首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differentiation of normal glioblasts was induced by glia maturation factor (GMF), and the structural change in the oligosaccharide chains of the plasmalemmal glycoproteins was investigated. After the glycopeptides obtained by trypsin treatment of the intact cells had been digested with pronase, the resulting glycopeptides were separated into 4 fractions by gel filtration. The first 2 fractions were found to contain mainly N-glycosidically linked glycopeptides, and the last 2, O-linked oligosaccharides. There were a variety of N-linked oligosaccharides whose apparent molecular weights were greater than that of isomaltoheptaose. As compared to those, O-linked oligosaccharides were fewer in type and lower in molecular weight. The N-linked oligosaccharides corresponding to isomaltohepta- decaose and larger saccharide chains augmented in differentiated glioblasts, whereas the N-linked oligosaccharides smaller than isomaltoheptade- caose decreased. The turnover rate of the high molecular weight oligosaccharides was faster than that of other membrane oligosaccharides, and was accelerated by GMF treatment. The content of an O-linked oligosaccharide fraction increased after GMF treatment.  相似文献   

2.
The lipid-free protein residue of rat brain tissue was treated with papain to solubilize the heteropolysaccharide chains of the tissue glycoproteins. The glycopeptides were separated into non-dialyzable and dialyzable glycopeptide preparations. Each preparation was then sorted out into groups of glycopeptides by means of electrophoresis and gel filtration. The quantitatively predominant glycopeptides were the alkali-stable glycopeptides (Group A) which accounted for 64% of the glycopeptide carbohydrate recovered from rat brain. Most of the group A glycopeptides appeared in the non-dialyzable preparation. The molecular weight of the glycopeptides of Group A ranged from approximately 5200–3700. The largest glycopeptide molecule in this mixture possessed the highest electrophoretic mobility and contained one fucose, four N-acetylneuraminic acid (NANA), six N-acetylglucosamine, four galactose, and three mannose residues per molecule. The spectrum of glycopeptides isolated in this group showed a progressive decrease in NANA rsidues, NANA and galactose residues, and NANA, galactose, and N-acetylglucosamine residues which could be correlated with a progressive decline in molecular weight and electrophoretic mobility. Some of the glycopeptides in each fraction recovered from this group of glycopeptides contained sulfate ester groups.A second group of glycopeptides (Group C glycopeptides) accounted for 25% of the total glycoprotein carbohydrate recovered from rat brain. These were recoverd from the dialyzable glycopeptide preparation, and resolved into three fractions by column electrophoresis. These glycopeptides do not contain sulfate, are composed predominately of mannose and N-acetylglucosamine, and possess a molecular weight of approximately 3000.Several minor groups of glycopeptides were detected. Alkali-labile glycopeptides (Group B) appeared in the non-dialyzable glycopeptide preparation. The dialyzable glycopeptide preparation contained glycopeptides (Group E) which contained N-acetylgalactosamine and glucose. These had a molecular weight of approximately 2000. Group D glycopeptides recovered from the dialyzable glycopeptide preparation contained variable amounts of NANA, mannose, galactose, N-acetylglucosamine, and sulfate. These possessed a molecular weight of approximately 2900.  相似文献   

3.
alpha-L-Fucosidase was purified from human liver to apparent homogeneity and subjected to exhaustive digestion with Pronase. The resulting glycopeptides were isolated by gel filtration on Sephadex G-50 and further fractionated by Bio-Gel P-4 chromatography. Five glycopeptide fractions were obtained. The structures of the carbohydrate portions of all glycopeptide components were fully characterized by a combination of 500-MHz 1H NMR spectroscopy and carbohydrate composition analysis. Fraction I contained disialyl diantennary glycopeptides of the N-acetyllactosamine type. Fractions II and III contained predominantly mono(sialyl-N-acetyllactosaminyl) diantennary glycopeptides with the NeuAc alpha(2----6)Gal beta(1----4)GlcNAc beta(1----2) branch attached to alpha(1----3)-linked Man in II and to alpha(1----6)-linked Man in III. The N-acetyllactosamine-type glycopeptides in fractions I to III have a small portion (10-15%) of their Asn-linked GlcNAc residues substituted by additional alpha(1----6)-linked Fuc. Also, a minor portion of the NeuAc residues appeared to be attached to Gal in alpha(2----3) rather than alpha(2----6) linkage. Fraction IV contained a mixture of larger-size oligomannoside-type glycopeptides with a variable number (6 to 9) of Man residues. Smaller-size oligomannoside-type glycopeptides were found in fraction V, containing 3 or 5 Man residues; a small portion (10%) of the Man3GlcNAc2Asn component appeared to contain in addition a Fuc residue in alpha(1----6) linkage to the Asn-bound GlcNAc. The overall ratio of oligomannoside-type to N-acetyllactosamine-type carbohydrate structures was found to be 5:4. This article is the first account of the complete characterization of the oligomannoside-type structures in alpha-L-fucosidase; furthermore, the occurrence in alpha-L-fucosidase of mono(sialyl-N-acetyllactosaminyl) structures, Fuc-containing oligosaccharides, and NeuAc alpha(2----3) linked to Gal are reported for the first time.  相似文献   

4.
The endosperm of the seed of Gleditsia triacanthos contains 4.8% of 85% ethanol-soluble, galactomannan-like oligosaccharides having Man:Gal ratios of 1.5–2.6:1 and an average degree of polymerization of 15. They have a narrow distribution of molecular weights and of ratio of components. The oligosaccharides have the gross structure accepted for the galactomannans, namely, a β-(1→4)-linked d-mannopyranosyl backbone having single stubs of α-(1→6)-linked d-galactopyranosyl groups. Some of the lateral chains contain more than one unit, and a minor proportion of the branches are ended by arabinofuranose or fucopyranose residues. Unusual branching points formed by 3,4-linked d-mannosyl, or 3,6-linked d-galactosyl units, or both, were also found. Despite their low molecular weight, the oligosaccharides form aggregates with a structure similar to that of the aggregates of the related galactomannans, but having a lower association energy. This fact, together with the difficulty of combining with more than one partner (due to the short, central chain), results in an increased solubility and in nonviscous solutions. The 13C-n.m.r. spectrum differentiated clearly the five structural units of the oligosaccharides, namely, the reducing and nonreducing end-chains of the d-mannosyl backbone; substituted and nonsubstitued, internal β-(1→4)-linked mannopyranosyl units of the backbone; and the galactosyl nonreducing end-chain of the lateral chains. The C-4 signal of the (1→4)-linked d-mannose and the C-6 signal of the same, but substituted, units showed splitting into three lines. The first has been attributed to sequence-related heterogeneity, whereas the latter is tentatively explained by assuming that this resonance is sensitive to whether the mannosyl units linked to that residue are also branched, or not.  相似文献   

5.
A previous investigation of the structure of the extracellular polysaccharide gum from the nitrogen-fixing Rhizobium strain cb744 (a member of the slow-growing Cowpea group) indicated that there were two β-(1→4)-linked d-glucopyranosyl residues for each α-(1→4)-linked d-mannopyranosyl residue, and that each mannose was substituted at O-6 by a β-d-galactopyranosyl residue having 71% of the galactose present as 4-O-methylgalactose. The present study shows that, although the gum appeared to have a simple tetrasaccharide repeating unit, it is composed of two closely associated components. One is a (1→4)-linked α-d-mannan substituted at each O-6 by a β-d-galactopyranosyl residue (71% 4-O-methylated). The second component is a (1→4)-linked β-d-glucan. The existence of the two polysaccharides was established by separation of the β-d-galactosidase-treated gum on a column of concanavalin A-Sepharose 4B. The d configurations were determined and the anomeric attribution of the linkages confirmed by the use of enzymes. The interaction between the two gum components is discussed.  相似文献   

6.
The alkali-soluble polysaccharides have been surveyed in the seeds of 7 species of the Liliaceae and 2 species of the Iridaceae. All appear to contain galactoglucomannans and/or glucomannans. The structure of the water-soluble galactoglucomannan from the endosperm of Asparagus officinalis has been studied in detail. It contains residues of glucose, mannose and galactose in the ratio 43:49:7. Hydrolysis of the fully methylated polysaccharide released 2,3,4,6-tetra-O-methyl-d-hexoses (mannose and glucose), 2,3,4,6-tetra-O-methyl-d-galactose, 2,3,6-tri-O-methyl-d-mannose, 2,3,6-tri-O-methyl-d-glucose, 2,3-di-O-methyl-d-mannose and 2,3-di-O-methyl-d-glucose in the molar proportions of 1:4.5:50:41:2:1·5. The following oligosaccharides were identified on partial hydrolysis of the galactoglucomannan: mannobiose, mannotriose, mannotetraose, cellobiose, glucopyranosylmannose, mannopyranosylglucose and a trisaccharide composed of two mannosyl residues and one glucosyl residue. The galactoglucomannan consists of a linear chain of β(1 → 4)-Iinked d-mannosyl and d-glucosyl residues, to which are attached single-unit galactosyl side chains. The galactose residues are linked 1 → 6, probably α. The terminal, non-reducing residues of the main chain may be either glucosyl or mannosyl units but the former predominate.  相似文献   

7.
A membrane fraction from Saccharomyces cerevisiae catalyzes the transfer of mannosyl residues from GDP-Man partly via dolicholmonophosphate into a heterogenous glycoprotein fraction. The pattern of radioactive products obtained after mannosylation with GDP-[14C]Man is similar to that obtained with dolicholmonophosphate-[14C]mannose. In each case more than 70% of the radioactivity can be released by β-elimination. Evidence is presented, that only the mannosyl residue directly linked to protein is incorporated via dolicholmonophosphate.  相似文献   

8.
Cultures of Corynebacterium insidiosum produce an extra-cellular phytotoxic glycopeptide that possesses the ability to wilt plant cuttings. Wilt induced by this glycopeptide is directly dependent upon time and upon concentration with measureable wilt occurring in 40 nm solutions in 1 hour. The organism produces 1.3 grams toxin/liter of culture medium. The toxin was purified, and the physical, chemical, and biological properties were measured. The glycopeptide has an empirical formula of C108H226O132N based on 1 atom of nitrogen. The molecular weight as estimated by light scattering and column gel chromatography indicated values approximating 5 × 106. The toxin does not dissociate into small molecular weight subunits when treated with 8 m urea or 30% pyridine.  相似文献   

9.
Golgi-rich membranes from porcine liver have been shown to contain an enzyme that transfers l-fucose in α-(1→6) linkage from GDP-l-fucose to the asparagine-linked 2-acetamido-2-deoxy-d-glucose r residue of a glycopeptide derived from human α1-acid glycoprotein. Product identification was performed by high-resolution, 1H-n.m.r. spectroscopy at 360 MHz and by permethylation analysis. The enzyme has been named GDP-l-fucose: 2-acetamido-2-deoxy-β-d-glucoside (Fuc→Asn-linked GlcNAc) 6-α-l-fucosyltransferase, because the substrate requires a terminal β-(1→2)-linked GlcNAc residue on the α-Man (1→3) arm of the core. Glycopeptides with this residue were shown to be acceptors whether they contained 3 or 5 Man residues. Substrate-specificity studies have shown that diantennary glycopeptides with two terminal β-(1→2)-linked GlcNAc residues and glycopeptides with more than two terminal GlcNAc residues are also excellent acceptors for the fucosyltransferase. An examination of four pairs of glycopeptides differing only by the absence or presence of a bisecting GlcNAc residue in β-(1→4) linkage to the β-linked Man residue of the core showed that the bisecting GlcNAc prevented 6-α-l-fucosyltransferase action. These findings probably explain why the oligosaccharides with a high content of mannose and the hybrid oligosaccharides with a bisecting GlcNAc residue that have been isolated to date do not contain a core l-fucosyl residue.  相似文献   

10.
Lipoarabinomannan (LAM) is composed of a phosphatidylinositol anchor followed by a mannan followed by an arabinan that may be capped with various motifs including oligosaccharides of mannose. A related polymer, lipomannan (LM), is composed of only the phosphatidylinositol and mannan core. Both the structure and the biosynthesis of LAM have been studied extensively. However, fundamental questions about the branching structure of LM and the number of arabinan chains on the mannan backbone in LAM remain. LM and LAM molecules produced by three different glycosyltransferase mutants of Mycobacterium smegmatis were used here to investigate these questions. Using an MSMEG_4241 mutant that lacks the α-(1,6)-mannosyltransferase used late in LM elongation, we showed that the reducing end region of the mannan that is attached to inositol has 5–7 unbranched α-6-linked-mannosyl residues followed by two or three α-6-linked mannosyl residues branched with single α-mannopyranose residues at O-2. After these branched mannosyl residues, the α-6-linked mannan chain is terminated with an α-mannopyranose at O-2 rather than O-6 of the penultimate residue. Analysis of the number of arabinans attached to the mannan core of LM in two other mutants (ΔembC and ΔMSMEG_4247) demonstrated exactly one arabinosyl substitution of the mannan core suggestive of the arabinosylation of a linear LM precursor with ∼10–12 mannosyl residues followed by additional mannosylation of the core and arabinosylation of a single arabinosyl “primer.” Thus, these studies suggest that only a single arabinan chain attached near the middle of the mannan core is present in mature LAM and allow for an updated working model of the biosynthetic pathway of LAM and LM.  相似文献   

11.
Carrageenan was extracted from the red seaweed Sarconema scinaioides of Indian waters and was characterized. The crude carrageenan as well as its alkali modified derivative was composed of 3,6-anhydro galactose, 6-O-methyl galactose as well as galactose moieties in various proportions. Linkage analysis exhibited that these two carrageenan samples consisted of 4-linked 3,6-anhydrogalactose residue sulphated at position 2, and 3-linked galactose residue sulphated at position 4. The physicochemical and rheological data along with molecular weight data, FT-IR, 1D and 2D NMR (1H, 13C, COSY and HSQC) spectrometry suggested that the polysaccharide was composed predominantly of iota- along with a small amount of its precursor nu (ν)-carrageenan, unlike the hybrid carrageenans (iota-, pyruvated- and kappa-carrageenans) from this seaweed reported in the literature. This Indian seaweed species would be a potentially important source of iota-carrageenan.  相似文献   

12.
A water-soluble galactomannan (C-3), [α]D20 +30°, isolated from the rod-like ascocarps of Cordyceps cicadae, was determined to be homogeneous, and the molecular weight was estimated by gel filtration to be 27,000. The polysaccharide is composed of d-mannose and d-galactose in the molar ratio of 4:3. The results of methylation analysis, Smith degradation, stepwise hydrolysis with acid, and 13C-n.m.r. spectroscopy indicated that the polysaccharide is of highly branched structure, and composed of α-d-(1→2)-linked and α-d-(1→6)-linked mannopyranosyl residues in the core; some of these residues are substituted at O-6 and O-2 with terminal β-d-galactofuranosyl and α-d-mannopyranosyl groups, and with short chains of β-d-(1→2)-linked d-galactofuranosyl units.  相似文献   

13.
The Active Site on the Phytotoxin of Corynebacterium sepedonicum   总被引:1,自引:1,他引:0       下载免费PDF全文
Corynebacterium sepedonicum produces an extracellular phytotoxic glycopeptide that possesses a capacity to wilt plant cuttings. It has been previously demonstrated that the integrity of some of the membranes of the host cells is destroyed, suggesting the possibility that a biologically active site is present on the toxin molecule. The toxin was chemically altered in the following ways and then tested for biological activity: (a) the NH2-terminal group on the peptide portion of the toxin was blocked by the dansylation technique; (b) the OH groups on the sugar and amino acid residues as well as the NH groups on the amino acid residues were blocked by exhaustive methylation; (c) the COO groups were converted to their respective methyl esters; (d) the peptide moiety was removed by pronase digestion. Experimental results indicate that the carboxyl groups of the nonpeptide portion of the molecule are responsible for the biological activity of the toxin. Other experiments showed that the toxin does not affect the membranes of animal cells.  相似文献   

14.
The purification and characterization of a pectic polymer, rhamnogalacturonan I, present in the primary cell walls of dicots is described. Rhamnogalacturonan I accounts for approximately 7% of the mass of the walls isolated from suspension-cultured sycamore cells. As purified, rhamnogalacturonan I has a molecular weight of approximately 200,000 and is composed primarily of l-rhamnosyl, d-galacturonosyl, l-arabinosyl, and d-galactosyl residues. The backbone of rhamnogalacturonan I is thought to be composed predominantly of d-galacturonosyl and l-rhamnosyl residues in a ratio of approximately 2:1. About half of the l-rhamnosyl residues are 2-linked and are glycosidically attached to C(4) of a d-galacturonosyl residue. The other half of the l-rhamnosyl residues are 2,4-linked and have a d-galacturonosyl residue glycosidically attached at C(2). Sidechains averaging 6 residues in length are attached to C(4) of the l-rhamnosyl residues. There are many different sidechains, containing variously linked l-arabinosyl, and/or d-galactosyl residues.  相似文献   

15.
The structures of the four wall-released elicitor fractions isolated from the Phytophthora megasperma var. sojae mycelial walls have been examined. The results demonstrate that fraction I is primarily composed of a branched β-1,3-glucan, similar in structure to the extracellular elicitors described previously (Ayers, A., J. Ebel, F. Finelli, N. Burger, and P. Albersheim. 1976. Plant Physiol. 57: 751-759). Fractions II and IV are primarily composed of a highly branched mannan-containing glycoprotein, with fraction IV richer in protein than fraction II. Fraction III contains, attached to protein, a mixture of the two polysaccharide types found in fraction I and in fractions II and IV. The structural data presented here, in concert with the biological data presented in the previous two papers (Ayers et al. 1976. Plant Physiol. 57: 751-759; 760-765), demonstrate that the only compound produced by P. megasperma var. sojae which contains elicitor activity is the glucan. Evidence is presented that the terminal glycosyl residues of the glucan are required for elicitor activity. In addition, it is demonstrated that 90% of the glucan can be removed enzymically without any loss of biological activity. The active residue of the enzymic digestion is a highly branched 3- and 3,6-linked glucan containing about 4% mannosyl residues. The results presented suggest that the mannosyl residues of the glucan, which represent only about 1% of the undegraded glucan, are likely to participate in the active site of this molecule. The role of elicitors and phytoalexins in host-pathogen interactions is discussed. Evidence for the existence of and possible identity of another factor, which determines race specificity of host-pathogen interactions, is summarized.  相似文献   

16.
A part of human serum immunoglobulin A1(IgA1) was aggregated by treatment with neuraminidase. Aggregated IgA1 was separated from non-aggregated IgA1 by gel permeation chromatography. The prepared asialo-hinge glycopeptide (asialo-HGP) from both IgA1 subfractions was treated with β-galactosidase to determine the number of O-linked sugar chains attached on the hinge region. Removal of the galactose residue from asialo-HGP resulted in the HPLC separation of three major peaks. MALDI-TOFMS analysis of the glycopeptides also indicated the presence of three HGP components with three, four and five N-acetylgalactosamine (GalNAc) residues, respectively. Comparison of their relative content among the glycopeptide components showed a higher content of the HGP component with a lower number of GalNAc residues on aggregated IgA1. Thus, asialo-HGP prepared from aggregated IgA1 induced by neuraminidase treatment had an incomplete core structure of O-linked oligosaccharides. Especially, the result suggested that the reduced number of the attached O-linked oligosaccharides on IgA1 take part in phenomena such as self-aggregation of asialo-IgA1.  相似文献   

17.
An acidic xylan from the midrib of Nicotiana tabacum was isolated by alkaline extraction and fractionation on a DEAE-cellulose column. Based on the results of methylation analysis, partial acid hydrolysis and Smith degradation, the acidic xylan was concluded to be composed of a linear backbone of β-(1→4)-linked D-xylopyranosyl residues with approximately every ninth residue carrying a terminal 4-O-methyl-α-D-glucopyranosyluronic acid residue linked as a single side chain by (1→2) linkage.  相似文献   

18.
Golgi-rich membranes from porcine liver have been shown to contain an enzyme that transfers l-fucose in α-(1→6) linkage from GDP-l-fucose to the asparagine-linked 2-acetamido-2-deoxy-d-glucose r residue of a glycopeptide derived from human α1-acid glycoprotein. Product identification was performed by high-resolution, 1H-n.m.r. spectroscopy at 360 MHz and by permethylation analysis. The enzyme has been named GDP-l-fucose: 2-acetamido-2-deoxy-β-d-glucoside (Fuc→Asn-linked GlcNAc) 6-α-l-fucosyltransferase, because the substrate requires a terminal β-(1→2)-linked GlcNAc residue on the α-Man (1→3) arm of the core. Glycopeptides with this residue were shown to be acceptors whether they contained 3 or 5 Man residues. Substrate-specificity studies have shown that diantennary glycopeptides with two terminal β-(1→2)-linked GlcNAc residues and glycopeptides with more than two terminal GlcNAc residues are also excellent acceptors for the fucosyltransferase. An examination of four pairs of glycopeptides differing only by the absence or presence of a bisecting GlcNAc residue in β-(1→4) linkage to the β-linked Man residue of the core showed that the bisecting GlcNAc prevented 6-α-l-fucosyltransferase action. These findings probably explain why the oligosaccharides with a high content of mannose and the hybrid oligosaccharides with a bisecting GlcNAc residue that have been isolated to date do not contain a core l-fucosyl residue.  相似文献   

19.
Hemicelluloses were extracted from isolated tomato ( Lycopersicon esculentum Mill. cv. Rutgers) pericarp cell wall material at 3 different stages of ripeness with 4 M and 8 M KOH. Little change in molecular weight or composition of 4 M KOH-extracted material was observed during ripening. However, the composition of 8 M KOH-extracted material changed, and a relative increase in polymers of < 40 kDa was observed during ripening. Changes in glycosyl linkage composition of the 8 M KOH hemicellulosic material were detected, including increases in 4-linked mannosyl, 4,6-linked mannosyl, and 4-linked glucosyl, and decreases in 5-linked arabinosyl residues in polymers of < 40 kDa, and decreases in terminal glocosyl residues in polymers of > 40 kDa. These data may indicate that de novo hemicellulose synthesis occurs throughout tomato fruit ripening, even at the red ripe stage.  相似文献   

20.
The d-mannan of Saccharomyces cerevisiae X2180-1A-5 mutant strain, which possesses a main chain composed of α-(1→6) linked d-mannopyranosyl residues and a small proportion of branches composed of α-(1→2)- and α-(1→3)-linked d-mannopyranosyl residues, showed strong growth-inhibitory activity against mouse-implanted Sarcoma 180 and Ehrlich-carcinoma solid tumor. The observation that the level of this activity was nearly identical with that of the d-mannan of a wild-type strain of bakers' yeast, which possesses a high proportion of branches composed of α-(1→2)- and α-(1→3)-linked d-mannopyranosyl residues, suggests that the branches are not essential for antitumor activity. The partial acid-degradation products of both d-mannans, the molecular weight of which was one-third of that of each parent d-mannan, had only one half of the antitumor activity of the parent d-mannans. This suggests that molecular size is the most important factor for the differences in activity of the polysaccharides of wild and mutant strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号