共查询到20条相似文献,搜索用时 15 毫秒
1.
Anaerobic dehalogenation of halothane by reconstituted liver microsomal cytochrome P-450 enzyme system 总被引:1,自引:0,他引:1
K Fujii N Miki T Sugiyama M Morio T Yamano Y Miyake 《Biochemical and biophysical research communications》1981,102(1):507-512
Cytochrome P-450 from liver microsomes of phenobarbital-treated rabbits catalyzed anaerobic dehalogenation of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) when combined with NADPH and NADPH-cytochrome P-450 reductase. Cytochromes P-450B1 and P-448 from liver microsomes of untreated rabbits were less active. Triton X-100 accelerated the reaction. Unlike anaerobic dehalogenation of halothane in microsomes, the major product was 2-chloro-1,1,1-trifluoroethane and 2-chloro-1,1-difluoroethylene was negligible. These products were not detected under aerobic conditions, and dehalogenation activity was inhibited by carbon monoxide, phenyl isocyanide and metyrapone. 相似文献
2.
Immunochemical evidence for a role of cytochrome P-450 in liver microsomal ethanol oxidation 总被引:5,自引:0,他引:5
Antibodies to cytochrome P-450 isozyme 3a, the ethanol-inducible isozyme in rabbit liver, were used to determine the role of this enzyme in the microsomal oxidation of alcohols and the p-hydroxylation of aniline. P-450 isozymes, 2, 3b, 3c, 4, and 6 did not crossreact with anti-3a IgG as judged by Ouchterlony double diffusion, and radioimmunoassays indicated a crossreactivity of less than 1%. Greater than 90% of the activity of purified form 3a toward aniline, ethanol, n-butanol, and n-pentanol was inhibited by the antibody in the reconstituted system. The catalytic activity of liver microsomes from control or ethanol-treated rabbits was unaffected by the addition of either desferrioxamine (up to 1.0 mM) or EDTA (0.1 mM), suggesting that reactions involving the production of hydroxyl radicals from H2O2 and any contaminating iron in the system did not make a significant contribution to the microsomal activity. The addition of anti-3a IgG to hepatic microsomes from ethanol-treated rabbits inhibited the metabolism of ethanol, n-butanol, n-pentanol, and aniline by about 75, 70, 80, and 60%, respectively, while the inhibition of the activity of microsomes from control animals was only about one-half as great. The rate of microsomal H2O2 formation was inhibited to a lesser extent than the formation of acetaldehyde, thus suggesting that the antibody was acting to prevent the direct oxidation of ethanol by form 3a. Under conditions where purified NADPH-cytochrome P-450 reductase-catalyzed substrate oxidations was minimal, the P-450 isozymes other than 3a had low but significant activity toward the four substrates examined. The residual activity at maximal concentrations of the antibody most likely represents the sum of the activities of P-450 isozymes other than 3a present in the microsomal preparations. The results thus indicate that the enhanced monooxygenase activity of liver microsomes from ethanol-treated animals represents catalysis by P-450 isozyme 3a. 相似文献
3.
A reconstituted mixed-function oxidase system containing cytochrome P-450, cytochrome P-450 reductase, phosphatidylcholine, and NADPH catalyzed the reduction of 13-hydroperoxy-9,11-octadecadienoic acid to 13-hydroxy-9,ll-octadecadienoic acid. Activity was stimulated by the addition of type I substrates, while carbon monoxide and oxygen inhibited the reaction. Perfluoro-n-hexane stimulated the reduction of lipid hydroperoxide to lipid alcohol in the reconstituted system but not by cytochrome P-450 alone. Incubation of cytochrome P-450 with only lipid hydroperoxide resulted in destruction of the hemoprotein. Addition of substrates such as aminopyrine decreased cytochrome P-450 destruction. Addition of reducing equivalents from a reconstituted electron transport system also decreased cytochrome P-450 destruction. 相似文献
4.
5.
M Haniu D E Ryan S Iida C S Lieber W Levin J E Shively 《Archives of biochemistry and biophysics》1984,235(2):304-311
Cytochromes P-450f, P-450g, P-450h, and P-450i are four hepatic microsomal hemoproteins that have been purified from adult rats. Whereas cytochromes P-450g and P-450h appear to be male-specific hemoproteins, cytochrome P-450i is apparently a female-specific enzyme purified from untreated adult female rats. Cytochrome P-450f has been purified from adult male and female rats with equivalent recoveries. Amino-terminal sequence analyses of the first 15-20 amino acid residues of each of these cytochromes P-450 has been accomplished in the current investigation. Each protein possesses a hydrophobic leader sequence consisting of 65-87% hydrophobic amino acids, and only one charged amino acid (Asp) in the amino-terminal region. Although differences in the amino-terminal sequences of cytochromes P-450f, P-450g, P-450h, and P-450i are identified, these hemoproteins all begin with Met-Asp, and marked structural homology is observed among certain of these enzymes. Cytochromes P-450g and P-450h, two male-specific proteins, have 11-12/15 identical residues with cytochrome P-450i, a female-specific isozyme. Cytochromes P-450f and P-450h have 16/20 identical amino-terminal residues. Only limited sequence homology is observed between the amino-terminal sequences of cytochromes P-450f-i compared to rat liver cytochromes P-450a-e. The results demonstrate that cytochromes P-450f, P-450g, P-450h, and P-450i are isozymic to each other and five additional rat hepatic microsomal cytochrome P-450 isozymes (P-450a-e). 相似文献
6.
Differences in the mechanism of NADPH- and cumene hydroperoxide-supported reactions of cytochrome P-450 总被引:2,自引:0,他引:2
A study has been carried out on the association of aldolase with the human erythrocyte membrane. It has been shown that the conditions employed during hypotonic hemolysis affect the amount of aldolase that remains bound to the cell membrane. Thus, the in vivo nature of this binding cannot be ascertained by this technique. Therefore, a method has been developed in which aldolase is crosslinked with glutaraldehyde to the inner surface of the membrane in intact red blood cells. Under the specified conditions, over 90% of the intracellular aldolase can be crosslinked to the membrane with less than 10% of the hemoglobin becoming bound. These results suggest that the localization of aldolase in situ is on or near the inner surface of the membrane. The amount of aldolase bound to the membrane following crosslinking can be decreased by preincubating the cells with cytoskeletal agents such as cytochalasin B, colchicine, and vinblastine sulfate. The in vitro binding of aldolase to the purified spectrin-actin and F-actin complexes was studied. Aldolase bound both complexes very tightly (KD ? 10?9m) and this binding could be inhibited by cytochalasin B, but not by colchicine. A competition binding study was carried out to determine if the binding of aldolase to F-actin involved specific interactions. Neither bovine serum albumin nor cytochrome c significantly inhibited the binding of aldolase to F-actin when each was present at equimolar concentrations with aldolase. However, glyceraldehyde 3-phosphate dehydrogenase inhibited aldolase binding to F-actin and when present at equimolar concentrations with aldolase completely blocked the association. The association of aldolase and other glycolytic enzymes with the erythrocyte membrane is discussed and it is postulated that aldolase could be localized in vivo on the inner surface of the membrane by attachment to actin or a spectrin-actin complex. 相似文献
7.
Brenda Walker Griffin Charles Marth Yukio Yasukochi Bettie Sue Siler Masters 《Archives of biochemistry and biophysics》1980,205(2):543-553
Under identical experimental conditions, purified preparations of rabbit liver microsomal cytochrome P-450 and beef heart metmyoglobin were equally effective at stimulating the oxidation of aminopyrine to a free radical species by cumene hydroperoxide. Mannitol had no effect on radical levels produced with either hemeprotein-hydroperoxide system; however, specific ligands of the two hemeproteins, substrates of cytochrome P-450, and phospholipid affected the two systems quite differently. Only the metmyo-globindependent oxidation of aminopyrine was significantly inhibited by fluoride and cyanide. Metyrapone, a specific ligand of cytochrome P-450, and benzphetamine, which was N-demethylated by cumene hydroperoxide only in the presence of cytochrome P-450, inhibited only the cytochrome P-450-stimulated oxidation of aminopyrine. Moreover, only with the solubilized liver hemeprotein was aminopyrine radical generation markedly stimulated by phospholipid. Similar properties of aminopyrine N-demethylation and radical formation by the cytochrome P-450-cumene hydroperoxide system have strongly implicated the radical as a requisite intermediate in product formation. Micromolar concentrations of metyrapone caused parallel inhibition, by at least 50%, of both radical generation and formaldehyde production. These results support a radical pathway of N-demethylation proposed for other hemeprotein-hydroperoxide systems (B. W. Griffin and P. L. Ting, 1978, Biochemistry, 17, 2206–2211), in which the substrate undergoes two successive one-electron abstractions, followed by hydrolysis of the iminium cation intermediate. Thus, for this class of substrates, the experimental data are consistent with the oxygen atom of the product arising from H2O and not directly from the hydroperoxide, which has been previously proposed as a general mechanism for cytochrome P-450 peroxidatic activities. 相似文献
8.
Eleanor Canova-Davis Lucy Waskell 《Biochemical and biophysical research communications》1982,108(3):1264-1270
We report the existence of a microsomal, heat-stable, trypsin-sensitive factor that stimulates the O-demethylation of methoxyflurane (CHCl2CF2OCH3) by partially purified preparations of rabbit hepatic cytochrome P-450. The factor is able to stimulate by five to twelve-fold the methoxyflurane metabolizing activity of cytochrome P-450. In contrast, the metabolism of benzphetamine is not affected by the presence of the factor. The factor is inactivated by extraction with methanol, chloroform, butanol and ethanol. It remains intact after treatment with 6M guanidine hydrochloride and is soluble in trifluoroethanol. Thus, the weight of evidence indicates that this factor is a rather hydrophobic protein. 相似文献
9.
Superoxide generation, assessed as the rate of acetylated cytochrome c reduction inhibited by superoxide dismutase, by purified NADPH cytochrome P-450 reductase or intact rat liver microsomes was found to account for only a small fraction of their respective NADPH oxidase activities. DTPA-Fe3+ and EDTA-FE3+ greatly stimulated NADPH oxidation, acetylated cytochrome c reduction, and O(2) production by the reductase and intact microsomes. In contrast, all ferric chelates tested caused modest inhibition of acetylated cytochrome c reduction and O(2) generation by xanthine oxidase. Although both EDTA-Fe3+ and DTPA-Fe3+ were directly reduced by the reductase under anaerobic conditions, ADP-Fe3+ was not reduced by the reductase under aerobic or anaerobic conditions. Desferrioxamine-Fe3+ was unique among the chelates tested in that it was a relatively inert iron chelate in these assays, having only minor effects on NADPH oxidation and/or O(2) generation by the purified reductase, intact microsomes, or xanthine oxidase. Desferrioxamine inhibited microsomal lipid peroxidation promoted by ADP-Fe3+ in a concentration-dependent fashion, with complete inhibition occurring at a concentration equal to that of exogenously added ferric iron. The participation of O(2) generated by the reductase in NADPH-dependent lipid peroxidation was also investigated and compared with results obtained with a xanthine oxidase-dependent lipid peroxidation system. NADPH-dependent peroxidation of either phospholipid liposomes or rat liver microsomes in the presence of ADP-Fe3+ was demonstrated to be independent of O(2) generation by the reductase. 相似文献
10.
K Totani T Iizuka H Shimada R Makino Y Ishimura 《Archives of biochemistry and biophysics》1983,222(1):207-215
Effects of pH on the ligand-binding reactions of ferric heme in cytochrome P-450 from Pseudomonas putida (camphor 5-monooxygenase, EC 1.14.15.1) were studied by using cyanide, N-methylimidazole, pyridine, and ethylisocyanide as ligands. In all cases, affinity of the ferric heme for the ligand was found to increase as pH of the medium was raised from around 6 to 9. Depending on the ligand, the increase was 10- to 1000-fold and the shapes of their pH-affinity curves were remarkably different. Analyses such pH profiles disclosed the presence of a dissociable group in the enzyme with a pK value of approximately 9.5 and that its ionization greatly enhanced the affinity of the heme for ligands. When a dissociable ligand such as hydrogen cyanide and N-methylimidazole was used, the dissociated form of the ligand had a higher affinity toward the heme than the undissociated form. The shapes of the pH-affinity curves were successfully simulated as overlapping curves of ionization reactions of the ligand and the dissociable group. In addition, size of the ligand molecule was shown to be also important in the binding reaction: relatively large molecules such as pyridine, ethylisocyanide, and N-methylimidazole bound to the enzyme in a competitive manner against d-camphor concentration, whereas the binding of a smaller molecule such as cyanide was inhibited by the substrate in a noncompetitive manner. On the basis of these findings, control mechanisms for the ligand-binding reactions of the cytochrome P-450 from P. putida are discussed. 相似文献
11.
Effect of cobalt chloride and 3-amino-1,2,4-triazole on the induction of cytochrome P-450 synthesis by phenobarbitone in rat liver 总被引:2,自引:0,他引:2
Administration of cobalt chloride and 3-amino-1,2,4-triazole leads to a suppression of phenobarbitone-mediated increase in total cytochrome P-450 as well as cytochrome P-450b contents of the liver. This suppression is due to a decrease in the content of the protein species which is the result of a decrease in its rate of synthesis as measured in vivo and in vitro. Cobalt chloride as well as 3-amino-1,2,4-triazole treatments lead to a decrease in the translatability of cytochrome P-450b RNA without affecting total protein synthesis. It is a possibility that a small pool of heme regulates the RNA levels for the cytochrome P-450 species. 相似文献
12.
Detection of phenobarbital-induced cytochrome P-450 in rat hepatic microsomes using an enzyme-linked immunosorbent assay 总被引:2,自引:0,他引:2
The major phenobarbital-inducible form of cytochrome P-450 (cytochrome P-450 PB) was purified to homogeneity from rat liver microsomes and rabbit antibodies prepared against the purified enzyme. Using these antibodies, an enzyme-linked immunosorbent assay (ELISA) was developed for the detection of cytochrome P-450 PB in microsomes which was sensitive at the nanogram level. The content of cytochrome P-450 PB was determined in hepatic microsomes from rats treated with various xenobiotics. Phenobarbital and Aroclor 1254 pretreatments resulted in several-fold increases in immunoreactive cytochrome P-450 PB over control levels. ELISA measurements of cytochrome P-450 PB were also carried out over a 48-h time course of phenobarbital induction in liver microsomes. Significant increases over control levels were seen at 16 h and beyond. Measurements of ELISA-detectable cytochrome P-450 PB were made in microsomes following the administration of CCl4 to phenobarbital-pretreated rats. Immunoreactive cytochrome P-450 PB was observed to decrease less rapidly than the spectrally detectable enzyme in the microsomal membranes. Inhibition of heme synthesis was carried out by the administration of 3-amino-1,2,4-triazole (AT) to rats. Concomitant pretreatment with phenobarbital and AT resulted in levels of ELISA-detectable cytochrome P-450 PB which were significantly increased over control levels, while spectrally detectable levels of total holoenzyme remained unchanged. These results support the idea that this cytochrome P-450 may exist, at least partly, in the microsomal membrane in an inactive or apoprotein form. 相似文献
13.
A.J. Marinello H.L. Gurtoo R.F. Struck B. Paul 《Biochemical and biophysical research communications》1978,83(4):1347-1353
Cyclophosphamide (CP) metabolites, acrolein and 4-hydroxy-CP, were found to denature rat liver microsomal cytochrome P-450, whereas another metabolite, phosphoramide mustard, CP or its analog Ifosfamide had no effect. The denaturation produced by CP metabolites could be blocked by cysteine, suggesting an interaction between CP metabolite(s) and sulfhydryl groups in cysteine and probably in cytochrome P-450. These studies might explain the biochemical basis of the specific depression of various microsomal mixed function oxygenase activities produced by high doses of CP. 相似文献
14.
H Sakurai S Shimomura K Ishizu 《Biochemical and biophysical research communications》1981,101(4):1102-1108
A new cytochrome P-450 model that simulates the unusual spectral and substrate-oxidation properties of cytochrome P-450 is proposed. The complex, consisting of glutathione(GSH), hemin and pyridine(py), exhibits similar optical and EPR spectra to cytochrome P-450 in ferric low-spin state. On omission of py, a ferric high-spin state was produced. On exposure of the GSH-hemin-py complex to CO, a characteristic absorption band appeared at 450nm, like that typical of cytochrome P-450. Two types of spectral changes were observed when aminopyrine or phenobarbital (Type I) and aniline or quinoline (Type II) were added to the GSH-hemin complex. Hydroxylation, dealkylation and aromatic methyl migration activities were observed with the GSH-hemin complex. 相似文献
15.
D E Williams R T Okita D R Buhler B S Masters 《Archives of biochemistry and biophysics》1984,231(2):503-510
Microsomes from liver or kidney of untreated rainbow trout hydroxylated lauric acid specifically at the (omega-1) position. Turnover numbers for liver (2.72 min-1) and kidney (14.1 min-1) were decreased seven- and twofold, respectively, following treatment with beta-naphthoflavone. Laurate hydroxylation activity from untreated trout hepatic microsomes was sensitive to inhibition by SKF-525A, but was not sensitive to metyrapone and only partially inhibited by alpha-naphthoflavone. The temperature optimum of laurate (omega-1) hydroxylation in trout liver microsomes was 25-30 degrees C. The Km and Vmax for (omega-1)- hydroxylaurate formation was 50 microM and 1.63 nmol min-1 mg-1, respectively, in liver and 20 microM and 3.95 nmol min-1 mg-1, respectively, in kidney from untreated trout microsomes. (omega-1) Hydroxylation of laurate, in both liver and kidney microsomes, was sensitive to an antibody raised against a previously purified cytochrome P-450 isozyme (LM2) of trout liver microsomes, which has been shown to be active towards aflatoxin B1. Antibody to the major isozyme of cytochrome P-450 ( LM4b , active towards benzo(a)pyrene) induced by beta-naphthoflavone did not inhibit (omega-1) hydroxylation of laurate in microsomes from untreated or beta-naphthoflavone-treated trout. 相似文献
16.
Laurence S. Kaminsky F.Peter Guengerich Ghazi A. Dannan Steven D. Aust 《Archives of biochemistry and biophysics》1983,225(1):398-404
R- and S-warfarin metabolite profiles (regio- and stereoselectivity) have been determined with hepatic microsomes from untreated rats and rats treated with nine individual polybrominated biphenyl (PBB) congeners, a commercial mixture of PBBs, and, for comparison with phenobarbital and 3-methylcholanthrene. The metabolic rates have been correlated with cytochrome P-450 (P-450) isozyme concentrations in the microsomes determined by immunochemical quantitation techniques (G. A. Dannan, F. P. Guengerich, L. S. Kaminsky, and S. D. Aust, (1983) J. Biol. Chem., 258, 1282–1288). The warfarin hydroxylase activities of the P-450 isozyme components of the various microsomal preparations (F. P. Guengerich, G. A. Dannan, S. T. Wright, M. V. Martin, and L. S. Kaminsky (1982) Biochemistry, 21, 6019–6030) were multiplied by the corresponding isozyme concentrations to obtain an assessment of the potential warfarin hydroxylase capacity of the microsomes, and the results were compared with actual activities. The results of these studies and comparisons indicate that substrate regio- and stereoselectivities of microsomal-bound P-450s are essentially retained on purification of the isozymes to homogeneity and reconstitution, that warfarin metabolism by microsomal preparations can be used to predict microsomal P-450 isozyme compositions, and that microsomal warfarin hydroxylase activity is greater than would be predicted based on the approx 20:1 ratio of P-450 to NADPH-P-450 reductase in the microsomes and on the known activities of constituent isozymes. Two P-450 isozymes which are induced by treatment of rats with phenobarbital appear to be more tightly linked to NADPH-P-450 reductase than does an isozyme induced by β-naphthoflavone. 相似文献
17.
M Paye P Beaune P Kremers F P Guengerich F Letaw-Goujon J Gielen 《Biochemical and biophysical research communications》1984,122(1):137-142
An enzyme linked immunosorbent assay (ELISA) using monoclonal and polyclonal antibodies has been developed to quantify individual cytochrome P-450 isoenzymes in microsomal preparations, namely UT-A and PB-B. This very sensitive method can be used for the rapid processing of large quantities of determinations and requires only limited amounts of antibodies. 相似文献
18.
19.
J P Salaun D Reichhart A Simon F Durst N O Reich P R Ortiz de Montellano 《Archives of biochemistry and biophysics》1984,232(1):1-7
Lauric acid in-chain hydroxylation is inhibited in microsomes from Jerusalem artichoke tubers (Helianthus tuberosus L.) incubated with 9-decenoic, 11-dodecenoic, or 11-dodecynoic acids. 9-Decenoic acid is at best a weak competitive inhibitor of the in-chain hydroxylase, but inactivates the enzyme in a time-dependent, pseudo-first-order process with a rate constant of approximately 1.1 X 10(-3) s-1. In contrast, 11-dodecenoic acid causes a slower, time-dependent loss of the hydroxylase activity, but is a potent competitive inhibitor of the enzyme (Ki = 2 microM). Neither agent decreases the microsomal concentration of cytochrome b5, NADH-cytochrome b5 reductase, or NADPH cytochrome P-450 reductase. Cinnamic acid 4-hydroxylation, catalyzed by a cytochrome P-450 enzyme, is not affected by concentrations of 9-decenoic acid that suppress lauric acid hydroxylation. 11-Dodecenoic acid is much less specific and, at higher concentrations, markedly reduces the microsomal cytochrome P-450 content, and the hydroxylation of both lauric and cinnamic acids. 相似文献
20.
Solubilized NADPH-cytochrome P-450 reductase has been purified from liver microsomes of phenobarbital-treated rats. When added to microsomes, the reductase enhances the monoxygenase, such as aryl hydrocarbon hydroxylase, ethoxycoumarin O-dealkylase, and benzphetamine N-demethylase, activities. The enhancement can be observed with microsomes prepared from phenobarbital- or 3-methylcholanthrene-treated, or non-treated rats. The added reductase is believed to be incorporated into the microsomal membrane, and the rate of the incorporation can be assayed by measuring the enhancement in ethoxycoumarin dealkylase activity. It requires a 30 min incubation at 37°C for maximal incorporation and the process is much slower at lower temperatures. The temperature affects the rate but not the extent of the incorporation. After the incorporation, the enriched microsomes can be separated from the unbound reductase by gel filtration with a Sepharose 4B column. The relationship among the reductase added, reductase bound and the enhancement in hydroxylase activity has been examined. The relationship between the reductase level and the aryl hydrocarbon hydroxylase activity has also been studied with trypsin-treated microsomes. The trypsin treatment removes the reductase from the microsomes, and the decrease in reductase activity is accompanied by a parallel decrease in aryl hydrocarbon hydroxylase activity. When purified reductase is added, the treated microsomes are able to gain aryl hydrocarbon hydroxylase activity to a level comparable to that which can be obtained with normal microsomes. The present study demonstrates that purified NADPH-cytochrome P-450 reductase can be incorporated into the microsomal membrane and the incorporated reductase can interact with the cytochrome P-450 molecules in the membrane, possibly in the same mode as the endogenous reductase molecules. The result is consistent with a non-rigid model for the organization of cytochrome P-450 and NADPH-cytochrome P-450 reductase in the microsomal membrane. 相似文献