首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A total of 214 strains of plant-associated fluorescent pseudomonads were screened for the ability to produce the acidic exopolysaccharide (EPS) alginate on various solid media. The fluorescent pseudomonads studied were saprophytic, saprophytic with known biocontrol potential, or plant pathogenic. Approximately 10% of these strains exhibited mucoid growth under the conditions used. The EPSs produced by 20 strains were isolated, purified, and characterized. Of the 20 strains examined, 6 produced acetylated alginate as an acidic EPS. These strains included a Pseudomonas aeruginosa strain reported to cause a dry rot of onion, a strain of P. viridiflava with soft-rotting ability, and four strains of P. fluorescens. However, 12 strains of P. fluorescens produced a novel acidic EPS (marginalan) composed of glucose and galactose (1:1 molar ratio) substituted with pyruvate and succinate. Three of these strains were soft-rotting agents. Two additional soft-rotting strains of P. fluorescens produced a third acidic novel EPS composed of rhamnose, mannose, and glucose (1:1:1 molar ratio) substituted with pyruvate and acetate. When sucrose was present as the primary carbon source, certain strains produced the neutral polymer levan (a fructan) rather than an acidic EPS. Levan was produced by most strains capable of synthesizing alginate or the novel acidic EPS containing rhamnose, mannose, and glucose but not by strains capable of marginalan production. It is now evident that the group of bacteria belonging to the fluorescent pseudomonads is capable of elaborating a diverse array of acidic EPSs rather than solely alginate.  相似文献   

2.
Bacterial blotch of Agaricus bisporus has typically been identified as being caused by either Pseudomonas tolaasii (brown blotch) or Pseudomonas gingeri (ginger blotch). To address the relatedness of pseudomonads able to induce blotch, a pilot study was initiated in which pseudomonads were selectively isolated from mushroom farms throughout New Zealand. Thirty-three pseudomonad isolates were identified as being capable of causing different degrees of discoloration (separable into nine categories) of A. bisporus tissue in a bioassay. These isolates were also identified as unique using repetitive extragenic palindromic PCR and biochemical analysis. Relationships between these 33 blotch-causing organisms (BCO) and a further 22 selected pseudomonad species were inferred by phylogenetic analyses of near-full-length 16S rRNA gene nucleotide sequences. The 33 BCO isolates were observed to be distributed throughout the Pseudomonas fluorescens intrageneric cluster. These results show that in addition to known BCO (P. tolaasii, P. gingeri, and Pseudomonas reactans), a number of diverse pseudomonad species also have the ability to cause blotch diseases with various discolorations. Furthermore, observation of ginger blotch discoloration of A. bisporus being independently caused by many different pseudomonad species impacts on the homogeneity and classification of the previously described P. gingeri.  相似文献   

3.
Plant-associated pseudomonads are commonly exposed to copper bactericides, which are applied to reduce the disease incidence caused by these bacteria. Consequently, many of these bacteria have acquired resistance or tolerance to copper salts. We recently conducted a survey of 37 copper-resistant (Cur) Pseudomonas spp., including P. cepacia, P. fluorescens, P. syringae, and P. viridiflava, and found that a subset of the P. syringae strains showed a dramatic increase in exopolysaccharide (EPS) production on mannitol-glutamate medium containing CuSO4 at 250 micrograms/ml. A modified carbazole assay indicated that the EPS produced on copper-amended media contained high levels of uronic acids, suggesting that the EPS was primarily alginic acid. Uronic acids extracted from selected strains were further confirmed to be alginate by demonstrating their sensitivity to alginate lyase and by descending paper chromatography following acid hydrolysis. Subinhibitory levels of arsenate, cobalt, lithium, rubidium, molybdenum, and mercury did not induce EPS production, indicating that alginate biosynthesis is not induced in P. syringae cells exposed to these heavy metals. A 200-kb plasmid designated pPSR12 conferred a stably mucoid phenotype to several P. syringae recipients and also increased their resistance to cobalt and arsenate. A cosmid clone constructed from pPSR12 which conferred a stably mucoid phenotype to several P. syringae strains but not to Pseudomonas aeruginosa was obtained. Results obtained in this study indicate that some of the signals and regulatory genes for alginate production in P. syringae differ from those described for alginate production in P. aeruginosa.  相似文献   

4.
The rRNA-DNA homology group I pseudomonads Pseudomonas asplenii, Ps. corrugata, Ps. flavescens (plant pathogens), Ps. alcaligenes, Ps. pseudoalcaligenes subsp. pseudoalcaligenes (opportunistic human pathogens), Ps. aureofaciens and Ps. chlororaphis (saprophytes) were examined for their ability to produce exopolysaccharides (EPSs) when cultured on various solid and liquid complex media with glucose, glycerol or gluconate as primary sources of carbon. All three strains (388, 717 and ATCC 29736) of Ps. corrugata produced alginate, a polyuronan. An EPS composed of glucose, fucose, mannose and an unidentified uronic acid substituted with lactic acid was produced by one (B62) of two strains of Ps. flavescens. Of four strains of Ps. chlororaphis tested, only strain NRRL B-2075 produced EPS. The extracellular material purified by anion-exchange chromatography appeared to be a mixture of alginate plus an acidic hexosamine-containing polymer(s). Production of EPS by the other pseudomonads was not supported by any of the media tested.  相似文献   

5.
The effects of mass-produced saprobic rhabditid nematodes, Caenorhabditis elegans on the spread of the bacterial blotch pathogen, Pseudomonas tolaasii , were studied in mushroom growth chambers. C. elegans significantly reduced the intensity of blotch on sporophores. Repeated isolations of the bacterial flora from the gut of C. elegans recovered from mushroom sporophores during cropping, revealed the presence of Pseudomonas fluorescens biovar reactans . All the isolates of P. fluorescens biovar reactans isolated from nematodes were antagonists of P. tolaasii .
C. elegans produced much larger populations in monoxenic cultures with P. fluorescens biovar reactans than with P. tolaasii . It is suggested that as C. elegans selects P. fluorescens biovar reactans rather than P. tolaasii as a food substrate it probably spreads the antagonist in the mushroom crop and may contribute to the control of bacterial blotch.  相似文献   

6.
Spontaneous alginate-producing (muc) variants were isolated from strains of Pseudomonas fluorescens, P. putida and P. mendocina at a frequency of 1 in 10(8) by selecting for carbenicillin resistance. The infrared spectrum of the bacterial exopolysaccharide was typical of an acetylated alginate similar to that previously described in Azotobacter vinelandii and in mucoid variants of P. aeruginosa. Mucoid variants were not isolated from P. stutzeri, P. pseudoalcaligenes, P. testosteroni, P. diminuta, P. acidovorans, P. cepacia or P. maltophilia.  相似文献   

7.
The genetic properties of 45 pseudomonad strains isolated from cereal cultures exhibiting symptoms of basal bacteriosis have been investigated. Considerable genetic diversity has been demonstrated using DNA fingerprints obtained by amplification with REP, ERIC, and BOX primers. Restriction analysis of the 16S-23S internal transcribed spacer (ITS1) allowed the strains to be subdivided into two major groups. In a phylogenetic tree, the ITS1s of these groups fell into two clusters, which also included the ITS1 of Pseudomonas syringae ("Syringae" cluster) and the ITS1 of P. fluorescens, P. tolaasii, P. reactans, P. gingeri, and P. agarici ("Fluorescens" cluster) from the GenBank database. Comparison of the ITS1 divergence levels within the "Fluorescens" cluster suggests expediency of treating P. tolaasii, P. reactans, various P. fluorescens groups, and, possibly, P. gingeri and P. agarici as subspecies of one genospecies. The intragenomic heterogeneity of ITS1s was observed in some of the pseudomonad strains studied. The results of amplification with specific primers and subsequent sequencing of the amplificate suggest the possibility of the presence of a functionally active syrB gene involved in syringomycin biosynthesis in the strains studied.  相似文献   

8.
Strains ofPseudomonas aeruginosa recovered from pulmonary infections in cystic fibrosis (CF) patients are often mucoid in appearance owing to the secretion of a viscous slime exopolysaccharide (EPS). Unlike most mucoid isolates, strains WcM#2, P10, and P11 produce mucoid colonies after 24 h of incubation at 37°C, which become nonmucoid upon further incubation; this suggests the presence of a slime-degrading enzyme or depolymerase. Using both qualitative and quantitative assays, the presence of a slime EPS depolymerase was confirmed in each of these three strains as well as in four of four additional mucoid strains. Depolymerase activity was lower but still detectable in four of four nonmucoid strains. Enzyme preparations from strains WcM#2, P10, and P11 were active on most, but not all, slime EPS preparations fromP. aeruginosa strains, as well as sodium alginate; greater activity was observed on substrates after deacetylation. Comparisons are made between the enzyme described in this study and previous reports of slime EPS depolymerase in mucoid strains ofP. aeruginosa.  相似文献   

9.
Alginate is produced as an exopolysaccharide by many fluorescent pseudomonads. However, pseudomonads often have a nonmucoid phenotype in standard laboratory media. Growth in the presence of 0.3M sodium chloride or 3–5% ethanol reportedly can lead to the generation of mucoid variants of nonmucoid strains ofPseudomonas aeruginosa. We wished to determine whether alginate production by other fluorescent pseudomonads is affected by sodium chloride and ethanol. Eight alginate-producing strains of saprophytic and phytopathogenic pseudomonads were grown as broth cultures containing 0–0.7M sodium chloride or 0–5% ethanol for 24–30 h at 28° or 35°C. Culture supernatant fluids were subjected to ethanol precipitation, and the amount of alginate present was estimated by measuring the uronic acid content. The presence of sodium chloride and ethanol caused significant stimulation of alginate production by all strains tested exceptP. viridiflava ATCC 13223 andP. fluorescens W4F1080. The optimal concentration of sodium chloride ranged from 0.2 to 0.5M; that for ethanol ranged from 1 to 3%. Moreover, inclusion of the nonmetabolizable, nonionic solute sorbitol showed a similar stimulation of alginate production. The stimulation of alginate production by high medium osmolarity and dehydration appears to be a trait shared by fluorescent pseudomonads.Reference to brand or firm name does not constitute endorsement by the U.S. Department of Agriculture overothers of a similar nature not mentioned.  相似文献   

10.
Ginger blotch, a new bacterial disease of the cultivated mushroom, Agaricus bisporus , is described from farms in the UK. The symptoms are distinct from the classical blotch disease caused by Pseudomonas tolaasii. The causative organism has been isolated and identified as a new member of the Pseudomonas fluorescens complex which can be distinguished from Pseudomonas tolaasii by several simple tests.  相似文献   

11.
Bacteria, mainly pseudomonads, were isolated from mushroom farms and from soil and plant materials. They were screened for antagonism to Pseudomonas tolaasii , the cause of bacterial blotch of mushroom, using an exclusion zone assay against a bacterial lawn of the pathogen. Selected potential antagonists were identified by the API system and whole cell fatty acid profiles. These strains were tested further in the white line test and host pathogenicity test with mushroom caps. Some of the antagonists have been stable in their aggressiveness over 1 year and several transfers during storage on nutrient agar.  相似文献   

12.
A group of sixteen esculin-positive fluorescent pseudomonads isolated from an underground brook flowing through a cave complex was characterized by biotyping, multiple enzyme restriction fragment length polymorphism analysis of 16S rDNA (MERFLP), ribotyping and whole-cell fatty-acid methyl-esters analysis (FAME). All strains were phenotypically close to Pseudomonas fluorescens, but they revealed high biochemical variability as well as some reactions atypical for P. fluorescens species. Because identification of pseudomonads by of biochemical testing is often unclear, further techniques were employed. Fingerprints obtained by MERFLP clearly showed that all strains represent P. fluorescens species. Ribotyping separated the strains analyzed into four groups corresponding almost completely (with the exception of one strain) to the clustering based on biochemical profiles. FAME analysis grouped all the strains into one cluster together with the P. putida (biotype A, B), P. chlororaphis and P. fluorescens biotype F representatives, but differentiated them from other FAME profiles of all pseudomonads included in the standard library TSBA 40 provided by MIDI, Inc.  相似文献   

13.
The electrophoretic patterns of outer membrane proteins of strains representing the biovars of Pseudomonas fluorescens and Pseudomonas putida were analyzed by gel electrophoresis. The outer membrane protein profiles were variable, and they were not useful for assigning strains to a specific biovar. However, three or four predominant outer membrane proteins migrating at 42 to 46 kDa, 33 to 38 kDa, and 20 to 22 kDa were conserved among the strains. They could be tentatively identified as OprE (44 kDa), OprF (38 kDa), OprH (21 kDa), and OprL (20.5 kDa), which are known proteins from Pseudomonas aeruginosa. A 37-kDa OprF-like protein was purified from P. fluorescens DF57 and used to raise a polyclonal antibody. In Western blot (immunoblot) analysis, this antibody reacted with OprF proteins from members of Pseudomonas rRNA homology group I but not with proteins from nonpseudomonads. The heterogeneity in M(infr) of OprF was greater among P. fluorescens strains than among P. putida strains. Immunofluorescence microscopy of intact cells demonstrated that the antibody recognized epitopes that were accessible only after unmasking by EDTA treatment. The antibody was used in a colony blotting assay to determine the percentage of rRNA homology group I pseudomonads among bacteria from the rhizosphere of barley. The bacteria were isolated on 10% tryptic soy agar, King's B agar, and the pseudomonad-specific medium Gould S1 agar. The estimate of OprF-containing CFU in rhizosphere soil obtained by colony blotting on 10% tryptic soy agar was about 2 and 14 times higher than the values obtained from King's agar and Gould S1 agar, respectively, indicating that not all fluorescent pseudomonads are scored on more specific media. The colonies reacting with the OprF antibody were verified as being rRNA homology group I pseudomonads by using the API 20NE system.  相似文献   

14.
A sharply defined white line in vitro forms between the pathogenic form of Pseudomonas tolaasii and another Pseudomonas bacterium, referred to as "reactans". This interaction has been considered as highly specific. However, results presented in this study rise doubt about the strict specificity of this interaction, as some other pseudomonads, associated with the cultivated mushroom Agaricus bisporus, also yielded a white line precipitate when they were streaked towards Pseudomonas tolaasii LMG 2342T. Moreover, some Finnish isolates inducing brown blotch symptoms on mushrooms like P. tolaasii(T), produced a typical white precipitate when streaked towards P. "reactans" LMG5329, even though phenotypical and genotypical features exclude these isolates from the species P. tolaasii. We propose that the white-line-in-agar (WLA) test should no longer be considered as an unequivocal diagnostic trait of P. tolaasii.  相似文献   

15.
Nonmucoid Pseudomonas aeruginosa responds to iron deprivation by synthesizing the siderophores pyochelin and pyoverdine. When grown in iron-deficient medium, six mucoid P. aeruginosa strains isolated from cystic fibrosis patients synthesized copious amounts of the exopolysaccharide alginate. A procedure that eliminated the interference of alginate was developed so that siderophores could be extracted from the growth medium. All six isolates were then noted to produce both pyoverdine and pyochelin. This report thus confirms that mucoid P. aeruginosa, like its nonmucoid counterparts, elicits the siderophores commonly cited as those of the microbe.  相似文献   

16.
Conversion of the mucoid phenotype, which results from the production of the exopolysaccharide alginate, is a feature typical of Pseudomonas aeruginosa strains causing chronic pulmonary infections in patients with cystic fibrosis. In this study, we further characterized a recombinant plasmid, called pJF15, that contains DNA from the 65- to 70-min region of the chromosome of mucoid P. aeruginosa FRD1 and has loci involved in alginate conversion. Plasmid pJF15 complements algT mutations in trans and confers the mucoid phenotype in cis following gene replacement. However, the phenotype of nonmucoid P. aeruginosa carrying pJF15 is unchanged. Here we report the identification of a locus immediately downstream of algT, called algN, that may be a negative regulator that blocks algT from activating alginate production. Inactivation of algN by transposon Tn501 insertion allowed algT to stimulate alginate production in trans. The DNA sequence of this region identified an open reading frame that predicts an algN gene product of 33 kDa, but no homology was found to other proteins in a sequence data base. Clones of algT in which algN was deleted caused the activation of alginate biosynthesis in transconjugants of several P. aeruginosa strains. DNA containing algT was shown to hybridize to the genomes of several Pseudomonas species, including P. putida, P. stutzeri, and P. fluorescens. Transconjugants of these species carrying algT DNA (with a deletion of algN) from pJF15 showed a mucoid phenotype and increased production of uronic acid-containing polymers that resembled alginate.  相似文献   

17.
S ummary : Pseudomonas tolaasii was isolated from casing peat of healthy and diseased mushroom beds, compost of diseased mushroom beds and from soils round a mushroom farm. It was not isolated from fresh peat or compost from healthy mushroom beds. Three bacteria antagonistic to Ps. tolaasii were isolated from soil and peat. These were a nonfluorescent Pseudomonas sp. (closest to Ps. multivorans ) from soil; and strains of Ps. fluorescens and Enterobacter aerogenes from peat. When the antagonists and the pathogen were added in the ratio of 8 × 107: 106 cells/ml to unsterilized peat and applied to mushroom trays, infection of mushroom sporophores by the pathogen was effectively controlled. In vitro studies failed to show lysis or growth inhibition of Ps. tolaasii by the antagonists.  相似文献   

18.
Orgad O  Oren Y  Walker SL  Herzberg M 《Biofouling》2011,27(7):787-798
Among various functions, extracellular polymeric substances (EPS) provide microbial biofilms with mechanical stability and affect initial cell attachment, the first stage in the biofilm formation process. The role of alginate, an abundant polysaccharide in Pseudomonas aeruginosa biofilms, in the viscoelastic properties and adhesion kinetics of EPS was analyzed using a quartz crystal microbalance with dissipation (QCM-D) monitoring technology. EPS was extracted from two P. aeruginosa biofilms, a wild type strain, PAO1, and a mucoid strain, PAOmucA22 that over-expresses alginate production. The higher alginate content in the EPS originating from the mucoid biofilms was clearly shown to increase both the rate and the extent of attachment of the EPS, as well as the layer's thickness. Also, the presence of calcium and elevated ionic strength increased the thickness of the EPS layer. Dynamic light scattering (DLS) showed that the presence of calcium and elevated ionic strength induced intermolecular attractive interactions in the mucoid EPS molecules. For the wild type EPS, in the presence of calcium, an elevated shift in the distribution of the diffusion coefficients was observed with DLS due to a more compacted conformation of the EPS molecules. Moreover, the alginate over-expression effect on EPS adherence was compared to the effect of alginate over-expression on P. aeruginosa cell attachment. In a parallel plate flow cell, under similar hydraulic and aquatic conditions as those applied for the EPS adsorption tests in the QCM-D flow cell, reduced adherence of the mucoid strain was clearly observed compared to the wild type isogenic bacteria. The results suggest that alginate contributes to steric hindrance and shielding of cell surface features and adhesins that are known to promote cell attachment.  相似文献   

19.
AIMS: To characterize a novel pseudomonad isolate capable of causing brown blotch disease of Agaricus bisporus. METHODS AND RESULTS: Using the white-line-in-agar (WLA) assay, fluorescent pseudomonads isolated from a New Zealand mushroom farm were screened for the lipodepsipeptide tolaasin, a characteristic marker of Pseudomonas tolaasii. One isolate, NZI7, produced a positive WLA assay and caused brown lesions of A. bisporus comparable with those produced by Ps. tolaasii. However, genetic analysis suggested that Ps. tolaasii and NZI7 were genetically dissimilar, and that NZI7 is closely related to Pseudomonas syringae. Nucleotide sequence analyses of a gene involved in tolaasin production indicated that similar genes are present in both NZI7 and Ps. tolaasii. CONCLUSION: NZI7 represents a novel Pseudomonas species capable of causing brown blotch disease of A. bisporus. SIGNIFICANCE AND IMPACT OF THE STUDY: Phenotypic identification of Ps. tolaasii based on A. bisporus browning and positive WLA may have limited specificity.  相似文献   

20.
Rhizoctonia solani isolates varying in their virulence were tested for their ability to produce oxalic acid (OA) in vitro. The results indicated that the virulent isolates produced more OA than the less virulent isolates. In order to isolate OA-detoxifying strains of Pseudomonas fluorescens, rhizosphere soil of rice was drenched with 100 mM OA and fluorescent pseudomonads were isolated from the OA-amended soil by using King's medium B. These isolates were tested for their antagonistic effect towards growth of R. solani in vitro. Among them P. fluorescens PfMDU2 was the most effective in inhibiting the mycelial growth of R. solani. P. fluorescens PfMDU2 was capable of detoxifying OA and several proteins were detected in the culture filtrate of PfMDU2 when it was grown in medium containing OA. To investigate whether the gene(s) involved in OA-detoxification resides on the plasmids in P. fluorescens PfMDU2, a plasmid-deficient strain of P. fluorescens was generated by plasmid curing. The plasmid-deficient strain (PfMDU2P-) failed to grow in medium containing OA and did not inhibit the growth of R. solani. Both PfMDU2 and PfMDU2P- were tested for their efficacy in controlling sheath blight of rice under greenhouse conditions. Seed treatment followed by soil application of rice with P. fluorescens strain, PfMDU2, reduced the severity of sheath blight by 75% compared with the control, whereas PfMDU2P- failed to control sheath blight disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号