首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The copper-containing protein caeruloplasmin is an important biological extracellular protein. By catalysing the oxidation of ferrous ions to the ferric state (ferroxidase activity) it can inhibit lipid peroxidation and the Fenton reaction. This activity is readily destroyed by heat-denaturation. When a ferric-EDTA complex is added to hydrogen peroxide, OH X radicals are formed in a reaction inhibitable by superoxide dismutase (SOD). This reaction is also inhibited by caeruloplasmin both before and after heat-denaturation, suggesting a non-catalytic scavenging role for the protein. A combination of ferroxidase and radical scavenging activities in fluids containing iron complexes and hydrogen peroxide, but no SOD or catalase, would make caeruloplasmin an important extracellular antioxidant.  相似文献   

2.
Superoxide dismutase (SOD) enhanced the formation of hydroxyl radicals, which were detected by using the e.s.r. spin-trapping technique, in a reaction mixture containing 3-hydroxyanthranilic acid (or p-aminophenol), Fe3+ ions, EDTA and potassium phosphate buffer, pH 7.4. The hydroxyl-radical formation enhanced by SOD was inhibited by catalase and desferrioxamine, and stimulated by EDTA and diethylenetriaminepenta-acetic acid, suggesting that both hydrogen peroxide and iron ions participate in the reaction. The hydroxyl-radical formation enhanced by SOD may be considered to proceed via the following steps. First, 3-hydroxyanthranilic acid is spontaneously auto-oxidized in a process that requires molecular oxygen and yields superoxide anions and anthranilyl radicals. This reaction seems to be reversible. Secondly, the superoxide anions formed in the first step are dismuted by SOD to generate hydrogen peroxide and molecular oxygen, and hence the equilibrium in the first step is displaced in favour of the formation of superoxide anions. Thirdly, hydroxyl radicals are generated from hydrogen peroxide through the Fenton reaction. In this Fenton reaction Fe2+ ions are available since Fe3+ ions are readily reduced by 3-hydroxyanthranilic acid. The superoxide anions do not seem to participate in the reduction of Fe3+ ions, since superoxide anions are rapidly dismuted by SOD present in the reaction mixture.  相似文献   

3.
The siderophore desferrioxamine (DEFOM) binds ferric ions in a 1:1 ratio resulting in a ferrioxamine (FOM) complex. When DEFOM is stored or heat degraded, the resulting FOMD undergoes an autoreduction with the transfer of electrons to the bound ferric ions forming ferrous ions, which react with Ferrozine to yield a pink-coloured complex absorbing at 562 nm. Heat-aged DEFOM forms a FOND complex with an absorption maxima changing from 432 nm to 441 nm. When the autoreduced FOMD complex is placed in a phosphate buffer at pH 7.4, ferrous ions autoxidase transferring electrons to molecular oxygen to form superoxide and hydrogen peroxide. Fenton chemistry leading to the formation of hydroxyl radicals can then occur. Studies with a variety of reactive oxygen scavengers support a role for the hydroxyl radical in damage to the detector molecule deoxyribose. However, when EDTA is present, damage to deoxyribose is decreased and the radicals causing deoxyribose degradation no longer appear to be characteristic of the hydroxyl radical.  相似文献   

4.
Radish plasmalemma-enriched fractions show an NAD(P)H-ferricyanide or NAD(P)H-cytochrome c oxidoreductase activity which is not influenced by pH in the 4.5-7.5 range. In addition, at pH 4.5-5.0, NAD(P)H elicits an oxygen consumption (NAD(P)H oxidation) inhibited by catalase or superoxide dismutase (SOD), added either before or after NAD(P)H addition. Ferrous ions stimulate NAD(P)H oxidation, which is again inhibited by SOD and catalase. Hydrogen peroxide does not stimulate NADH oxidation, while it does stimulate Fe2+-induced NADH oxidation. NADH oxidation is unaffected by salicylhydroxamic acid and Mn2+, is stimulated by ferulic acid, and inhibited by KCN, EDTA and ascorbic acid. Moreover, NADH induces the conversion of epinephrine to adrenochrome, indicating that anion superoxide is formed during its oxidation. These results provide evidence that radish plasma membranes contain an NAD(P)H-ferricyanide or cytochrome c oxidoreductase and an NAD(P)H oxidase, active only at pH 4.5-5.0, able to induce the formation of anion superoxide, that is then converted to hydrogen peroxide. Ferrous ions, sparking a Fenton reaction, would stimulate NAD(P)H oxidation.  相似文献   

5.
Nitric oxide as an antioxidant.   总被引:21,自引:0,他引:21  
Benzoate monohydroxy compounds, and in particular salicylate, were produced during interaction of ferrous complexes with hydrogen peroxide (Fenton reaction) in a N2 environment. These reactions were inhibited when Fe complexes were flushed, prior to the addition in the model system, by nitric oxide. Methionine oxidation to ethylene by Fenton reagents was also inhibited by nitric oxide. Myoglobin in several forms such as metmyoglobin, oxymyoglobin, and nitric oxide-myoglobin were interacted with an equimolar concentration of hydrogen peroxide. Spectra changes in the visible region and the changes in membrane (microsomes) lipid peroxidation by the accumulation of thiobarbituric acid-reactive substances (TBA-RS) were determined. The results showed that metmyoglobin and oxymyoglobin were activated by H2O2 to ferryl myoglobin, which initiates membrane lipid peroxidation; but not nitric oxide-myoglobin, which, during interaction with H2O2, did not form ferryl but metmyoglobin which only poorly affected lipid peroxidation. It is assumed that nitric oxide, liganded to ferrous complexes, acts to prevent the prooxidative reaction of these complexes with H2O2.  相似文献   

6.
The Fenton reaction of iron(II) EDTA with hydrgen peroxide, performed in the presence of ascorbateion. has proven to be useful as a probe of structure in DNA systems. Two aspects of this chemistry are discussed: the identity of the active DNA cleaving agent produced by this reagent, and the application of the Fenton reaction to the determination of the structure of the Holliday junction, the four-stranded DNA molecule that is a key intermediate in recombination. The cleavage pattern of the Holliday junction has pseudo-twofold symmetry, putting important constraints on possible structures.  相似文献   

7.
《Free radical research》2013,47(1):521-529
The Fenton reaction of iron(II) EDTA with hydrgen peroxide, performed in the presence of ascorbateion. has proven to be useful as a probe of structure in DNA systems. Two aspects of this chemistry are discussed: the identity of the active DNA cleaving agent produced by this reagent, and the application of the Fenton reaction to the determination of the structure of the Holliday junction, the four-stranded DNA molecule that is a key intermediate in recombination. The cleavage pattern of the Holliday junction has pseudo-twofold symmetry, putting important constraints on possible structures.  相似文献   

8.
Heme oxygenase (HO) converts hemin to biliverdin, CO, and iron applying molecular oxygen and electrons. During successive HO reactions, two intermediates, α-hydroxyhemin and verdoheme, have been generated. Here, oxidation state of the verdoheme-HO complexes is controversial. To clarify this, the heme conversion by soybean and rat HO isoform-1 (GmHO-1 and rHO-1, respectively) was compared both under physiological conditions, with oxygen and NADPH coupled with ferredoxin reductase/ferredoxin for GmHO-1 or with cytochrome P450 reductase for rHO-1, and under a non-physiological condition with hydrogen peroxide. EPR measurements on the hemin-GmHO-1 reaction with oxygen detected a low-spin ferric intermediate, which was undetectable in the rHO-1 reaction, suggesting the verdoheme in the six-coordinate ferric state in GmHO-1. Optical absorption measurements on this reaction indicated that the heme degradation was extremely retarded at verdoheme though this reaction was not inhibited under high-CO concentrations, unlike the rHO-1 reaction. On the contrary, the Gm and rHO-1 reactions with hydrogen peroxide both provided ferric low-spin intermediates though their yields were different. The optical absorption spectra suggested that the ferric and ferrous verdoheme coexisted in reaction mixtures and were slowly converted to the ferric biliverdin complex. Consequently, in the physiological oxygen reactions, the verdoheme is found to be stabilized in the ferric state in GmHO-1 probably guided by protein distal residues and in the ferrous state in rHO-1, whereas in the hydrogen peroxide reactions, hydrogen peroxide or hydroxide coordination stabilizes the ferric state of verdoheme in both HOs.  相似文献   

9.
Apart from their well-established role in nitric oxide detoxification, flavohemoglobins (FHbs) are also believed to be involved in protection against oxidative stress in some yeast and bacteria. However, different studies have reported contradictory results in this regard. Here, we investigate the relationship between two FHbs in Aspergillus oryzae (cytosolic FHb1 and mitochondrial FHb2) and oxidative stress. The strains deficient in the two FHbs exhibited higher resistance to hydrogen peroxide than the wild-type. In addition, the FHb2 overexpression strain showed hypersensitivity to hydrogen peroxide. Flavin reductase accompanied by the ferric reductase activities of the two FHbs were observed in correspondence with this expression. The reductase activities of the FHbs were attributed to their C-terminal flavin reductase domains. The reduced intracellular free iron can subsequently promote oxidative damage by accelerating the Fenton reaction in the cytosol and mitochondria (corresponding to the subcellular localizations of the two FHbs). This study is the first to show that fungal FHbs have a deleterious effect on oxidative protection, and suggests that the accelerated Fenton reaction induced by FHbs might be responsible for this effect.  相似文献   

10.
The oxidation of 2-keto-4-thiomethyl butyric acid (KTBA) and methionine to ethylene has been used to evaluate generation of ferryl species or hydroxyl radicals by H2O2--activated haemproteins or free ferric ions. Hydrogen peroxide was generated by a glucose oxidase-glucose system at a rate of 1 μM/min. Free ferric in the presence of H2O2 oxidizes KTBA, and this was highly inhibited by hydroxyl radical scavengers, caeruloplasmin, superoxide dismutase (SOD) and EDTA. However, when metmyoglobin, methaemoglobin (MtHb) or horseradish peroxidase (HRP) were tested in the same model system, hydroxyl radical scavengers suppressed partially KTBA oxidation and caeruloplasmin, SOD and EDTA failed to inhibit the reaction. Cytochrome-c was found to be a weak promoter of KTBA oxidation in the presence of H2O2. Methionine was oxidized to ethylene by an active system which generates hydroxyl radicals, but not by H2O2--activated metmyoglobin. Ferric ions chelated to membranes or ADP in the presence of H2O2 generated enzymatically, initiated membranal lipid peroxidation only in the presence of ascorbic acid, and this was inhibited by EDTA. In contrast, metmyoglobin and methaemoglobin activated by H2O2 generated by the same system, initiated membranal lipid peroxidation and this was not inhibited by EDTA. It is concluded that ferryl and not HO. is the main oxidant in systems containing myoglobin and haemoglobin activated by low concentrations of H2O2.  相似文献   

11.
We have employed the electron spin resonance spin-trapping technique to study the reaction of Co(II) with hydrogen peroxide in a chemical system and in a microsomal system. In both cases, we employed the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and were able to detect the formation of DMPO/.OH and DMPO/.OOH. DMPO/.OOH was the predominant radical adduct formed in the chemical system, while the two adducts were of similar concentrations in the microsomal system. The formation of both of these adducts in either reaction system was inhibited by the addition of superoxide dismutase or catalase, and by chelating the cobalt with either ethylenediaminetetraacetic acid (EDTA) or diethylenetriaminepentaacetic acid (DTPA). The incorporation of the hydroxyl radical scavengers ethanol, formate, benzoate, or mannitol inhibited the formation of DMPO/.OH in both systems. We also repeated the study using Fe(II) in place of Co(II). In contrast to the Co(II) results, Fe(II) reacted with hydrogen peroxide to yield only DMPO/.OH, and this adduct formation was relatively insensitive to the presence of added superoxide dismutase. In addition, Fe(II)-mediated DMPO/.OH formation increased when the iron was chelated to either EDTA or DTPA rather than being inhibited as for Co(II). Thus, we propose that Co(II) does not react with hydrogen peroxide by the classical Fenton reaction at physiological pH values.  相似文献   

12.
Superoxide dismutase (SOD) completely inhibits the damage caused by a ferric-EDTA chelate in the presence of a superoxide-generating system. In this reaction superoxide is enzymically dismuted to hydrogen peroxide. Since hydrogen peroxide and a ferric-EDTA chelate are themselves a hydroxyl radical-generating system, it follows that SOD must also protect against damage done by this reaction. The ability of SOD to inhibit damage to deoxyribose caused by hydrogen peroxide and a ferric-EDTA chelate is experimentally demonstrated in this paper.  相似文献   

13.
In biological systems, the predominant form of iron is the trivalent Fe(III) form, which is potentially not readily bioavailable because of its hydrolysis and polymerization to insoluble forms. It is also the easiest of the two predominant forms of iron to chelate selectively. In a short overview of iron chemistry, we point out some of the pitfalls using standard redox potentials, comment on the interaction of ferric complexes with hydrogen peroxide to give hydroxyl radicals and address the release of iron from ferrisiderophores. In biological systems there are two classes of ferric reductases, the soluble flavin reductases found in prokaryotes, and the membrane-bound cytochrome b-like reductases found in eukaryotes. Finally the role of dissimilatory ferric reduction in microbial respiration and biomineralization is discussed.  相似文献   

14.
The effect of caffeic acid, a kind of catechol, on the Fenton reaction was examined by using the ESR spin trapping technique. Caffeic acid enhanced the formation of hydroxyl radicals in the reaction mixture, which contained caffeic acid, hydrogen peroxide, ferric chloride, EDTA, and potassium phosphate buffer. Chlorogenic acid, which is an ester of caffeic acid with quinic acid, also stimulated the formation of the hydroxyl radicals. Quinic acid did not stimulate the reaction, suggesting that the catechol moiety in chlorogenic acid is essential to the enhancement of the hydroxyl-radical formation. Indeed, other catechols and related compounds such as pyrocatechol, gallic acid, dopamine, and noradrenaline effectively stimulated the formation of the hydroxyl radicals. The above results confirm the idea that the catechol moiety is essential to the enhancement. Ferulic acid, 4-hydroxy-3-methoxybenzoic acid, and salicylic acid had no effect on the formation of the hydroxyl radicals. The results indicate that the enhancement by the catechols of the formation of hydroxyl radicals is diminished if a methyl ester is formed at the position of the hydroxyl group of the catechol. In the absence of iron chelators such as EDTA, DETAPAC, desferrioxamine, citrate, and ADP, formation of hydroxyl radicals was not detected, suggesting that chelators are essential to the reaction. The enhancement of the formation of hydroxyl radicals is presumably due to the reduction of ferric ions by the catechols. Thus, the catechols may exert deleterious effects on biological systems if chelators such as EDTA, DETAPAC, desferrioxamine, citrate, and ADP are present.  相似文献   

15.
16.
Di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) and a range of its analogues comprise a series of monobasic acids that are capable of binding iron (Fe) as tridentate (N,N,O) ligands. Recently, we have shown that these chelators are highly cytotoxic, but show selective activity against cancer cells. Particularly interesting was the fact that cytotoxicity of the HPKIH analogues is maintained even after complexation with Fe. To understand the potent anti-tumor activity of these compounds, we have fully characterized their chemical properties. This included examination of the solution chemistry and X-ray crystal structures of both the ligands and Fe complexes from this class and the ability of these complexes to mediate redox reactions. Potentiometric titrations demonstrated that all chelators are present predominantly in their charge-neutral form at physiological pH (7.4), allowing access across biological membranes. Keto–enol tautomerism of the ligands was identified, with the tautomers exhibiting distinctly different protonation constants. Interestingly, the chelators form low-spin (diamagnetic) divalent Fe complexes in solution. The chelators form distorted octahedral complexes with FeII, with two tridentate ligands arranged in a meridional fashion. Electrochemistry of the Fe complexes in both aqueous and non-aqueous solutions revealed that the complexes are oxidized to their ferric form at relatively high potentials, but this oxidation is coupled to a rapid reaction with water to form a hydrated (carbinolamine) derivative, leading to irreversible electrochemistry. The Fe complexes of the HPKIH analogues caused marked DNA degradation in the presence of hydrogen peroxide. This observation confirms that Fe complexes from the HPKIH series mediate Fenton chemistry and do not repel DNA. Collectively, studies on the solution chemistry and structure of these HPKIH analogues indicate that they can bind cellular Fe and enhance its redox activity, resulting in oxidative damage to vital biomolecules.Electronic Supplementary Material Supplementary material is available in the online version of this article at .Abbreviations DFO desferrioxamine - HPKIH di-2-pyridyl ketone isonicotinoyl hydrazone - HNIH 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone - HPCIH 2-pyridinecarbaldehyde isonicotinoyl hydrazone - HPIH pyridoxal isonicotinoyl hydrazone - L linear DNA - OC open circular DNA - SC supercoiled DNA  相似文献   

17.
Previously, we showed the presence in radish (Raphanus sativus L.) plasmalemma vesicles of an NAD(P)H oxidase, active at pH 4.5-5.0, which elicits the formation of anion superoxide (Vianello and Macrí (1989) Biochim. Biophys. Acta 980, 202-208). In this work, we studied the role of hydrogen peroxide and iron ions upon this oxidase activity. NADH oxidation was stimulated by ferrous ions and, to a lesser extent, by ferric ions. Salicylate and benzoate, two known hydroxyl radical scavengers, inhibited both basal and iron-stimulated NADH oxidase activity. The iron chelators EDTA (ethylenediaminetetraacetic acid) and DFA (deferoxamine melysate) at high concentrations (2 mM) inhibited the NADH oxidation, whereas they were ineffective at lower concentrations (80 microM); the subsequent addition of ferrous ions caused a rapid and limited increase of oxygen consumption which later ceased. Hydrogen peroxide was not detected during NADH oxidation but, in the presence of salicylate, its formation was found in significant amounts. NADH oxidase activity was also associated to a Fe2+ oxidation which was only partially inhibited by salicylate. Ferrous ion oxidation was partially inhibited by catalase and prevented by superoxide dismutase, while ferric ion reduction was abolished by catalase and unaffected by superoxide dismutase. These results show that during NADH oxidation iron ions undergo oxidoreduction and that hydrogen peroxide is produced and rapidly consumed. As previously suggested, this oxidation appears linked to the univalent oxidoreduction of iron ions by a reduced flavoprotein of radish plasmalemma which is then converted to a radical form. The latter, reacting with oxygen generates the superoxide anion which dismutases to H2O2. Hydrogen peroxide, through a Fenton's reaction, may react with Fe2+ to produce hydroxyl radicals, or with Fe3+ to generate the superoxide anion.  相似文献   

18.
Phycomyces blakesleeanus isocitrate lyase (EC 4.1.3.1) is in vivo reversibly inactivated by hydrogen peroxide. The purified enzyme showed reversible inactivation by an ascorbate plus Fe(2+) system under aerobic conditions. Inactivation requires hydrogen peroxide; was prevented by catalase, EDTA, Mg(2+), isocitrate, GSH, DTT, or cysteine; and was reversed by thiols. The ascorbate served as a source of hydrogen peroxide and also reduced the Fe(3+) ions produced in a "site-specific" Fenton reaction. Two redox-active cysteine residues per enzyme subunit are targets of oxidative modification; one of them is located at the catalytic site and the other at the metal regulatory site. The oxidized enzyme showed covalent and conformational changes that led to inactivation, decreased thermal stability, and also increased inactivation by trypsin. These results represent an example of redox regulation of an enzymatic activity, which may play a role as a sensor of redox cellular status.  相似文献   

19.
Treatment of a plasmid shuttle vector (pZ189) with a combination of hydrogen peroxide and a ferric iron/EDTA complex prior to transfection and passage in simian (CV-1) cells increases the frequency of mutations at the supF locus by up to 60-fold over the spontaneous background. This increase in mutation frequency is abolished when the inhibitors desferrioxamine, superoxide dismutase, catalase or dimethyl sulfoxide are included in the initial reaction or when the iron/EDTA complex is omitted, a strong indication that the premutagenic damage arises as a result of direct attack by hydroxyl radical generated in a superoxide driven Fenton reaction. DNA sequence analysis of the mutated plasmids shows that 1) Deletions occuring in combination with base-substitutions arise in 22.5 percent of the induced mutants compared with only 3 percent of spontaneous mutants 2) Sixty percent of all induced deletion mutations involve the loss of a single base and 77 percent of these (20 out of 26) occur at two adenine-containing sites 3) The base-change spectrum of mutants arising in the treated plasmid population is marked by the predominance of mutants containing a single base-change and by an increase in changes at AT base pairs. These results provide direct information concerning the nature of mutations arising in mammalian cells as a result of hydroxyl radical mediated DNA damage.  相似文献   

20.
Iron(II)-dithiocarbamate complexes are used to trap nitrogen monoxide in biological samples, and the resulting nitrosyliron(II)-dithiocarbamate is detected and quantified by ESR. As the chemical properties of these compounds have been little studied, we investigated whether iron dithiocarbamate complexes can redox cycle. The electrode potentials of iron complexes of N-(dithiocarboxy)sarcosine (dtcs) and N-methyl-d-glucamine dithiocarbamate (mgd) are 56 and -25 mV at pH 7.4, respectively, as measured by cyclic voltammetry. The autoxidation and Fenton reaction of iron(II)-dtcs and iron(II)-mgd were studied by stopped-flow spectrophotometry with both iron(II) complexes and dioxygen or hydrogen peroxide in excess. In the case of excess iron(II)-dtcs and -mgd complexes, the rate constants of the autoxidation and the Fenton reaction are (1.6-3.2) x 10(4) and (0.7-1.1) x 10(5) M(-1) s(-1), respectively. In the presence of nitrogen monoxide, the oxidation of iron(II)-dtcs and iron(II)-mgd by hydrogen peroxide is significantly slower (ca. 10-15 M(-1) s(-1)). The physiological reductants ascorbate, cysteine, and glutathione efficiently reduce iron(III)-dtcs and iron(III)-mgd. Therefore, iron bound to dtcs and mgd can redox cycle between iron(II) and iron(III). The ligands dtcs and mgd are slowly oxidized by hydrogen peroxide with rate constants of 5.0 and 3.8 M(-1) s(-1), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号