首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The low molecular weight protein-tyrosine phosphatase (LMW-PTP) is an enzyme involved in platelet-derived growth factor (PDGF)-induced mitogenesis and cytoskeleton rearrangement. Our previous results demonstrated that LMW-PTP is able to bind and dephosphorylate activated PDGF receptor, thus inhibiting cell proliferation. Recently we have shown that LMW-PTP is specifically phosphorylated by c-Src in a cytoskeleton-associated fraction in response to PDGF, and this phosphorylation increases LMW-PTP activity about 20-fold. LMW-PTP strongly influences cell adhesion, spreading, and chemotaxis induced by PDGF stimulation, by regulating the phosphorylation level of p190Rho-GAP, a protein that is able to regulate Rho activity and hence cytoskeleton rearrangement. In the present study we investigate the physiological role of the two LMW-PTP tyrosine phosphorylation sites, using LMW-PTP mutants on tyrosine 131 or 132. We demonstrate that each tyrosine residue is involved in specific LMW-PTP functions. Both of them are phosphorylated during PDGF signaling. Phosphorylation on tyrosine 131 influences mitogenesis, dephosphorylating activated PDGF-R and cytoskeleton rearrangement, acting on p190RhoGAP. Phosphorylation on tyrosine 132 leads to an increase in the strength of cell substrate adhesion, down-regulating matrix metalloproteases expression, through the inhibition of Grb2/MAPK pathway. In conclusion, LMW-PTP tyrosine phosphorylation on both Tyr(131) or Tyr(132) cooperate to determine a faster and stronger adhesion to extracellular matrix, although these two events may diverge in timing and relative amount.  相似文献   

2.
Reactive oxygen species as mediators of cell adhesion   总被引:5,自引:0,他引:5  
The intracellular production of reactive oxygen species (ROS) has a fundamental importance in both cell proliferation and apoptosis induction. Moreover, many experimental and epidemiological evidence indicate that ROS contribute to the initiation and promotion of carcinogenesis, and that drugs or treatments aimed to reduce the tissue content of ROS can be chemopreventive and curative against cancer. Recently, important observations on the role of ROS as physiological regulators of intracellular signaling cascades activated by growth factors through their tyrosine-kinase receptors have shed new light on the possible mechanisms that can sustain the promoting activity of ROS. The downstream effect of ROS production is the reversible oxidation of proteins. Redox sensitive proteins include protein tyrosine phosphatases (PTPs) as the active-site cysteine is the target of specific oxidation, and this modification can be reversed by intracellular reducing agents. The reversible oxidation of PTPs family member was demonstrated firstly for PTP1B during EGF signaling and then for LMW-PTP and SHP-2 during PDGF stimulation. The inhibition exerted by ROS on tyrosine-phosphatases helps the propagation of RTK signals mediated by protein tyrosine phosphorylation, generally associated with the proliferative stimulus. Our new data are consistent with a model in which ROS take a role in integrin signaling, and in which synergistic activation of Rac-1 by growth factors and adhesion molecules translates in a critical increase of intracellular oxidants up to a threshold level where inhibition of the tyrosine phosphatase LMW-PTP takes place. In seeking for potential molecular mechanisms for oxidative signaling by integrins, we found that transient oxidation/inactivation of LMW-PTP, a known negative regulator of RTK signaling, occurred during fibroblast adhesion to matrix, with a kinetic which paralleled the generation of ROS. Moreover, overexpression of LMW-PTP in NIH-3T3 fibroblasts delayed cell attachment to the substrate. Finally, constitutively high levels of intracellular ROS, as are observed in cells expressing active Rac, would attenuate anchorage dependence for growth, by substituting for integrin signaling in non adherent cells.  相似文献   

3.
Low molecular weight protein tyrosine phosphatase (LMW-PTP) is an enzyme involved in platelet-derived growth factor (PDGF)-induced mitogenesis and cytoskeleton rearrangement because it is able to bind and dephosphorylate the activated receptor. LMW-PTP presents two cysteines in positions 12 and 17, both belonging to the catalytic pocket; this is a unique feature of LMW-PTP among all protein tyrosine phosphatases. Our previous results demonstrated that in vitro LMW-PTP is oxidized by either H(2)O(2) or nitric oxide with the formation of a disulfide bond between Cys-12 and Cys-17. This oxidation leads to reversible enzyme inactivation because treatment with reductants permits catalytic activity rescue. In the present study we investigated the in vivo inactivation of LMW-PTP by either extracellularly or intracellularly generated H(2)O(2), evaluating its action directly on its natural substrate, PDGF receptor. LMW-PTP is oxidized and inactivated by exogenous oxidative stress and recovers its activity after oxidant removal. LMW-PTP is oxidized also during PDGF signaling, very likely upon PDGF-induced H(2)O(2) production, and recovers its activity within 40 min. Our results strongly suggest that reversibility of in vivo LMW-PTP oxidation is glutathione-dependent. In addition, we propose an intriguing and peculiar role of Cys-17 in the formation of a S-S intramolecular bond, which protects the catalytic Cys-12 from further and irreversible oxidation. On the basis of our results we propose that the presence of an additional cysteine near the catalytic cysteine could confer to LMW-PTP the ability to rapidly recover its activity and finely regulate PDGF receptor activation during both extracellularly and intracellularly generated oxidative stress.  相似文献   

4.
5.
The distinct effects of cytokines on cellular growth and differentiation suggest that specific signaling pathways mediate these diverse biological activities. Fibroblast growth factors (FGFs) are well-established inhibitors of skeletal muscle differentiation and may operate via activation of specific signaling pathways distinct from recently identified mitogen signaling pathways. We examined whether platelet-derived growth factor (PDGF)-activated signaling pathways are sufficient to mediate FGF-dependent repression of myogenesis by introducing the PDGF beta receptor into a mouse skeletal muscle cell line. Addition of PDGF-BB to cells expressing the PDGF beta receptor activated the PDGF beta receptor tyrosine kinase, stimulated mitogen-activated protein (MAP) kinase, and increased the steady-state levels of junB and c-fos mRNAs. Despite the activation of these intracellular signaling molecules, PDGF beta receptor activation elicited no detectable effect on cell proliferation or differentiation. In contrast to PDGF-BB, addition of FGF-2 to myoblasts activated signaling pathways that resulted in DNA synthesis and repression of differentiation. Because of the low number of endogenous FGF receptors expressed, FGF-stimulated signaling events, including tyrosine phosphorylation and activation of MAP kinase, could be detected only in cells expressing higher levels of a transfected FGF receptor cDNA. As the PDGF beta receptor- and FGF receptor-stimulated signaling pathways yield different biological responses in these skeletal muscle cells, we hypothesize that FGF-mediated repression of skeletal muscle differentiation activates signaling pathways distinct from those activated by the PDGF beta receptor. Activation of PDGF beta receptor tyrosine kinase activity, stimulation of MAP kinase, and upregulation of immediate-early gene expression are not sufficient to repress skeletal muscle differentiation.  相似文献   

6.
Low molecular weight protein tyrosine phosphatase (LMW-PTP) was cloned from human lens epithelial B3 cells (HLE B3) and the recombinant enzyme was purified to homogeneity. The pure enzyme reacted positively with anti-LMW-PTP antibody, displayed tyrosine-specific phosphatase activity and was extremely sensitive to H(2)O(2). The inactivated LMW-PTP could be regenerated by thioltransferase (TTase)/GSH system as demonstrated by both activity assay and by mass spectrometry (MS). The MS study also showed that an intramolecular disulfide bond was formed between C13 and C18 at the active site, and was reduced by the TTase/GSH system. The putative role of LMW-PTP in regulating platelet derived growth factor (PDGF)-stimulated cell signaling was demonstrated in wild type mouse lens epithelial cells (LEC) in which LMW-PTP was transiently inactivated, corroborated with the transient phosphorylation of Tyr857 at the active site of PDGF receptor and the downstream signaling components of Akt and ERK1/2. In contrast, LMW-PTP activity in PDGF-stimulated LEC from TTase(-/-) mice was progressively lost, concomitant with the high basal and sustained high phosphorylation levels at Tyr857, Akt and ERK1/2. We conclude that the reversible LMW-PTP activity regulated by ROS-mediated oxidation and TTase/GSH reduction is the likely mechanism of redox signaling in lens epithelial cells.  相似文献   

7.
Rigacci S  Guidotti V  Parri M  Berti A 《Biochemistry》2008,47(6):1482-1489
STATs are involved in a variety of cellular processes, including cell proliferation and differentiation. They are activated through tyrosine phosphorylation, which promotes their dimerization via SH2 domains. We have demonstrated previously that in DAMI megakaryoblastic cells LMW-PTP dephosphorylates STAT5, interacting with an essential sequence of nine amino acids in its C-terminal region. Here we characterize STAT5 tyrosine phosphorylation and its interaction with LMW-PTP during early phorbol-12-myristate-13-acetate-induced megakaryocyte differentiation; these processes show clear dependence on STAT5 threonine phosphorylation. Since protein kinase C inhibition prevents phorbol-12-myristate-13-acetate-induced STAT5 threonine phosphorylation and association with LMW-PTP, it follows that these processes depend on protein kinase C activity. By using a Thr757/Val mutant of STAT5 we also demonstrate that the 757 serine/threonine conserved residue, which is in the STAT5A region involved in the interaction with LMW-PTP, is essential for such an association, though its phosphorylation is not necessary.  相似文献   

8.
Intracellular signaling by protein tyrosine phosphorylation is generally understood to govern many aspects of cellular behavior. The biological consequences of this signaling pathway are important because the levels of protein tyrosine phosphorylation are frequently elevated in cancer cells. In the classic paradigm, tyrosine kinases promote tumor cell growth, survival, and invasiveness, whereas tyrosine phosphatases negatively regulate these same behaviors. Here, we identify one particular tyrosine phosphatase, low molecular weight tyrosine phosphatase (LMW-PTP), which is frequently overexpressed in transformed cells. We also show that overexpression of LMW-PTP is sufficient to confer transformation upon non-transformed epithelial cells. Notably, we show that the EphA2 receptor tyrosine kinase is a prominent substrate for LMW-PTP and that the oncogenic activities of LMW-PTP result from altered EphA2 expression and function. These results suggest a role for LMW-PTP in transformation progression and link its oncogenic potential to EphA2.  相似文献   

9.
Glutaredoxin (GRX) is a glutathione-disulfide oxidoreductase involved in various cellular functions, including the redox-dependent regulation of certain integral proteins. Here we demonstrated that overexpression of GRX suppressed the proliferation of myocardiac H9c2 cells treated with platelet-derived growth factor (PDGF)-BB. After stimulation with PDGF-BB, the phosphorylation of PDGF receptor (PDGFR) beta was suppressed in GRX gene-transfected cells, compared with controls. Conversely, the phosphorylation was enhanced by depletion of GRX by RNA interference. In this study we focused on the role of low molecular weight protein-tyrosine phosphatase (LMW-PTP) in the dephosphorylation of PDGFRbeta via a redox-dependent mechanism. We found that depletion of LMW-PTP using RNA interference enhanced the PDGF-BB-induced phosphorylation of PDGFRbeta, indicating that LMW-PTP works for PDGFRbeta. The enhancement of the phosphorylation of PDGFRbeta was well correlated with inactivation of LMW-PTP by cellular peroxide generated in the cells stimulated with PDGF-BB. In vitro, with hydrogen peroxide treatment, LMW-PTP showed decreased activity with the concomitant formation of dithiothreitol-reducible oligomers. GRX protected LMW-PTP from hydrogen peroxide-induced oxidation and inactivation in concert with glutathione, NADPH, and glutathione disulfide reductase. This strongly suggests that retention of activity of LMW-PTP by enhanced GRX expression suppresses the proliferation of cells treated with PDGF-BB via enhanced dephosphorylation of PDGFRbeta. Thus, GRX plays an important role in PDGF-BB-dependent cell proliferation by regulating the redox state of LMW-PTP.  相似文献   

10.
In previous work, we showed that epidermal growth factor receptor (EGFR) activation causes mucin expression in airway epithelium in vivo and in human NCI-H292 airway epithelial cells and normal human bronchial epithelial (NHBE) cells in vitro. Here we show that the cell surface adhesion molecule, E-cadherin, promotes EGFR-mediated mucin production in NCI-H292 cells in a cell density- and cell cycle-dependent fashion. The addition of the EGFR ligand, transforming growth factor (TGF)-alpha, increased MUC5AC protein expression markedly in dense, but not in sparse, cultures. MUC5AC-positive cells in dense cultures contained 2 N DNA content and did not incorporate bromodeoxyuridine, suggesting that they develop via cell differentiation and that a surface molecule involved in cell-cell contact is important for EGFR-mediated mucin production. In support of this hypothesis, in dense cultures of NCI-H292 cells and in NHBE cells at air-liquid interface, blockade of E-cadherin-mediated cell-cell contacts decreased EGFR-dependent mucin production. E-cadherin blockade also increased EGFR-dependent cell proliferation and TGF-alpha-induced EGFR tyrosine phosphorylation in dense cultures of NCI-H292 cells, suggesting that E-cadherin promotes EGFR-dependent mucin production and inhibits EGFR-dependent cell proliferation via modulation of EGFR phosphotyrosine levels. Furthermore, in dense cultures, E-cadherin blockade decreased the rate of EGFR tyrosine dephosphorylation, implicating an E-cadherin-dependent protein tyrosine phosphatase in EGFR dephosphorylation. Thus E-cadherin promotes EGFR-mediated cell differentiation and MUC5AC production, and our results suggest that this occurs via a pathway involving protein tyrosine phosphatase-dependent EGFR dephosphorylation.  相似文献   

11.
EphrinA1 repulsive response is regulated by an EphA2 tyrosine phosphatase   总被引:3,自引:0,他引:3  
Ephrin kinases and their ephrin ligands transduce repulsion of cells in axon guidance, migration, invasiveness, and tumor growth, exerting a negative signaling on cell proliferation and adhesion. A key role of their kinase activity has been confirmed by mutant kinase inactive receptors that shift the cellular response from repulsion to adhesion. Our present study aimed to investigate the role of low molecular weight protein-tyrosine phosphatase (LMW-PTP) in ephrinA1/EphA2 signaling. LMW-PTP, by means of dephosphorylation of EphA2 kinase, negatively regulates the ephrinA1-mediated repulsive response, cell proliferation, cell adhesion and spreading, and the formation of retraction fibers, thereby confirming the relevance of the net level of tyrosine phosphorylation of Eph receptors. LMW-PTP interferes with ephrin-mediated mitogen-activated protein kinase signaling likely through inhibition of p120RasGAP binding to the activated EphA2 kinase, thereby confirming the key role of mitogen-activated protein kinase inhibition by ephrinA1 repulsive signaling. We conclude that LMW-PTP acts as a terminator of EphA2 signaling causing an efficient negative feedback loop on the biological response mediated by ephrinA1 and pointing on tyrosine phosphorylation as the main event orchestrating the repulsive response.  相似文献   

12.
The low molecular weight phosphotyrosine protein phosphatase (LMW-PTP) is phosphorylated by Src and Src-related kinases both in vitro and in vivo; in Jurkat cells, and in NIH-3T3 cells, it becomes tyrosine-phosphorylated upon stimulation by PDGF. In this study we show that pp60Src phosphorylates in vitro the enzyme at two tyrosine residues, Tyr131 and Tyr132, previously indicated as the main phosphorylation sites of the enzyme, whereas phosphorylation by the PDGF-R kinase is much less effective and not specific. The effects of LMW-PTP phosphorylation at each tyrosine residue were investigated by using Tyr131 and Tyr132 mutants. We found that the phosphorylation at either residue has differing effects on the enzyme behaviour: Tyr131 phosphorylation is followed by a strong (about 25-fold) increase of the enzyme specific activity, whereas phosphorylation at Tyr132 leads to Grb2 recruitment. These differing effects are discussed on the light of the enzyme structure.  相似文献   

13.
14.
In search for possible intracellular mediators of the mitogenic signal induced by platelet-derived growth factor (PDGF), we have investigated tyrosine-specific phosphorylation stimulated by PDGF in intact human fibroblasts. Cells were metabolically labeled, either with [32P] orthophosphoric acid or with [35S]methionine, and thereafter treated with PDGF for various times. Lysates from the cell cultures were then immunoprecipitated with an antiserum specifically recognizing phosphotyrosine. Analysis of the precipitated radioactivity by sodium dodecyl sulfate-gel electrophoresis and autoradiography or fluorography showed the appearance of a 185-kDa protein in cells stimulated with PDGF; maximum yield was at about 5 min after the addition of PDGF. This component was found to have several characteristics in common with the PDGF receptor, including similar Mr, binding to immobilized wheat germ agglutinin, and incorporation of phosphate on tyrosine residues after exposure to PDGF. We conclude that the 185-kDa component probably represents the PDGF receptor proper. Phosphoamino acid analysis of the 185-kDa protein/PDGF receptor, precipitated with the antiphosphotyrosine immune serum, revealed that it, in addition to phosphotyrosine, also contained phosphoserine. PDGF also consistently stimulated the phosphorylation of components of Mr values of 300,000 to 200,000, 115,000, 72,000, 54,000, 45,000, and 35,000. Some of these components may be involved in the intracellular transmission of the PDGF-induced mitogenic signal.  相似文献   

15.
Aggregation of pluripotent P19 embryonal carcinoma (EC) cells in the presence of DMSO induces differentiation to various mesodermal cell types, including spontaneously contracting muscle. We have established clonal cell lines from these cultures and characterized one (MES-1) in particular for its response to growth factors. In contrast to the undifferentiated stem cells, but as a number of myoblast and muscle cell lines, MES-1 cells respond to both carbachol and bradykinin by the rapid release of Ca2+ from intracellular stores. In addition, MES-1 express receptors for and respond mitogenically to epidermal growth factor (EGF) and platelet-derived growth factor (PDGF). Isolated membranes from these cells retain the capacity to bind both ligands; addition of EGF to membranes induces endogenous phosphorylation of several proteins, including the EGF receptor itself and a 38 kD protein, while addition of PDGF specifically induces phosphorylation of the PDGF receptor. By contrast, other derivatives of P19, isolated from retinoic acid (RA)-treated aggregates and resembling neuroectodermal or endodermal cell types respond only to EGF; PDGF neither binds nor induces phosphorylation and a mitogenic response in these cells. During differentiation from EC cells therefore MES-1 cells developed a combination of growth factor receptor characteristics typical of somatic mesodermal cells and indicate that such receptors on EC-derived mesodermal cells are also functional.  相似文献   

16.
17.
The family of fibroblast growth factor receptors (FGFRs) is encoded by four distinct genes. FGFR1 and FGFR4 are both expressed during myogenesis, but whereas the function of FGFR1 in myoblast proliferation has been documented, the role of FGFR4 remains unknown. Here, we report on a new splice form of FGFR4 cloned from primary cultures of mouse satellite cells. This form, named FGFR4(-16), lacks the entire exon 16, resulting in a deletion within the FGFR kinase domain. Expression of FGFR4(-16) coincided with that of wild-type FGFR4 in all FGFR4-expressing tissues examined. Moreover, expression of both FGFR4 forms correlated with the onset of myogenic differentiation, as determined in mouse C2C12 cells and in the inducible myogenic system of 10T(1/2)-MyoD-ER cell line. Both endogenous and overexpressed forms of FGFR4 exhibited N-glycosylation. In contrast to FGFR1, induced homodimerization of FGFR4 proteins did not result in receptor tyrosine phosphorylation. Surprisingly, coexpression of FGFR4 forms and a chimeric FGFR1 protein resulted in FGFR4 tyrosine phosphorylation, raising the possibility that FGFR4 phosphorylation might be enabled by a heterologous tyrosine kinase activity. Collectively, the present study reveals novel characteristics of mouse FGFR4 gene products and delineates their expression pattern during myogenesis. Our findings suggest that FGFR4 functions in a distinctly different manner than the prototype FGFR during myogenic differentiation.  相似文献   

18.
Protein tyrosine phosphorylation, mediated by the balanced action of tyrosine kinases and phosphatases, contributes to the regulation of the growth, migration, and invasion of normal and malignant cells. Among tyrosine phosphatases, low molecular weight protein tyrosine phosphatases (LMW-PTP) have been recognized as a possible "positive factor" in tumour onset and progression. The aim of this work was to assess whether LMW-PTP are differentially expressed in normal and malignant tissues. Using real-time PCR analysis we evaluated the expression levels of total LMW-PTP mRNA in surgical samples of breast, colon and lung cancers (63, 60, and 58, respectively), and in their paired adjacent not affected tissues. Moreover, the same analysis was carried out on a group of neuroblastomas (25 cases). Significant correlations between LMW-PTP overexpression and the most common clinical-pathological features of cancers exist. In colon cancer and neuroblastoma increased total LMW-PTP mRNA expression correlates with unfavourable outcome. While LMW-PTP mRNA expression increases in tumour samples, the relative contribution of the different isoforms does not change. Our findings indicate that LMW-PTP can be considered an oncogene as it is overexpressed in different tumour types and suggests that LMW-PTP enhanced expression is generally prognostic for a more aggressive cancer.  相似文献   

19.
Platelet-derived growth factor (PDGF) stimulation of NIH 3T3 cells leads to the rapid tyrosine phosphorylation of the GTPase-activating protein (GAP) and an associated 64- to 62-kDa tyrosine-phosphorylated protein (p64/62). To assess the functions of these proteins, we evaluated their phosphorylation state in normal NIH 3T3 cells as well as in cells transformed by oncogenically activated v-H-ras or overexpression of c-H-ras genes. No significant GAP tyrosine phosphorylation was observed in unstimulated cultures, while PDGF-BB induced rapid tyrosine phosphorylation of GAP in all cell lines analyzed. In NIH 3T3 cells, we found that PDGF stimulation led to the recovery of between 37 and 52% of GAP molecules by immunoprecipitation with monoclonal antiphosphotyrosine antibodies. Furthermore, PDGF exposure led to a rapid and sustained increase in the levels of p21ras bound to GTP, with kinetics similar to those observed for GAP tyrosine phosphorylation. The PDGF-induced increases in GTP-bound p21ras in NIH 3T3 cells were comparable to the steady-state level observed in serum-starved c-H-ras-overexpressing transformants, conditions in which these cells maintained high rates of DNA synthesis. These results imply that the level of p21ras activation following PDGF stimulation of NIH 3T3 cells is sufficient to support mitogenic stimulation. Addition of PDGF to c-H-ras-overexpressing cells also resulted in a rapid and sustained increase in GTP-bound p21ras. In these cells GAP, but not p64/62, showed increased tyrosine phosphorylation, with kinetics similar to those observed for increased GTP-bound p21ras. All of these findings support a role for GAP tyrosine phosphorylation in p21ras activation and mitogenic signaling.  相似文献   

20.
Low molecular weight-PTP has been reported as a redox-sensitive protein during both platelet-derived growth factor and integrin signalling. In response to oxidation the phosphatase undergoes a reversible inactivation, which in turn leads to the increase in tyrosine phosphorylation of its substrates and the properly executed anchorage-dependent proliferation program. Here, we report that an exogenous oxidative stress enhances LMW-PTP tyrosine phosphorylation, through oxidation/inactivation of the enzyme, thus preventing its auto-dephosphorylation activity. In particular, we observed a selective hyper-phosphorylation of Tyr132, that acts as a docking site for the adaptor protein Grb2. The redox-dependent enhancement of Grb2 recruitment to LMW-PTP ultimately leads to an improvement of ERK activation, likely triggering a prosurvival signal against the oxidant environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号