首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Notch intercellular signalling pathway is important throughout development, and its components are modulated by a variety of cellular and molecular mechanisms. Ligand and receptor trafficking are tightly controlled, although context-specific regulation of this is incompletely understood. We show that during sense organ precursor specification in Drosophila, the cell adhesion molecule Echinoid colocalises extensively with the Notch ligand, Delta, at the cell membrane and in early endosomes. Echinoid facilitates efficient Notch pathway signalling. Cultured cell experiments suggest that Echinoid is associated with the cis-endocytosis of Delta, and is therefore linked to the signalling events that have been shown to require such Delta trafficking. Consistent with this, overexpression of Echinoid protein causes a reduction in Delta level at the membrane and in endosomes. In vivo and cell culture studies suggest that homophilic interaction of Echinoid on adjacent cells is necessary for its function.  相似文献   

2.
Epithelial morphogenesis requires cell movements and cell shape changes coordinated by modulation of the actin cytoskeleton. We identify a role for Echinoid (Ed), an immunoglobulin domain-containing cell-adhesion molecule, in the generation of a contractile actomyosin cable required for epithelial morphogenesis in both the Drosophila ovarian follicular epithelium and embryo. Analysis of ed mutant follicle cell clones indicates that the juxtaposition of wild-type and ed mutant cells is sufficient to trigger actomyosin cable formation. Moreover, in wild-type ovaries and embryos, specific epithelial domains lack detectable Ed, thus creating endogenous interfaces between cells with and without Ed; these interfaces display the same contractile characteristics as the ectopic Ed expression borders generated by ed mutant clones. In the ovary, such an interface lies between the two cell types of the dorsal appendage primordia. In the embryo, Ed is absent from the amnioserosa during dorsal closure, generating an Ed expression border with the lateral epidermis that coincides with the actomyosin cable present at this interface. In both cases, ed mutant epithelia exhibit loss of this contractile structure and subsequent defects in morphogenesis. We propose that local modulation of the cytoskeleton at Ed expression borders may represent a general mechanism for promoting epithelial morphogenesis.  相似文献   

3.
4.
In most animal species, germ cells require intimate contact with specialized somatic cells in the gonad for their proper development. We have analyzed the establishment of germ cell-soma interaction during embryonic gonad formation in Drosophila melanogaster, and find that somatic cells undergo dramatic changes in cell shape and individually ensheath germ cells as the gonad coalesces. Germ cell ensheathment is independent of other aspects of gonad formation, indicating that separate morphogenic processes are at work during gonadogenesis. The cell-cell adhesion molecule Drosophila E-cadherin is essential both for germ cell ensheathment and gonad compaction, and is upregulated in the somatic gonad at the time of gonad formation. Our data indicate that differential cell adhesion contributes to cell sorting and the formation of proper gonad architecture. In addition, we find that Fear of Intimacy, a novel transmembrane protein, is also required for both germ cell ensheathment and gonad compaction. E-cadherin expression in the gonad is dramatically decreased in fear of intimacy mutants, indicating that Fear of Intimacy may be a regulator of E-cadherin expression or function.  相似文献   

5.
A diverse family of PDZ domains has been identified, but the rules that govern their ligand specificity are not clear. Here we propose a novel classification of PDZ domains based on the nature of amino acids in the two critical positions in the PDZ domain fold. Using these principles, we classified PDZ domains present in the SMART database. Using yeast two-hybrid, in vitro pull-down and plasmon surface resonance assays, we demonstrated that in agreement with their position in the proposed classification the Mint1-1, hINADL-5, and PAR6 PDZ domains display similar dual ligand specificity. The proposed classification helps to organize PDZ domain containing proteins.  相似文献   

6.
During Drosophila melanogaster dorsal closure, lateral sheets of embryonic epidermis assemble an actomyosin cable at their leading edge and migrate dorsally over the amnioserosa, converging at the dorsal midline. We show that disappearance of the homophilic cell adhesion molecule Echinoid (Ed) from the amnioserosa just before dorsal closure eliminates homophilic interactions with the adjacent dorsal-most epidermal (DME) cells, which comprise the leading edge. The resulting planar polarized distribution of Ed in the DME cells is essential for the localized accumulation of actin regulators and for actomyosin cable formation at the leading edge and for the polarized localization of the scaffolding protein Bazooka/PAR-3. DME cells with uniform Ed fail to assemble a cable and protrude dorsally, suggesting that the cable restricts dorsal migration. The planar polarized distribution of Ed in the DME cells thus provides a spatial cue that polarizes the DME cell actin cytoskeleton, defining the epidermal leading edge and establishing its contractile properties.  相似文献   

7.
Ren N  Zhu C  Lee H  Adler PN 《Genetics》2005,171(2):625-638
The simple cellular composition and array of distally pointing hairs has made the Drosophila wing a favored system for studying planar polarity and the coordination of cellular and tissue level morphogenesis. We carried out a gene expression screen to identify candidate genes that functioned in wing and wing hair morphogenesis. Pupal wing RNA was isolated from tissue prior to, during, and after hair growth and used to probe Affymetrix Drosophila gene chips. We identified 435 genes whose expression changed at least fivefold during this period and 1335 whose expression changed at least twofold. As a functional validation we chose 10 genes where genetic reagents existed but where there was little or no evidence for a wing phenotype. New phenotypes were found for 9 of these genes, providing functional validation for the collection of identified genes. Among the phenotypes seen were a delay in hair initiation, defects in hair maturation, defects in cuticle formation and pigmentation, and abnormal wing hair polarity. The collection of identified genes should be a valuable data set for future studies on hair and bristle morphogenesis, cuticle synthesis, and planar polarity.  相似文献   

8.
9.
PDZ domains: folding and binding   总被引:3,自引:0,他引:3  
Jemth P  Gianni S 《Biochemistry》2007,46(30):8701-8708
The PDZ domain is one of the most common protein-protein interaction domains in humans, and it is found in all kingdoms of life. We will review recent progress in the understanding of biophysical aspects of PDZ domains with emphasis on the folding and binding reactions. Finally, we discuss an intriguing correlation between stability and binding of peptide for PDZ2 from PTP-BL.  相似文献   

10.
PDZ domains bind to short segments within target proteins in a sequence-specific fashion. Glutamate receptor-interacting protein (GRIP)/ABP family proteins contain six to seven PDZ domains and interact via the sixth PDZ domain (class II) with the C termini of various proteins including liprin-alpha. In addition the PDZ456 domain mediates the formation of homo- and heteromultimers of GRIP proteins. To better understand the structural basis of peptide recognition by a class II PDZ domain and PDZ-mediated multimerization, we determined the crystal structures of the GRIP1 PDZ6 domain alone and in complex with a synthetic C-terminal octapeptide of human liprin-alpha at resolutions of 1.5 and 1.8 A, respectively. Remarkably, unlike other class II PDZ domains, Ile-736 at alphaB5 rather than conserved Leu-732 at alphaB1 makes a direct hydrophobic contact with the side chain of the Tyr at the -2 position of the ligand. Moreover, the peptide-bound structure of PDZ6 shows a slight reorientation of helix alphaB, indicating that the second hydrophobic pocket undergoes a conformational adaptation to accommodate the bulkiness of the Tyr side chain, and forms an antiparallel dimer through an interface located at a site distal to the peptide-binding groove. This configuration may enable formation of GRIP multimers and efficient clustering of GRIP-binding proteins.  相似文献   

11.

Background  

PDZ domain is a well-conserved, structural protein domain found in hundreds of signaling proteins that are otherwise unrelated. PDZ domains can bind to the C-terminal peptides of different proteins and act as glue, clustering different protein complexes together, targeting specific proteins and routing these proteins in signaling pathways. These domains are classified into classes I, II and III, depending on their binding partners and the nature of bonds formed. Binding specificities of PDZ domains are very crucial in order to understand the complexity of signaling pathways. It is still an open question how these domains recognize and bind their partners.  相似文献   

12.
The solute carrier gene family SLC26consists of tissue-specific anion exchanger genes, three of themassociated with distinct human recessive disorders. By a genome-drivenapproach, several new SLC26 family members have been identified,including a kidney- and pancreas-specific gene, SLC26A6. We report thefunctional characterization of SLC26A6 and two new alternativelyspliced variants, named SLC26A6c and SLC26A6d. Immunofluorescencestudies on transiently transfected cells indicated membranelocalization and indicated that both NH2- and COOH-terminaltails of the SLC26A6 variants are located intracellularly, suggesting atopology with an even number of transmembrane domains. Functionalexpression of the three proteins in Xenopus oocytesdemonstrated Cl and SO transportactivity. In addition, the transport of SO andCl was inhibited by DIDS and HCO. We demonstrated also that the COOH terminus of SLC26A6 binds to the firstand second PDZ domains of the Na+/H+ exchanger(NHE)3 kinase A regulatory protein (E3KARP) and NHE3 regulatory factor(NHERF) proteins in vitro. Truncation of the last three amino acids(TRL) of SLC26A6 abrogated the interaction but did not affect transportfunction. These results demonstrate that SLC26A6 and its two splicevariants can function as anion transporters linked to PDZ-interactionpathways. Our results support the general concept of microdomainorganization for ion transport and suggest a mechanism for cysticfibrosis transmembrane regulator (CFTR)-mediated SLC26A6 upregulationin pancreatic duct cells.

  相似文献   

13.
Asymmetric cell division is a conserved mechanism to generate cellular diversity during animal development and a key process in cancer and stem cell biology. Despite the increasing number of proteins characterized, the complex network of proteins interactions established during asymmetric cell division is still poorly understood. This suggests that additional components must be contributing to orchestrate all the events underlying this tightly modulated process. The PDZ protein Canoe (Cno) and its mammalian counterparts AF-6 and Afadin are critical to regulate intracellular signaling and to organize cell junctions throughout development. Here, we show that Cno functions as a new effector of the apical proteins Inscuteable (Insc)-Partner of Inscuteable (Pins)-Galphai during the asymmetric division of Drosophila neuroblasts (NBs). Cno localizes apically in metaphase NBs and coimmunoprecipitates with Pins in vivo. Furthermore, Cno functionally interacts with the apical proteins Insc, Galphai, and Mushroom body defect (Mud) to generate correct neuronal lineages. Failures in muscle and heart lineages are also detected in cno mutant embryos. Our results strongly support a new function for Cno regulating key processes during asymmetric NB division: the localization of cell-fate determinants, the orientation of the mitotic spindle, and the generation of unequal-sized daughter cells.  相似文献   

14.
Synaptic junctions are highly specialized structures designed to promote the rapid and efficient transmission of signals from the presynaptic terminal to the postsynaptic membrane within the central nervous system. Proteins containing PDZ domains play a fundamental organizational role at both the pre- and postsynaptic plasma membranes. This review focuses on recent advances in our understanding of the mechanisms underlying the assembly of synapses in the central nervous system.  相似文献   

15.
Dorsal closure is an essential stage of Drosophila development that is a model system for research in morphogenesis and biological physics. Dorsal closure involves an orchestrated interplay between gene expression and cell activities that produce shape changes, exert forces and mediate tissue dynamics. We investigate the dynamics of dorsal closure based on confocal microscopic measurements of cell shortening in living embryos. During the mid-stages of dorsal closure we find that there are fluctuations in the width of the leading edge cells but the time-averaged analysis of measurements indicate that there is essentially no net shortening of cells in the bulk of the leading edge, that contraction predominantly occurs at the canthi as part of the process for zipping together the two leading edges of epidermis and that the rate constant for zipping correlates with the rate of movement of the leading edges. We characterize emergent properties that regulate dorsal closure, i.e., a velocity governor and the coordination and synchronization of tissue dynamics.  相似文献   

16.
17.
Protein tyrosine binding (PTB) and ‘post synaptic density disc-large zo-1’ (PDZ) domains bind to short peptidic ligands by augmentation of one of the domain's β sheets and other recognition mechanisms. The two domain classes have a superficial resemblance to each other, even though no sequential homology exists. The structural bases of the interactions are well understood for the domains now experimentally determined, and ligand—target pairs can probably be identified in favorable cases by analogy with the known domains. For both PTB and PDZ classes, functional activities are still not fully defined: it is possible that these domain classes, along with pleckstrin homology domains, have multiple roles.  相似文献   

18.
Generally, epithelial cells must organize in three dimensions to form functional tissue sheets. Here we investigate one such sheet, the Drosophila embryonic epidermis, and the morphogenetic processes organizing cells within it. We report that epidermal morphogenesis requires the proper distribution of the apical polarity determinant aPKC. Specifically, we find roles for the kinases GSK3 and aPKC in cellular alignment, asymmetric protein distribution, and adhesion during the development of this polarized tissue. Finally, we propose a model explaining how regulation of aPKC protein levels can reorganize both adhesion and the cytoskeleton.  相似文献   

19.
Branching morphogenesis is a widely used strategy to increase the surface area of a given organ. A number of tissues undergo branching morphogenesis during development, including the lung, kidney, vascular system and numerous glands. Until recently, very little has been known about the genetic principles underlying the branching process and about the molecules participating in organ specification and branch formation. The tracheal system of insects represents one of the best-characterised branched organs. The tracheal network provides air to most tissues and its development during embryogenesis has been studied intensively at the morphological and genetic level. More than 30 genes have been identified and ordered into sequential steps controlling branching morphogenesis. These studies have revealed a number of important principles that might be conserved in other systems.  相似文献   

20.
Using sequence homology searches, yeast two-hybrid assays and glutathione S-transferase (GST)-pull-down approaches we have identified a series of glutamate receptor subunits that interact differentially with the PDZ proteins GRIP, PICK1, and syntenin. GST-pull-down experiments identified more interactions than detected by yeast two-hybrid assays. We report several receptor-protein interactions, strong ones include: (i) GRIP and syntenin with mGluR7a, mGluR4a, and mGluR6; (ii) PICK1 and GRIP with mGluR3; and (iii) syntenin with all forms of GluR1-4 and mGluR7b. We further characterized the novel mGluR7a-GRIP interaction found both in yeast two-hybrid and GST-pull-down assays and observed that mGluR7a localization overlapped with GRIP with in hippocampal neurons. The wide range of targets for PICK1, GRIP, and syntenin suggests they may represent a molecular mechanism that can concentrate and/or regulate a number of different receptors at a common site on a synapse. These data also suggest that the structural determinants involved in PDZ interactions are more complex than originally envisaged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号