG proteins to homeotic gene silencers.  相似文献   

11.
Connectin, a target of homeotic gene control in Drosophila.   总被引:8,自引:0,他引:8  
  相似文献   

12.
13.
BACKGROUND AND AIMS: It has previously been shown that Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP) contributed to resistance to abiotic stresses. Interestingly, it has also been reported that expression of ethylene-responsive factor (ERF) genes including AtEBP were regulated by the activity of APETALA2 (AP2), a floral homeotic factor. AP2 is known to regulate expression of several floral-specific homeotic genes such as AGAMOUS. The aim of this study was to clarify the relationship between AP2 and AtEBP in gene expression. METHODS: Northern blot analysis was performed on ap2 mutants, ethylene-related Arabidopsis mutants and transgenic Arabidopsis plants over-expressing AtEBP, and a T-DNA insertional mutant of AtEBP. Phenotypic analysis of these plants was performed. KEY RESULTS: Expression levels of ERF genes such as AtEBP and AtERF1 were increased in ap2 mutants. Over-expression of AtEBP caused upregulation of AP2 expression in leaves. AP2 expression was suppressed by the null-function of ethylene-insensitive2 (EIN2), although AP2 expression was not affected by ethylene treatment. Loss of AtEBP function slightly reduced the average number of stamens. CONCLUSIONS: AP2 and AtEBP are mutually regulated in terms of gene expression. AP2 expression was affected by EIN2 but was not regulated by ethylene treatment.  相似文献   

14.
Evolutionary developmental genetics (evo-devo) reveals that the plasticity of development is so important that every developmental biology project should carefully take this point into consideration. The example of bicoid, the first discovered morphogen, illustrates how an essential gene can change its function during evolution. The search for bicoid homologues showed that this gene is surprisingly specific to flies (cyclorraphan diptera) and absent in other insects. In fact, recent studies demonstrate that bicoid is a very derived Hox3 homeotic gene. During insect evolution, the ancestral Hox3 gene lost its homeotic function and acquired new roles in oocytes and embryonic annexes. Then, in the lineage leading to modern flies, a duplication of this new gene, followed by functional divergence, led to the formation of bicoid and zerknüllt. Both genes are located within the Drosophila Hox complex; however, they have no homeotic function. Thanks to the power of Drosophila genetics, it is possible to suggest that torso and hunchback may constitute the insect primitive anterior organizer. The bicoid evolutionary history reveals several fundamental mechanisms of the evolution of developmental genes, such as changes of gene regulation, modifications of protein sequences and gene duplication. It also shows the need for studying a wider range of model organisms before generalisations can be made from data obtained with one particular species.  相似文献   

15.
16.
17.
The MYC protein activates transcription of the alpha-prothymosin gene   总被引:56,自引:11,他引:56       下载免费PDF全文
M Eilers  S Schirm    J M Bishop 《The EMBO journal》1991,10(1):133-141
  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号