首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We showed previously that treatment of Drosophila melanogaster salivary glands with a mild detergent, digitonin, induces heat shock puffs and many developmentally regulated puffs. To find if the mechanism underlying the puff induction by digitonin is related to the temporal control of gene expression in salivary glands, we examined effects of digitonin on salivary glands at various puff stages from late third instar larva to white prepupa. The results indicate that (a) all the heat shock puffs are induced by digitonin irrespective of the developmental stage of the treated glands, (b) intermolt and early puff loci are always irresponsive to digitonin, and (c) late puff loci respond to digitonin to form puffs only before the stage of their developmentally programmed puffing. Based on the stage at which the locus becomes digitonin responsive, the digitonin-responsive late puff loci were divided into two groups: group A loci, responsive to digitonin continuously from PS1 until programmed puffing begins, and group B loci, responsive to digitonin only in a short period of time immediately before the programmed puffing. The results suggest that a digitonin-sensitive suppression mechanism(s) is involved in the temporal control of gene expression in Drosophila salivary glands.  相似文献   

2.
The effect of ecdysone on the puffing activity of the polytene chromosomes of Ceratitis capitata has been studied in organ cultures of late-larval salivary glands. Culture of glands from 120-h-old larvae (puff stage 1) in the presence of ecdysone resulted in the initiation of the late-larval puffing cycle that is normally observed in 145-h-old larvae (puff stage 4). During a 7-h period in the presence of ecdysone, the puffing patterns of most loci resembled the in vivo patterns observed in the period between puff stages 4 and 10, indicating that the first puffing cycle can be initiated by the hormone and proceed almost to completion, in vitro. Culture of salivary glands in the presence of ecdysone and a protein-synthesis inhibitor, as well as ecdysone withdrawal and readdition experiments, indicated that most of the ecdysone-regulated puffs could be categorized into three classes: (i) the puffs that were suppressed immediately by ecdysone, even in the absence of protein synthesis; (ii) the puffs that were induced directly by ecdysone; and (iii) the puffs that were induced indirectly by ecdysone, that is, they were induced after a lag period of a few hours and required protein synthesis for their induction.  相似文献   

3.
A large number of chromosomal sites were found to form puffs in Drosophila salivary glands after treatment with the mild detergent digitonin and incubation in a defined medium for 2 hr. The cytological locations of these puffs were determined, and the puff size was measured at 43 loci in both digitonin-treated salivary glands and intact glands. On the basis of comparisons of puffing between digitonin-treated and intact salivary glands, the puffs were classified into three categories: (1) digitonin-unaffected preexisting puffs (8 sites), (2) digitonin-activated preexisting puffs (6 sites), and (3) digitonin-induced new puffs ("digitonin puffs", 29 sites). The digitonin puffs included some of the developmentally regulated puffs and all the heat-shock puffs known in Drosophila melanogaster. The activation of the specific loci by digitonin treatment suggests that gene expression at these loci is suppressed in salivary glands by a mechanism(s) sensitive to digitonin.  相似文献   

4.
Larvae homozygous or hemizygous for the l(l) t435 mutation located within the early ecdysteroid puff 2B5, or carrying a deletion of the 2B5 band, die at the end of the third larval instar. In the salivary gland chromosomes of these larvae only intermoult puffs are detected. If these salivary glands are incubated in vitro with 20-OH ecdysone for 6 h the intermoult puff 68 C remains large, some early puffs (74EF and 75B) are induced to 30–40% of their normal size, other early (63F) and all late puffs (62E, 78D, 82F and 63E) are not induced at all. Puff 2B5 reaches its normal size but does not regress after 6h incubation with 20-OH ecdysone, as it does in normal stocks. The data obtained in this study show the existence of a locus (or loci) in the band (puff) 2B5 which is necessary for the normal response of the salivary gland chromosomes to the hormone 20-OH ecdysone.  相似文献   

5.
《Developmental biology》1987,122(2):396-406
A simple assay system for gene regulation using chromosomal puffing as an index of gene activity was established. Salivary glands of Drosophila melanogaster treated with a mild detergent, digitonin, were permeable to high molecular substances, including β-galactosidase (MW 465,000). The permeabilized salivary glands retained the ability to form puffs at the ecdysterone-stimulated loci (74EF and 75B) in response to the hormone. Incubation of the permeabilized salivary glands at puff stage 1 (PS1) for 2 hr in a medium containing both ecdysterone and a homogenate of intact salivary glands at puff stage 8–9 (PS8–9) induced a puff at 78C, where puffing occurs only at puff stages 6–11 in vivo. The puff at 78C was not induced when the permeabilized PS1 glands were incubated with the combination of ecdysterone and a homogenate of the PS1 salivary glands. Likewise, the 78C puff was not induced in intact PS1 salivary glands by a 2-hr incubation with ecdysterone and PS8–9 gland homogenate. These results indicate that a factor(s) required for 78C puff formation is present in PS8–9 but not in PS1 salivary glands and that factor(s) can permeate digitonin-treated salivary glands but not intact glands. The effectiveness of the permeabilized salivary glands as an assay system for gene-regulating factors is discussed.  相似文献   

6.
7.
We showed previously that digitonin-permeabilized salivary glands form prominent puffs in response to ecdysterone only when the incubation medium is supplemented with a homogenate of intact glands. To develop a chemically defined medium that supports puff formation in permeabilized salivary glands, we examined the requirement of ribonucleoside triphosphates (NTPs), precursors of RNA synthesis, for puff formation in permeabilized salivary glands. We found that prominent ecdysone puffs were induced in permeabilized salivary glands when the concentration of each NTP in the medium was higher than 0.5 mM. The puff size was significantly reduced if the volume of the medium were more than 2.0 microliter per gland. This suggests the existence of a factor(s), in addition to NTPs, which is required for puff formation and is diffusible from permeabilized glands.  相似文献   

8.
Endogenous ecdysterone has been bonded to chromosomal loci by irradiation of Ch. tentans salivary glands. The hormone has been localized on the polytene chromosomes by indirect immunofluorescence microscopy. Hormone binding to chromosomes is stage-specific. Seven chromosomal loci could be identified which specifically bound hormone in larval salivary glands, and 21 chromosomal loci which specifically bound hormone in prepupal salivary glands. All puffs that have been described by Clever (1961) as being inducible by ecdysterone have been found to contain irreversibly bound ecdysterone in prepupal salivary gland chromosomes. A small number of puff sites in larval salivary gland chromosomes exhibited varying amounts of bound ecdysterone, (as judged by fluorescence intensity) most notably 117B and Balbiani rings 1 and 3 on chromosome IV. In addition to stage specific binding sites, there were many others showing equal binding of the hormone in both, larval and prepupal, stages of development. — Fluorescence intensities (reflecting the amount of bonded hormone) at puff sites along the tip section of the prepupal salivary gland chromosome arm IR have been computed indicating that differences between fluorescence intensities of different puffs can be expressed as multiples of a basic fluorescence intensity. Thus, the amount of fluorescence intensity (bonded hormone) in the various puffs may be quantized. — The data indicate that in Ch. tentans salivary glands ecdysterone acts, at the chromosomal level. The development of larvae into prepupae generates more puff sites and more hormone binding. This is discussed in the light of current models of hormone-receptor function.  相似文献   

9.
Treatment of Drosophila salivary glands with a mild detergent, digitonin, activates puffing at 35 chromosome loci. These digitonin-activated puffs include all of the nine heat-shock puffs known in D. melanogaster . Here we show that the activation of heat-shock genes, but not of other digitoninstimulated puffs, is repressed in salivary glands which have been subjected to and have recovered from heat shock before being treated with digitonin. The findings indicate that, (a) the activation of heat-shock genes by digitonin, as that by temperature elevation, is self-regulated by the heat-shock proteins (HSPs). (b) the gene repressive activity of HSPs is heat-shock-gene specific, and (c) the repression mechanism of heat-shock genes by HSPs is resistant to digitonin, in contrast to that the suppression of heat-shock genes is prevented by the detergent in non-heat-shocked salivary glands. The selective repression of heat-shock genes in preheated salivary glands suggests that the heat-shock genes and other digitonin-activated genes may be controlled by a different mechanism(s).  相似文献   

10.
The size and number of secretory granules in late larval salivary glands of Drosophila melanogaster have been related to interecdysial and early metamorphic development represented by well-known puffs in polytene chromosomes. Interecdysial period (puff stage 1 (PS1)) is characterized by presence of numerous small granules (11,000 per cell). The transition from PSI to early metamorphic phase (PS2 and upwards), induced by rapid elevation in endogenous steroid hormone ecdysone, is accompanied by continuous growth of granule diameter with concomitant reduction in their number per cell. In the PS4, just prior to secretion, approximately 3000 mature granules occur per cell. The mature state is associated with the change from hyperbolic to Gaussian distribution of granule number over their size range. Similar changes in secretory granule parameters were observed in interecdysial salivary glands explanted from 3rd instar larvae and cultured in vitro in medium containing 5x10(-6) m ecdysone.  相似文献   

11.
In late third instar larvae and prepupae of Drosophila melanogaster there is a complex change in puffing patterns in the salivary gland chromosomes. There are two peaks of activity in this period. The first, in larvae, is known to be under the control of the moulting hormone ecdysone. The second, in prepupae, is now shown by the in vitro culture of prepupal glands to be under the specific control of β-ecdysone in a manner similar to the first. A new class of puffs, active between these two peaks, whose induction is inhibited by ecdysone in vitro, is described. The behaviour of these puffs, exemplified by 75CD and 63E, suggests a period of very low ecdysone titre in vivo. The developmental significance of the role of ecdysone during prepupal development is discussed.  相似文献   

12.
In the salivary gland chromosomes of late-third instar larvae and in late (8- to 12-hr) prepupae of Drosophila melanogaster, there are ecdysone-induced sequences of puffing patterns which can be reproduced in vitro. These two sequences are separated by a period when the glands are thought to be exposed to a low titer of β-ecdysone and during which they acquire the competence to respond to ecdysone at the late prepupal puff sites. Attempts to modify either the late larval or the late prepupal responses to ecdysone in vitro by the simultaneous addition of juvenile hormone (JH) with ecdysone, to larval or prepupal glands, respectively, are unsuccessful. If, however, JH (ca. 10?6M) is added to larval glands cultured 6 hr in ecdysone and then 3 hr in JH alone, the subsequent induction of prepupal ecdysone puffs is inhibited. Thus the role of JH appears to lie in modifying the acquisition of competence to respond to ecdysone rather than in a direct antagonism between the two hormones.  相似文献   

13.
Salivary glands of third instar Drosophila melanogaster larvae were incubated in vitro in the presence of 5 x 10(-6) M 20-hydroxy-ecdysone. Steroid hormone was localized on the polytene chromosomes of the salivary gland by a combination of photoaffinity-labeling and indirect immunofluorescence microscopy. Steroid hormone binding to chromosomal loci and their puffing activity was correlated for the larval/prepupal puffing cycle characterized by puff stages 1-10. In general, there was a good correlation between the sequential and temporal puffing activity induced by 20-hydroxy-ecdysone and the binding of ecdysteroid hormone to these puffs. Ecdysteroid hormone was detected at intermolt, and at early and late puffs with two notable exceptions. Ecdysteroid was not detected at the two well-studied puffs at 23E and at 25AC, the former being an early puff, which is activated in the presence of 20-hydroxy-ecdysone, and the latter being an intermolt puff, which regresses more rapidly in the presence of hormone. Ecdysteroid hormone was present at puffs as long as the respective puff was active. Also, it apparently accumulated at late puff sites after induction. Since ecdysteroid binding to chromosomal loci is temporal as well as sequential during the larval/prepupal puffing cycle, additional factors besides steroid hormone are necessary for sequentially regulating puffing and concomitant gene activity during development from larvae to prepupae.  相似文献   

14.
15.
In Drosophila gibberosa the maximum secretory output of the salivary glands is in the prepupa rather than in the late third-instar larva. Using salivary chromosome maps provided here we have followed puff patterns from late second-instar larvae through the time of histolysis of the salivary glands 28–32 h after pupariation and find low puff activity correlated with low secretory activity throughout much of the third larval instar. Ecdysteroid-sensitive puffs were not observed at the second larval molt but do appear prior to pupariation initiating an intense cycle of gene activity. The second cycle of ecdysteroid-induced gene activity a day later, at the time of pupation, appears somewhat damped, especially for late puffs. Salivary chromosome maps provided here may also be used to identify homologous loci in fat body, Malpighian, and midgut chromosomes.  相似文献   

16.
Salivary glands of 3rd instar larvae of Drosophila melanogaster were labeled with 3H-leucine in the presence and absence of ecdysterone. Twentysix ecdysterone inducible proteins were detected. Their induction was correlated with puff stage. Synthesis of fifteen proteins commenced during early puff stage (PS2); synthesis of seven others at late puff stages (PS8–10). Synthesis of four proteins was induced between puff stage 3/4 and 7/8. Thus, the hormonal induction of protein synthesis generally reflected the appearance of early and of late puffs as described by Ashburner (1972). Eleven ecdysterone inducible proteins were detected in larval fat body in vitro. Comparison of the fat body to the salivary gland proteins revealed that one of the ecdysterone induced fat body proteins was identical in molecular weight and charge to one of the proteins induced by ecdysterone in salivary glands.  相似文献   

17.
18.
In the mid prepupal period of development of Drosophila melanogaster two major changes in gene activity occur in the salivary glands: (a) The mid prepupal puffs (e.g., 63E, 75CD) are induced and (b) the late prepupal puffs (e.g., 62E, 74EF, 75B, and 93F) acquire the competence to respond to ecdysone. These events can be studied in vitro. Both require that the ecdysone titre be very low (<5 × 10?9, M) and both events depend upon protein synthesis.  相似文献   

19.
This study shows that homozygotes for different alleles of the lethal mutant, l(2)gl, differing in the time of death also vary in the state of their endocrine system and the puffing patterns of their salivary gland chromosomes. Homozygotes which die at the larval stage have underdeveloped prothoracic glands and normal corpora allata (CA); in those dying at the prepupal stage both the prothoracic glands and the CA are equally underdeveloped. — All the early third instar larval puffs (96–110 h., PS 1–2) develop in homozygotes; however, the reduction of some early larval puffs, normally occurring before pupariation or at puparium formation, is delayed. Some puffs are more developed than normal. — The differences in puffing patterns chiefly concerned puffs which normally appear 4–5 h before puparium formation and at puparium formation. In homozygotes lethal as larvae some of the puffs normally active at this time did not develop. However, along with some of the late larval puffs, there appeared many puffs characteristic of prepupae. — In homozygotes lethal as prepupae only the time and sequence of puff appearance was altered. Many late larval puffs were active in prepupae rather than in larvae, whereas some of the puffs, normally appearing in prepupae, were active in the larval stage.Accordingly, we propose to distinguish two groups of puff loci. 1) Hormone dependent puffs: These do not develop in larval lethals and are active only after puparium formation in pupariated lethals. 2) Autonomous puffs: Their appearance depends more on the time of development, than on hormonal background. It is suggested that the induction of hormone dependent puffs and of puparium formation is possible at low ecdysone levels, provided that the juvenile hormone level is also low.  相似文献   

20.
Late larval salivary glands of D. melanogaster of an exactly defined developmental stage (VP 0, i.e. prepupae ot later than 15 min after formation of the puparium) are cultured under sterile conditions in three standard media for insect tissue culture and in Ringer solution. In chromosomes II and III, variations in puff number and size are the same in vivo and in vitro, and almost all changes in puffing pattern are very similar to those appearing in normal development. They are the same in the four media. No additional puff is ever induced due to the medium. By contrast, salivary gland chromosomes from larvae of the late third instar before pupation do show different alterations in vitro than in vivo. This points to a threshold in the course of the puffing pattern between puff stage 8/9 and 10/11. The appearance of a substance causing prepupal changes in puffing is strictly correlated with the formation of the pupanium and the beginning of the intermoult phase in the prepupa. Comparing the results of the experiments it can be stated that the new control system is not based solely on the absence of ecdysone, but also on the existence of another inducer. Immediately after puparium formation the control by ecdysone is still active, together with the control by the supposed inducer. Later, control by ecdysone respectively by the puffs of the ecdysone cycle is substituted by the new control system, up to the next moult. As far as the chemical nature of the puffing inducer in the intermoult phase is concerned, further investigations are necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号