首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was previously shown that 3,5-diido-l-tyrosyl-3,5-diiodo-l-tyrosine, I2Tyr-I2Tyr, acts as a precursor in the in vitro synthesis of thyroid hormones, and a mechanism of syntheis was proposed.We investigated this pathway by incubations of I2Tyr-I2Tyr with microsomal solubilized thyroid proteins. I2Tyr-T2Tyr was doubly labeled: iodinated with 131I on the ring and tritiated either on the alanine side-chain of the N- or C-terminal diidotyrosine. It is shown that only the C-terminal alanine participates in the synthesis, the N-terminal alanine being eliminated.The result proved that I2Tyr-I2Tyr acts as precursor through a mechanism which is different from the one involving I2Tyr. This mechanism consists of: Schiff base formation with pyridoxal; free radical formation and cyclization; peptide bond cleavage and removal of the pyridoxal · alanine complex.  相似文献   

2.
In this paper several details of the in vitro pathway of synthesis of hormones from 3,5-diiodo-l-tyrosyl-3,5-diiodo-l-tyrosine, I2Tyr-I2Tyr, have been investigated.
1. 1. We showed by incubations of I2Tyr-I2Tyr with a tautomerase that a phenylpyruvic form of the dipeptide did not occur.
2. 2. The reaction required pyridoxal phosphate: this coenzyme acts as an activator of the molecule.
3. 3. The peroxidase is involved in the reaction, since in the absence of a hydrogen peroxidase-generationg system there is no synthesis of iodothyronines when I2Tyr-I2Tyr is used as a precursor.
The significance of these findings is discussed and in particular it is concluded that such a mechanism cannot be transposed completely to conditions in vivo.  相似文献   

3.
4.
In vitro biosynthesis of iodothyronines from diiodo-3,5-L-tyrosyl-diiodo-3,5-L-tyrosine A comparative study of two types of in vitro synthesis of iodothyronines has been done from 3,5-diiodotyrosine and from diiodo-3,5-L-tyrosyl-diiodo-3,5-L-tyrosine (Tyr(I)2-Tyr(I)2) (equimolecular in tyrosyl rings).Incubations are made with rat thyroid gland minces in Eagle's medium or with thyroid microsomal fraction.Synthesis of thyroid hormones from Tyr(I)2-Tyr(I)2 is faster and more important than from diiodo-3,5-L-tyrosine (Tyr(I)2).A mechanism of iodothyronine formation via Tyr(I)2 - Tyr(I)2 and different from the one occuring for Tyr(I)2 is suggested.  相似文献   

5.
In vitro biosynthesis of iodothyronines from diiodo-3,5-L-tyrosyl-diiodo-3,5-L-tyrosine A comparative study of two types of in vitro synthesis of iodothyronines has been done from 3,5-diiodotyrosine and from diiodo-3,5-L-tyrosyl-diiodo-3,5-L-tyrosine (Tyr(I)2-Tyr(I)2) (equimolecular in tyrosyl rings).Incubations are made with rat thyroid gland minces in Eagle's medium or with thyroid microsomal fraction.Synthesis of thyroid hormones from Tyr(I)2-Tyr(I)2 is faster and more important than from diiodo-3,5-L-tyrosine (Tyr(I)2).A mechanism of iodothyronine formation via Tyr(I)2 - Tyr(I)2 and different from the one occuring for Tyr(I)2 is suggested.

Résumé

Une étude comparative de deux types de synthèse in vitro d'iodothyronines a été faite à partir de la 3,5-diiodotyrosine Tyr(I)2 et à partir d'un dipeptide iodé: le diiodo-3,5-L-tyrosyl-diiodo-3,5-L-tyrosine (Tyr(I)2-Tyr(I)2) dans des conditions équimoléculaires en noyaux tyrosyl.Les incubations sont effectuées en présence de coupes de thyroïdes de rat en milieu de survie ou en présence de fraction microsomale thyroïdienne.La synthèse d'hormones thyroïdienes à partir du Tyr(I)2-Tyr(I)2 est plus rapide et plus importante qu'à partir de la Tyr(I)2.Un mécanisme de synthèse des iodothyronines à partir du Tyr(I)2-Tyr(I)2 différent de celui intervenant pour la Tyr(I)2 est proposé.  相似文献   

6.
A comparative study of two types of in vitro synthesis of iodothyronines has been done from 3,5-diiodotyrosine and from diiodo-3,5-L-tyrosyl-diiodo-3,5-L-tyrosine (Tyr(I)2-Tyr(I)2) (equimolecular in tyrosyl rings). Incubations are made with rat thyroid gland minces in Eagle's medium or with thyroid microsomal fraction. Synthesis of thyroid hormones from Tyr(I)2-Tyr(I)2 is faster and more important than from diiodo-3,5-L-tyrosine (Tyr(I)2). A mechanism of iodothyronine formation via Tyr(I)2-Tyr(I)2 and different from the one occuring for Tyr(I)2 is suggested.  相似文献   

7.
Abstract— The biosynthesis of dopamine (DA) from L-tyrosine (Tyr) and L-phenylalanine (Phe) was investigated using synaptosomes prepared from the striatum and olfactory tubercle of the rat. The formation of 14CO2 from either carboxyl labeled precursor occurred exclusively within the synaptosome following hydroxylation and subsequent decarboxylation. The optimum pH for the formation of DA was 6.2 and was independent of precursor and tissue source. As pH increased beyond this optimum, synthesis from Tyr declined more rapidly than that from Phe. Synthesis obeyed Michaelis–Menton kinetics when expressed as a function of the specific activity of precursor in the medium. It was characterized by an overall Km (approx 0.9 μM) which was independent of precursor and tissue source, and was considerably lower than the Kt for accumulation of precursor by synaptosomes (15.3 and 13.3 μM for Tyr and Phe, respectively). While each precursor was an uncompetitive inhibitor of DA synthesis from the opposing labeled amino acid, Tyr was a more effective inhibitor of synthesis from Phe (Ki= 1.5 μM) than was Phe an inhibitor of synthesis from Tyr (Ki= 9.2 μM). Tryptophan inhibited synthesis competitively (Ki= 15.2 and 13.2 μM for synthesis from Tyr and Phe, respectively), and DA inhibited non-competitively (Ki= 1.1 and 0.42 μM for Tyr and Phe, respectively). A model of DA synthesis within the synaptosome is presented which attempts to integrate these data. A major feature of this schema is the proposal that newly accumulated precursor does not mix rapidly with endogenous precursor pools but rather is preferentially converted to DA.  相似文献   

8.
The synthesis of new dermorphin analogues is described. The (R)‐alanine or phenylalanine residues of natural dermorphin were substituted by the corresponding α‐methyl‐β‐azidoalanine or α‐benzyl‐β‐azido(1‐piperidinyl)alanine residues. The potency and selectivity of the new analogues were evaluated by a competitive receptor binding assay in rat brain using [3H]DAMGO (a μ ligand) and [3H]DELT (a δ ligand). The most active analogue in this series, Tyr‐(R)‐Ala‐(R)‐α‐benzyl‐β‐azidoAla‐Gly‐Tyr‐Pro‐Ser‐NH2 and its epimer were analysed by 1H and 13C NMR spectroscopy and restrained molecular dynamics simulations. The dominant conformation of the investigated peptides depended on the absolute configuration around Cα in the α‐benzyl‐β‐azidoAla residue in position 3. The (R) configuration led to the formation of a type I β‐turn, whilst switching to the (S) configuration gave rise to an inverse β‐turn of type I′, followed by the formation of a very short β‐sheet. The selectivity of Tyr‐(R)‐Ala‐(R) and (S)‐α‐benzyl‐β‐azidoAla‐Gly‐Tyr‐Pro‐Ser‐NH2 was shown to be very similar; nevertheless, the two analogues exhibited different conformational preferences. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
10.
Summary Non-enzymic-decarboxylation of aspartic acid at 85° is catalyzed by Al3+ and pyridoxal. The reaction is optimum at pH 4.0. Both Al3+ and pyridoxal are specifically required because replacing these by other cations or by other vitamin B6 derivatives greatly lowers the formation of alanine. Conversion of 8 µmoles of aspartic acid to alanine is optimum in presence of 1µmole of Al3+ and 5 µmoles of pyridoxal. Increasing the concentration of pyridoxal to more than 5 µmoles lowers the alanine formation by the latter being converted to pyruvate by transamination with the excess pyridoxal.Studies on the mechanism of decarboxylation suggest that aspartic acid is first converted to oxalacetic acid by transamination with pyridoxal which in turn is converted to pyridoxamine. This is followed by decarboxylation of oxalacetic acid to form pyruvic acid which transaminates with pyridoxamine to form alanine. The results are interpreted to suggest that the non-enzymic aspartate-decarboxylation process is closely related to and inseparable from the non-enzymic transamination process in a manner analogous to that reported for the highly purified asparate-decarboxylase. The possible significance of these results to prebiotic molecular evolution is briefly discussed.  相似文献   

11.
The transport of Ca2+ across membranes precedes the fusion and fission of various lipid bilayers. Yeast vacuoles under hyperosmotic stress become fragmented through fission events that requires the release of Ca2+ stores through the TRP channel Yvc1. This requires the phosphorylation of phosphatidylinositol‐3‐phosphate (PI3P) by the PI3P‐5‐kinase Fab1 to produce transient PI(3,5)P2 pools. Ca2+ is also released during vacuole fusion upon trans‐SNARE complex assembly, however, its role remains unclear. The effect of PI(3,5)P2 on Ca2+ flux during fusion was independent of Yvc1. Here, we show that while low levels of PI(3,5)P2 were required for Ca2+ uptake into the vacuole, increased concentrations abolished Ca2+ efflux. This was as shown by the addition of exogenous dioctanoyl PI(3,5)P2 or increased endogenous production of by the hyperactive fab1T2250A mutant. In contrast, the lack of PI(3,5)P2 on vacuoles from the kinase dead fab1EEE mutant showed delayed and decreased Ca2+ uptake. The effects of PI(3,5)P2 were linked to the Ca2+ pump Pmc1, as its deletion rendered vacuoles resistant to the effects of excess PI(3,5)P2. Experiments with Verapamil inhibited Ca2+ uptake when added at the start of the assay, while adding it after Ca2+ had been taken up resulted in the rapid expulsion of Ca2+. Vacuoles lacking both Pmc1 and the H+/Ca2+ exchanger Vcx1 lacked the ability to take up Ca2+ and instead expelled it upon the addition of ATP. Together these data suggest that a balance of efflux and uptake compete during the fusion pathway and that the levels of PI(3,5)P2 can modulate which path predominates.  相似文献   

12.
Valverde  Claudio  Wall  Luis Gabriel 《Plant and Soil》2003,254(1):139-153
Asparagine was found to be the main N compound exported from Discaria trinervis nodules. Aspartate (Asp), glutamate (Glu), alanine (Ala) and serine (Ser) were also detected in root xylem sap, but at lower concentrations. A comparable picture is found in nodulated alfalfa. We hypothesized that a similar set of enzymes for Asn synthesis was present in D. trinervis nodules. We demonstrate the expression of most of the enzymes involved in the synthesis of Asn from NH+ 4 and oxoacids, in nodules – but not in roots – of fully symbiotic D. trinervis. By complementation of enzyme assays (A) and immunodetection (I) we detected glutamane-synthetase (GSA, I), Asp-aminotransferase (AATA), malate-dehydrogenase (MDHA, I, at least two isoforms), Glu-dehydrogenase (GDHA), Glu-synthase (GOGATI) and Asn-synthetase (ASI). PEP-carboxylase (PEPC) activity was not detected. We previously shown that N acts as a negative regulator of nodulation and nodule growth, while P is a strong stimulator for nodule growth. We present data on the regulation of nodule N metabolism by altering, during 4 weeks, the availability of N, P and light in symbiotic D. trinervis. NH4NO3 (2 mM) induced inactivation and degradation of nodule GS, MDH and AS, but activation of GDH and AAT; the amount of nitrogenase components was not affected. A 10-fold increase in P supply did not greatly affect activity and amount of enzymes, suggesting that N metabolism is not P-limited in nodules. On the other hand, suppression of P supply induced an important reduction of nodule GS, GOGAT, MDH and AS protein levels, although nitrogenase was not affected. GDH was the only measured activity that was stimulated by limiting P supply. Shading plants did result in complete degradation of nitrogenase and partial degradation of GS, AS and nodule-specific MDH isoform, but GDH and AAT were activated. These results are discussed in connection with the regulation of nodulation and nodule growth in D. trinervis.  相似文献   

13.
This research describes the effects of short-term elemental iodine (I2) and iodide (I) replacement on thyroid glands and mammary glands of iodine-deficient (ID) Sprague-Dawley female rats. Iodine deficiency causes atypical tissue and physiologic changes in both glands. Tissue histopathology and the endocrine metabolic parameters, such as serum TT4, tissue and body weights, and vaginal smears, are compared. A moderate reduction in thyroid size from the ID control (IDC) was noted with both I and I2, whereas serum total thyroxine approached the normal control with both I and I2, but was lower in IDC. Thyroid gland IDC hyperplasia was reduced modestly with I2, but eliminated with I. Lobular hyperplasia of the mammary glands decreased with I2 and increased with I when compared with the IDC; extraductal secretions remained the same as IDC with I2, but increased with I; and periductal fibrosis was markedly reduced with I2, but remained severe with I. Thus, orally administered I2 or I in trace doses with similar iodine availability caused different histopathological and endocrine patterns in thyroid and mammary glands of ID rats. The significance of this is that replacement therapy with various forms of iodine are tissue-specific.  相似文献   

14.
Branched actin critically contributes to membrane trafficking by regulating membrane curvature, dynamics, fission, and transport. However, how actin dynamics are controlled at membranes is poorly understood. Here, we identify the branched actin regulator cortactin as a direct binding partner of phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) and demonstrate that their interaction promotes turnover of late endosomal actin. In vitro biochemical studies indicated that cortactin binds PI(3,5)P2 via its actin filament-binding region. Furthermore, PI(3,5)P2 competed with actin filaments for binding to cortactin, thereby antagonizing cortactin activity. These findings suggest that PI(3,5)P2 formation on endosomes may remove cortactin from endosome-associated branched actin. Indeed, inhibition of PI(3,5)P2 production led to cortactin accumulation and actin stabilization on Rab7+ endosomes. Conversely, inhibition of Arp2/3 complex activity greatly reduced cortactin localization to late endosomes. Knockdown of cortactin reversed PI(3,5)P2-inhibitor–induced actin accumulation and stabilization on endosomes. These data suggest a model in which PI(3,5)P2 binding removes cortactin from late endosomal branched actin networks and thereby promotes net actin turnover.  相似文献   

15.
MATURATION OF THE RAT FETAL THYROID   总被引:2,自引:2,他引:0       下载免费PDF全文
Maturation of the rat fetal thyroid was studied with the aid of I131 and of fluorescence and electron microscopy. The I131 concentration of the fetal gland increased exponentially from day 17 to day 20 of gestation and was related to the weight of the fetus (and presumably the weight of the thyroid) and also to the quantity of I131 accumulated by the fetus. In the 17-day gland, thyroglobulin or immunologically similar material was sparsely present in the incipient lumens of some cell clusters. With maturation, this material increased and was also observed within follicular cells on days 18 to 19 of gestation. On day 20, the specifically reacting material was present in the follicular lumens and was absent from the cytoplasm of follicular epithelium. Ultrastructurally, the earliest thyroid cells examined were replete with all the organelles found in the more mature epithelium. No direct correlation could be made between the cytoplasmic structures and the presence of thyroglobulin, although the granular endoplasmic reticulum was most likely the organelle responsible for synthesis of thyroglobulin. Thyroglobulin or a precursor was found in fetal thyroid cells before measurable quantities of I131 were concentrated and before cytoplasmic droplets appeared.  相似文献   

16.
The attempted alkylation of 1,3-bis(2′-pyridylimino)isoindoline (indH) by the use of n-BuLi and subsequent alkyl halides led to quaternization of the pyridine nitrogens and the zwitterionic monodentate N-ligand (Me2ind)I was formed. By the use of the ligand the copper(I) complex [CuI(Me2ind)I2] was prepared and its structure determined. It was found to be good catalyst for the oxidation of 3,5-di-tert-butylcatechol (DTBCH2) to 3,5-di-tert-butyl-1,2-benzoquinone (DTBQ) and H2O2 by dioxygen. Detailed kinetic studies revealed first-order dependence on the catalyst and dioxygen concentration and saturation type behavior with respect to the substrate.  相似文献   

17.
Kezuka Y  Yoshida Y  Nonaka T 《Proteins》2012,80(10):2447-2458
Hydrogen sulfide (H2S) is a causative agent of oral malodor and may play an important role in the pathogenicity of oral bacteria such as Streptococcus anginosus. In this microorganism, H2S production is associated with βC‐S lyase (Lcd) encoded by lcd gene, which is a pyridoxal 5′‐phosphate (PLP)‐dependent enzyme that catalyzes the α,β‐elimination of sulfur‐containing amino acids. When Lcd acts on L ‐cysteine, H2S is produced along with pyruvate and ammonia. To understand the H2S‐producing mechanism of Lcd in detail, we determined the crystal structures of substrate‐free Lcd (internal aldimine form) and two reaction intermediate complexes (external aldimine and α‐aminoacrylate forms). The formation of intermediates induced little changes in the overall structure of the enzyme and in the active site residues, with the exception of Lys234, a PLP‐binding residue. Structural and mutational analyses highlighted the importance of the active site residues Tyr60, Tyr119, and Arg365. In particular, Tyr119 forms a hydrogen bond with the side chain oxygen atom of L ‐serine, a substrate analog, in the external aldimine form suggesting its role in the recognition of the sulfur atom of the true substrate (L ‐cysteine). Tyr119 also plays a role in fixing the PLP cofactor at the proper position during catalysis through binding with its side chain. Finally, we partly modified the catalytic mechanism known for cystalysin, a βC‐S lyase from Treponema denticola, and proposed an improved mechanism, which seems to be common to the βC‐S lyases from oral bacteria. Proteins 2012;. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Alanine racemase depending on pyridoxal 5′-phosphate catalyzes the interconversion between - and -alanine. The enzyme from Bacillus stearothermophilus catalyzes the transamination as a side reaction with both substrates once per 3×107 times of the racemization. In this work, we studied the effects of the mutation of Arg219, and that of Arg219 and Tyr265 on the catalysis of Bacillus alanine racemase. Arg219 interacting with pyridinium nitrogen of the cofactor is conserved in all alanine racemases. The corresponding residue of aminotransferases is an acidic residue, such as glutamate or aspartate. Mutation of Arg219 to a glutamyl residue resulted in a 5.4-fold increase in the forward half transamination activity with -alanine and a 103-fold decrease in the racemase activity. The double mutation, Arg219→Glu and Tyr265→Ala, completely abolished the racemase activity and increased the forward half transaminase activity 6.6-fold. Arg219 is one of the structural determinants of the catalytic specificity of the alanine racemase.  相似文献   

19.
Abstract

In thyroid cells, a PI-agonist, via G1 like protein, enhanced a TSH-induced I?-efflux by intensifying a TSH-dependent inositol polyphosphate production followed by a Ca2+ mobilization, but diminished a TSH-dependent DNA synthesis by attenuating a TSH-dependent cAMP accumulation.  相似文献   

20.
The structure of 3,5-dichlorophenylcyanamide c-C6H3Cl2–NHCN was investigated by DFT-B3LYP and ab initio MP2 calculations with the 6-311+G** basis set. The planar to perpendicular rotational barrier was calculated to be of about 5 kcal mol–1 at both levels of calculation. The stability of the planar structure of the molecule was explained on the basis of conjugation effects between the cyanamide–NHCN moiety and the phenyl c-C6H5 ring in agreement with earlier NMR results. The CNC and the HNC bond angles were calculated to be about 120° especially by MP2 calculation, which is consistent with sp2 (planar –NH–CN group) and not sp3 (pyramidal –NH–CN group) structure. The vibrational frequencies of the d0, d1 and d3 species of 3,5-dichlorophenylcyanamide and the potential energy distributions among symmetry coordinates of the normal modes of the parent molecule were computed at the DFT-B3LYP level. The calculated infrared and Raman spectra of the molecule were plotted. Complete vibrational assignments were made on the basis of isotopic substitution and normal coordinate calculations.Figure Potential curves for the internal rotation in 3,5-dichlorophenylcyanamide as determined by DFT-B3LYP/6-311+G** (solid) and MP2/6-311+G** (dotted) calculations  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号