首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enterohemorrhagic Escherichia coli (EHEC) strains of serogroup O26 cause hemolytic-uremic syndrome (HUS) whereas atypical enteropathogenic E. coli (aEPEC) O26 typically cause uncomplicated diarrhea but have been also isolated from HUS patients. To gain insight into the virulence of aEPEC O26, we compared the presence of O island (OI) 122, which is associated with enhanced virulence in EHEC strains, among aEPEC O26 and EHEC O26 clinical isolates. We also tested these strains for the high pathogenicity island (HPI) which is a fitness island. All 20 aEPEC O26 and 20 EHEC O26 investigated contained virulence genes located within OI-122 (efa1/lifA, nleB, nleE, ent). In both aEPEC O26 and EHEC O26, OI-122 was linked to the locus for enterocyte effacement, forming a mosaic island which was integrated in pheU. Moreover, strains of these two pathotypes shared a conserved HPI. These data support a close relatedness between aEPEC O26 and EHEC O26 and have evolutionary implications. The presence of OI-122 in aEPEC O26 might contribute to their pathogenic potential.  相似文献   

2.
Persistence of Shiga toxin-producing Escherichia coli O26 in cow slurry   总被引:1,自引:0,他引:1  
AIMS: The main objective of this study was to evaluate the growth and survival of Shiga toxin-producing Escherichia coli (STEC) O26 in cow slurry; this serogroup is regarded as an important cause of STEC-associated diseases. METHODS AND RESULTS: Four STEC were examined by polymerase chain reaction (PCR) to determine whether they harbour key virulence determinants and also by pulsed-field gel electrophoresis (PFGE) to obtain overview fingerprints of their genomes. They were transformed with the pGFPuv plasmid and were separately inoculated at a level of 10(6) CFU ml(-1) in 15 l of cow slurry. All STEC O26 strains could be detected for at least 3 months in cow slurry without any genetic changes. The moisture content of the slurry decreased over time to reach a final value of 75% while the pH increased from 8.5 to 9.5 units during the last 50 days. CONCLUSION: STEC O26 strains were able to survive in cow slurry for an extended period. SIGNIFICANCE AND IMPACT OF THE STUDY: Long-term storage of waste slurry should be required to reduce the pathogen load and to limit environmental contamination by STEC O26.  相似文献   

3.
We used bovine intestinal organ culture to study infection by enterohemorrhagic Escherichia coli serogroups O157, O26, and O111. We show colonization and attaching and effacing lesion formation on explants derived from the ileum, colon, and rectum. Intimin and Tir were detected at the sites of adherent bacteria; Tir was essential for colonization.  相似文献   

4.
5.
The AB(5) toxin Shiga toxin 2 (Stx2) has been implicated as a major virulence factor of Escherichia coli O157:H7 and other Shiga toxin-producing E. coli strains in the progression of intestinal disease to more severe systemic complications. Here, we demonstrate that supernatant from a normal E. coli isolate, FI-29, neutralizes the effect of Stx2, but not the related Stx1, on Vero cells. Biochemical characterization of the neutralizing activity identified the lipopolysaccharide (LPS) of FI-29, a serogroup O107/O117 strain, as the toxin-neutralizing component. LPSs from FI-29 as well as from type strains E. coli O107 and E. coli O117 were able bind Stx2 but not Stx1, indicating that the mechanism of toxin neutralization may involve inhibition of the interaction between Stx2 and the Gb(3) receptor on Vero cells.  相似文献   

6.
Aims:  To evaluate the behaviour of Shiga toxin-producing Escherichia coli (STEC) O26 strains inoculated in manure-amended soils under in vitro conditions.
Methods and Results:  Four green fluorescent protein (GFP)-labelled STEC O26 strains were inoculated in duplicate (at 106 CFU g−1) in three different manure-amended soil types, including two loam soils (A and B) and one clay loam soil (C), and two incubation temperatures (4 and 20°C) were tested. STEC counts and soil physical parameters were periodically monitored. STEC O26 cells were able to persist during extended periods in soil even in the presence of low moisture levels, i.e. less than 0·08 g H2O g−1 dry soil. At 4 and 20°C, STEC could be detected in soil A for 288 and 196 days, respectively, and in soils B and C for at least 365 days postinoculation at both temperatures. The ambient temperature (i.e. 20°C) was significantly associated with the highest STEC count decline in all soils tested.
Conclusions:  The temperature and soil properties appear to be contributory factors affecting the long-term survival of STEC O26 in manure-amended soils.
Significance and Impact of the Study:  This study provides useful information regarding the ecology of STEC O26 in manure-amended soils and may have implications for land and waste management.  相似文献   

7.
8.
Isogenic strains of Escherichia coli O157:H7, missing either stx(2) or the entire Stx2-encoding phage, were compared with the parent strain for their abilities to colonize sheep. The absence of the phage or of the Shiga toxin did not significantly impact the magnitude or duration of shedding of E. coli O157:H7.  相似文献   

9.
Cattle are an important reservoir of Shiga toxin-producing Escherichia coli (STEC) O26, O111, and O157. The fate of these pathogens in bovine feces at 5, 15, and 25°C was examined. The feces of a cow naturally infected with STEC O26:H11 and two STEC-free cows were studied. STEC O26, O111, and O157 were inoculated into bovine feces at 101, 103, and 105 CFU/g. All three pathogens survived at 5 and 25°C for 1 to 4 weeks and at 15°C for 1 to 8 weeks when inoculated at the low concentration. On samples inoculated with the middle and high concentrations, O26, O111, and O157 survived at 25°C for 3 to 12 weeks, at 15°C for 1 to 18 weeks, and at 5°C for 2 to 14 weeks, respectively. Therefore, these pathogens can survive in feces for a long time, especially at 15°C. The surprising long-term survival of STEC O26, O111, and O157 in bovine feces shows that such feces are a potential vehicle for transmitting not only O157 but also O26 and O111 to cattle, food, and the environment. Appropriate handling of bovine feces is emphasized.  相似文献   

10.
Escherichia coli serogroup O26 consists of enterohemorrhagic E. coli (EHEC) and atypical enteropathogenic E. coli (aEPEC). The former produces Shiga toxins (Stx), major determinants of EHEC pathogenicity, encoded by bacteriophages; the latter is Stx negative. We have isolated EHEC O26 from patient stools early in illness and aEPEC O26 from stools later in illness, and vice versa. Intrapatient EHEC and aEPEC isolates had quite similar pulsed-field gel electrophoresis (PFGE) patterns, suggesting that they might have arisen by conversion between the EHEC and aEPEC pathotypes during infection. To test this hypothesis, we asked whether EHEC O26 can lose stx genes and whether aEPEC O26 can be lysogenized with Stx-encoding phages from EHEC O26 in vitro. The stx2 loss associated with the loss of Stx2-encoding phages occurred in 10% to 14% of colonies tested. Conversely, Stx2- and, to a lesser extent, Stx1-encoding bacteriophages from EHEC O26 lysogenized aEPEC O26 isolates, converting them to EHEC strains. In the lysogens and EHEC O26 donors, Stx2-converting bacteriophages integrated in yecE or wrbA. The loss and gain of Stx-converting bacteriophages diversifies PFGE patterns; this parallels findings of similar but not identical PFGE patterns in the intrapatient EHEC and aEPEC O26 isolates. EHEC O26 and aEPEC O26 thus exist as a dynamic system whose members undergo ephemeral interconversions via loss and gain of Stx-encoding phages to yield different pathotypes. The suggested occurrence of this process in the human intestine has diagnostic, clinical, epidemiological, and evolutionary implications.  相似文献   

11.
12.
Gastrointestinal infection with Shiga toxins producing enterohemorrhagic Escherichia coli causes the spectrum of gastrointestinal and systemic complications, including hemorrhagic colitis and hemolytic uremic syndrome, which is fatal in ~10% of patients. However, the molecular mechanisms of Stx endocytosis by enterocytes and the toxins cross the intestinal epithelium are largely uncharacterized. We have studied Shiga toxin 1 entry into enterohemorrhagic E. coli-infected intestinal epithelial cells and found that bacteria stimulate Shiga toxin 1 macropinocytosis through actin remodeling. This enterohemorrhagic E. coli-caused macropinocytosis occurs through a nonmuscle myosin II and cell division control 42 (Cdc42)-dependent mechanism. Macropinocytosis of Shiga toxin 1 is followed by its transcytosis to the basolateral environment, a step that is necessary for its systemic spread. Inhibition of Shiga toxin 1 macropinocytosis significantly decreases toxin uptake by intestinal epithelial cells and in this way provides an attractive, antibiotic-independent strategy for prevention of the harmful consequences of enterohemorrhagic E. coli infection.  相似文献   

13.
Cattle are a major reservoir for Shiga toxin-producing Escherichia coli O157 (STEC O157) and harbor multiple genetic subtypes that do not all associate with human disease. STEC O157 evolved from an E. coli O55:H7 progenitor; however, a lack of genome sequence has hindered investigations on the divergence of human- and/or cattle-associated subtypes. Our goals were to 1) identify nucleotide polymorphisms for STEC O157 genetic subtype detection, 2) determine the phylogeny of STEC O157 genetic subtypes using polymorphism-derived genotypes and a phage insertion typing system, and 3) compare polymorphism-derived genotypes identified in this study with pulsed field gel electrophoresis (PFGE), the current gold standard for evaluating STEC O157 diversity. Using 762 nucleotide polymorphisms that were originally identified through whole-genome sequencing of 189 STEC O157 human- and cattle-isolated strains, we genotyped a collection of 426 STEC O157 strains. Concatenated polymorphism alleles defined 175 genotypes that were tagged by a minimal set of 138 polymorphisms. Eight major lineages of STEC O157 were identified, of which cattle are a reservoir for seven. Two lineages regularly harbored by cattle accounted for the majority of human disease in this study, whereas another was rarely represented in humans and may have evolved toward reduced human virulence. Notably, cattle are not a known reservoir for E. coli O55:H7 or STEC O157:H(-) (the first lineage to diverge within the STEC O157 serogroup), which both cause human disease. This result calls into question how cattle may have originally acquired STEC O157. The polymorphism-derived genotypes identified in this study did not surpass PFGE diversity assessed by BlnI and XbaI digestions in a subset of 93 strains. However, our results show that they are highly effective in assessing the evolutionary relatedness of epidemiologically unrelated STEC O157 genetic subtypes, including those associated with the cattle reservoir and human disease.  相似文献   

14.
In this study, we determined the nucleotide sequence of the p gene contained within a 5-kb EcoRI restriction fragment cloned from Shiga-like toxin II (SLT-II)-converting phage 933W of Escherichia coli O157:H7 strain EDL933. The p gene was 702 bp long and had 95.3% sequence similarity to the p gene of phage lambda. Multiple hybridization patterns were obtained when genomic DNA fragments were hybridized with both p and slt-I, slt-II, or slt-IIc sequences. All O157 isolates also possessed an analog of lambda gene p which was not linked with either slt-I or slt-II. Restriction fragment length polymorphism comparisons of clinical O157 isolates and derivates undergoing genotype turnover during infection were made, and loss of large DNA fragments that hybridized with slt-II and p sequences was observed. To further analyze the DNA region containing the p and slt genes, we amplified fragments by using a PCR with one primer complementary to p and the other complementary to either the slt-I or the slt-II gene. PCR analysis with enterohemorrhagic E. coli O157 and non-O157 strains yielded PCR products that varied in size between 5.1 and 7.8 kb. These results suggest that even within O157 isolates, the genomes of SLT-converting phages differ. The methods described here may assist in further investigation of SLT-encoding phages and their role in the epidemiology of infection with enterohemorrhagic E. coli.  相似文献   

15.
D'Souza JM  Wang L  Reeves P 《Gene》2002,297(1-2):123-127
Escherichia coli associated with outbreaks of gastroenteritis and hemolytic uremic syndrome include clones with O antigens O157 and O111. However, O26 has emerged as an O antigen present in pathogenic strains, particularly those implicated in cases of infantile gastroenteritis worldwide. The O26 O antigen gene cluster was sequenced. It was found to contain the genes expected for biosynthesis of nucleotide sugars L-rhamnose, N-acetyl-L-fucosamine and N-acetyl-glucosamine, as well genes for O unit flippase, O antigen polymerase and potential transferase genes. By polymerase chain reaction testing against representative strains for the 166 Escherichia coli O serogroups and some randomly selected Gram-negative bacteria, we identified three O antigen genes that are highly specific to O26. This work provides the basis for a sensitive test for the rapid detection of pathogenic clones with the O26 antigen, which has implications for public health, especially in the control of food-borne outbreaks.  相似文献   

16.
We found two genes for tRNA(Arg) in the region upstream of genes for Shiga-like toxin type II (SLT-II) in Escherichia coli O157:H7. The two encoded forms of tRNA(Arg) recognize rare codons in E. coli K12 but these rare codons occur in the toxin genes at high frequency.  相似文献   

17.
There is considerable diversity among Shiga toxin (Stx)-producing Escherichia coli (STEC) bacteria, and only a subset of these organisms are thought to be human pathogens. The characteristics that distinguish STEC bacteria that give rise to human disease are not well understood. Stxs, the principal virulence determinants of STEC, are thought to account for hemolytic-uremic syndrome (HUS), a severe clinical consequence of STEC infection. Stxs are typically bacteriophage encoded, and their production has been shown to be enhanced by prophage-inducing agents such as mitomycin C in a limited number of clinical STEC isolates. Low iron concentrations also enhance Stx production by some clinical isolates; however, little is known regarding whether and to what extent these stimuli regulate Stx production by STEC associated with cattle, the principal environmental reservoir of STEC. In this study, we investigated whether toxin production differed between HUS- and bovine-associated STEC strains. Basal production of Stx by HUS-associated STEC exceeded that of bovine-associated STEC. In addition, following mitomycin C treatment, Stx2 production by HUS-associated STEC was significantly greater than that by bovine-associated STEC. Unexpectedly, mitomycin C treatment had a minimal effect on Stx1 production by both HUS- and bovine-associated STEC. However, Stx1 production was induced by growth in low-iron medium, and induction was more marked for HUS-associated STEC than for bovine-associated STEC. These observations reveal that disease-associated and bovine-associated STEC bacteria differ in their basal and inducible Stx production characteristics.  相似文献   

18.
19.
Shiga toxin producing Escherichia coli (STEC) O26:H11 is an enteric pathogen capable of causing severe hemorrhagic colitis that can lead to hemolytic uremic syndrome. This organism is able to colonize cattle and human intestinal epithelial cells by secreting effectors via a type III secretion system (T3SS). In this investigation, we examined the role of 2 effectors, Tir and NleB, and the structural translocator component EspA in the adherence of STEC to epithelial cells and in the colonization of cattle. Isogenic deletion mutants were constructed and using microscopy and flow cytometry compared to the wild-type strain in their ability to adhere to HEp-2 cells. A competitive assay was also used to measure the capacity of the mutants to colonize the intestinal tract of cattle, where both the mutant and the parental strains were introduced orally at the same time. Genomic DNA was extracted from enriched fecal samples collected at various time points, and quantitative real-time PCR was used to quantify bacteria. A significant reduction in fecal shedding was observed, and adherence to HEp-2 cells was decreased for the tir and espA mutants. Deletion of the nleB gene did not have a significant effect on the adherence of HEp-2 cells; however, in an in vivo model, it strongly reduced the ability of STEC O26:H11 to colonize the bovine intestinal tract.  相似文献   

20.
By subcutaneous inoculation of 10(8) CFU of enterohemorrhagic E. coli O157:H7, specific-pathogen-free mice revealed most of the symptoms and histological changes observed in patients. The histological changes in intestine were mainly seen in the distal parts of small intestine and the cecum. Vacuolation of villi in the cecum was also observed. The histological changes in the kidneys of the infected mice were featured as the swollen epithelial cells of glomeruli and the marked thickening of glomerular capillaries with barely visible lumens. Unexpected findings in the bronchiole were characterized by sloughing of the epithelial cells of bronchiolar wall, leading to partial or complete obstruction of the lumens. Histological changes in the spleen, liver and lymphnodes were also observed. The bacteria were recovered from the feces, contents of small intestine, and samples taken from kidney, liver, heart, spleen, different parts of small intestine, cecum, and colon. By using peroxidase-antiperoxidase (PAP) assay with polyclonal antibodies against O antigen of E. coli O157:H7, it was observed that the samples taken from the brain, kidney, ileum, cecum, spleen, and liver gave positive reactions. Feces and contents of small intestine obtained from all of the infected animals were positive by occult blood test. These results show that the experimental infection of E. coli O157:H7 in this model is systemic in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号