首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An understanding of the stability of nucleic acid folding is critical for applications involving RNA viruses, small molecule–RNA binding, and therapeutics, for example. To explore factors that affect this stability, hairpins made from oligonucleotides containing both a GAAA tetraloop and three to five complements in the stem have been used as models where locked nucleic acids (LNAs) have been substituted into the sequence. UV spectroscopy was used to obtain melting curves in 20% by volume formamide, and the enthalpies and entropies of melting were determined. Although LNA substitutions typically increase the stability of a hybrid, we have found a decrease in stability for DNA and RNA GAAA hairpins when LNA is substituted into the loop. Tetraloops synthesized from natural bases show higher enthalpies and entropies of melting compared to the LNA substituted sequences indicating that LNA substitutions can destabilize a hairpin but stabilize the corresponding double stranded structure.  相似文献   

3.
4.
5.
6.
7.
Owczarzy R  You Y  Groth CL  Tataurov AV 《Biochemistry》2011,50(43):9352-9367
Locked nucleic acids (LNA; symbols of bases, +A, +C, +G, and +T) are introduced into chemically synthesized oligonucleotides to increase duplex stability and specificity. To understand these effects, we have determined thermodynamic parameters of consecutive LNA nucleotides. We present guidelines for the design of LNA oligonucleotides and introduce free online software that predicts the stability of any LNA duplex oligomer. Thermodynamic analysis shows that the single strand-duplex transition is characterized by a favorable enthalpic change and by an unfavorable loss of entropy. A single LNA modification confines the local conformation of nucleotides, causing a smaller, less unfavorable entropic loss when the single strand is restricted to the rigid duplex structure. Additional LNAs adjacent to the initial modification appear to enhance stacking and H-bonding interactions because they increase the enthalpic contributions to duplex stabilization. New nearest-neighbor parameters correctly forecast the positive and negative effects of LNAs on mismatch discrimination. Specificity is enhanced in a majority of sequences and is dependent on mismatch type and adjacent base pairs; the largest discriminatory boost occurs for the central +C·C mismatch within the +T+C+C sequence and the +A·G mismatch within the +T+A+G sequence. LNAs do not affect specificity in some sequences and even impair it for many +G·T and +C·A mismatches. The level of mismatch discrimination decreases the most for the central +G·T mismatch within the +G+G+C sequence and the +C·A mismatch within the +G+C+G sequence. We hypothesize that these discrimination changes are not unique features of LNAs but originate from the shift of the duplex conformation from B-form to A-form.  相似文献   

8.
We report the development of new software, OligoDesign, which provides optimal design of LNA (locked nucleic acid) substituted oligonucleotides for functional genomics applications. LNAs constitute a novel class of bicyclic RNA analogs having an exceptionally high affinity and specificity toward their complementary DNA and RNA target molecules. The OligoDesign software features recognition and filtering of the target sequence by genome-wide BLAST analysis in order to minimize cross-hybridization with non-target sequences. Furthermore it includes routines for prediction of melting temperature, self-annealing and secondary structure for LNA substituted oligonucleotides, as well as secondary structure prediction of the target nucleotide sequence. Individual scores for all these properties are calculated for each possible LNA oligonucleotide in the query gene and the OligoDesign program ranks the LNA capture probes according to a combined fuzzy logic score and finally returns the top scoring probes to the user in the output. We have successfully used the OligoDesign tool to design a Caenorhabditis elegans LNA oligonucleotide microarray, which allows monitoring of the expression of a set of 120 potential marker genes for a variety of stress and toxicological processes and toxicologically relevant pathways. The OligoDesign program is freely accessible at http://lnatools.com/.  相似文献   

9.
10.
11.
12.
Triplex-forming oligonucleotides (TFOs), as DNA-binding molecules that recognize specific sequences, offer unique potential for the understanding of processes occurring on DNA and associated functions. They are also powerful DNA recognition elements for the positioning of ubiquitous molecules acting on DNA, such as anticancer drugs. A prerequisite for further development of DNA code-reading molecules including TFOs is their ability to form a complex in a cellular context: their binding affinities must be comparable to those of DNA-associated proteins. To reach this goal, chemically modified TFOs must be developed. In this work, we present triplex-forming properties (kinetics and thermodynamics) and cellular activity of G-containing locked nucleic acid-modified TFOs (TFO/LNAs). In conditions simulating physiological ones, these TFO/LNAs strongly enhanced triplex stability compared with the non-modified TFO or with the pyrimidine TFO/LNA directed against the same oligopyrimidine.oligopurine sequence, mainly by decreasing the dissociation rate constant and conferring an entropic gain. We provide evidence of their biological activity by a triplex-based mechanism, in vitro and in a cellular context, under conditions in which the parent phosphodiester oligonucleotide did not exhibit any inhibitory effect.  相似文献   

13.
14.
15.
16.
The influence of locked nucleic acid (LNA) residues on the thermodynamic properties of 2′-O-methyl RNA/RNA heteroduplexes is reported. Optical melting studies indicate that LNA incorporated into an otherwise 2′-O-methyl RNA oligonucleotide usually, but not always, enhances the stabilities of complementary duplexes formed with RNA. Several trends are apparent, including: (i) a 3′ terminal U LNA and 5′ terminal LNAs are less stabilizing than interior and other 3′ terminal LNAs; (ii) most of the stability enhancement is achieved when LNA nucleotides are separated by at least one 2′-O-methyl nucleotide; and (iii) the effects of LNA substitutions are approximately additive when the LNA nucleotides are separated by at least one 2′-O-methyl nucleotide. An equation is proposed to approximate the stabilities of complementary duplexes formed with RNA when at least one 2′-O-methyl nucleotide separates LNA nucleotides. The sequence dependence of 2′-O-methyl RNA/RNA duplexes appears to be similar to that of RNA/RNA duplexes, and preliminary nearest-neighbor free energy increments at 37°C are presented for 2′-O-methyl RNA/RNA duplexes. Internal mismatches with LNA nucleotides significantly destabilize duplexes with RNA.  相似文献   

17.
18.
Elayadi AN  Braasch DA  Corey DR 《Biochemistry》2002,41(31):9973-9981
Oligonucleotides that contain locked nucleic acid (LNA) bases have remarkably high affinity for complementary RNA and DNA sequences. This increased affinity may facilitate the recognition of nucleic acid targets inside cells and thus improve our ability to use synthetic oligonucleotides for controlling cellular processes. Here we test the hypothesis that LNAs offer advantages for inhibiting human telomerase, a ribonucleoprotein that is critical for tumor cell proliferation. We observe that LNAs complementary to the telomerase RNA template are potent and selective inhibitors of human telomerase. LNAs can be introduced into cultured tumor cells using cationic lipid, with diffuse uptake throughout the cell. Transfected LNAs effectively inhibited intracellular telomerase activity up to 40 h post-transfection. Shorter LNAs of eight bases in length are also effective inhibitors of human telomerase. The melting temperatures of these LNAs for complementary sequences are superior to those of analogous peptide nucleic acid oligomers, emphasizing the value of LNA bases for high-affinity recognition. These results demonstrate that high-affinity binding by LNAs can be exploited for superior recognition of an intracellular target.  相似文献   

19.
Fluorescence in situ hybridization (FISH) is a highly useful technique with a wide range of applications including the delineation of complex karyotypes, prenatal diagnosis of aneuploidies, screening for diagnostic or prognostic markers in cancer cells, gene mapping and gene expression studies. However, it is still a fairly time-consuming method with limitations in both sensitivity and resolution. Locked Nucleic Acids (LNAs) constitute a novel class of RNA analogs that have an exceptionally high affinity towards complementary DNA and RNA. Substitution of DNA oligonucleotide probes with LNA has shown to significantly increase their thermal duplex stability as well as to improve the discrimination between perfectly matched and mismatched target nucleic acids. To exploit the improved hybridization properties of LNA oligonucleotides in FISH, we have designed several LNA substituted oligonucleotide probes specific to different human-specific repetitive elements, such as the classical satellite-2, telomere and alpha-satellite repeats. In the present study we show that LNA modified oligonucleotides are excellent probes in FISH, combining high binding affinity with short hybridization time.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号