首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two selective thromboxane A2 synthetase inhibitors, imidazole and 9,11-azoprosta-5,13-dienoic acid (azo analog I) were compared to determine their effects on the quantitative formation of thromboxane B2 and prostaglandin E2 accompanying human platelet aggregation. Azo analog I was at least 200 times more potent, on a molar basis, than imidazole in suppressing thromboxane B2 formation in either platelet-rich plasma or washed platelet suspensions aggregated with arachidonic acid or prostaglandin H2. The inhibitors differed in their effect on the aggregation response itself. Azo analog I selectively suppressed thromboxane A2 formation with an accompanying, parallel, suppression of the platelet aggregation. Imidazole selectively suppressed thromboxane A2 formation, but only suppressed the accompanying aggregation in platelet rich plasma, and not washed platelet suspensions. The results indicate that azo analog I functions by competitive inhibition of prostaglandin H2 on the thromboxane synthetase, and that imidazole, while it suppresses thromboxane A2 formation, may have an associated agonist activity that enhances platelet aggregation. The data presented support this hypothesis, and they emphasize the importance of thromboxane A2 in arachidonate mediated platelet aggregation.  相似文献   

2.
Platelet rich plasma transforms exogenous prostaglandin endoperoxide H2 into thromboxane A2 immediately prior to the initiation of irreversible aggregation. Selective thromboxane synthetase inhibitors block thromboxane A2 formation and aggregation. Thromboxane A2 formation appears to be essential during arachidonate mediated aggregation. The results presented reconcile the previously accepted paradoxical behavior of thromboxane synthetase in platelet rich plasma toward the prostaglandin endoperoxide H2 substrate.  相似文献   

3.
We have investigated the time course of formation of thromboxane A2, thromboxane B2, and the C-17 hydroxy fatty acid, HHT, from arachidonic acid in a washed human platelet suspension. Our results indicate that HHT is not a breakdown product of thromboxane A2, but rather thromboxane A2 decomposes exclusively into thromboxane B2. The kinetics of formation of thromboxane B2 from the endoperoxide prostaglandin H2 in human platelet microsomes was examined. Our data suggest that a bimolecular reaction is involved in the formation of thromboxane A2 from prostaglandin H2 and that thromboxane synthase is not an isomerase, but may be acting via a dismutase-type reaction. One possibility is that thromboxane and HHT are produced simultaneously from two molecules of prostaglandin H2.  相似文献   

4.
Thromboxane A2 plays and important role in arachidonic acid- and prostaglandin H2-induced platelet aggregation. Agents that stimulate platelet adenylate cyclase (prostaglandin I2, prostaglandin I1, and prostaglandin E1) and dibutyryl cyclic AMP inhibit both thromboxane A2 formation and arachidonate-induced aggregation platelet-rich plasma. Despite complete suppression of aggregation with agents that elevate cyclic AMP, considerable thromboxane A2 is still formed. Prostaglandin H2-induced aggregations which bypass the cyclooxygenase regulatory step are also inhibited by agents that elevate cyclic AMP without any measurable effect on thromboxane A2 production. These data demonstrate that cyclic AMP can inhibit platelet aggregation by a mechanism independent of its ability to suppress the cycyooxygenase enzyme. Parallel experiments with washed platelet preparations suggest that they may be an inadequate mode for studying relationship between the platelet cyclooxygenase and platelet function.  相似文献   

5.
Dog platelets challenged with arachidonic acid fail to aggregate but synthesize a substance which aggregates rabbit and human platelets, this aggregation being suppressed by dibutyryl cyclic AMP. The aggregating substance contracts strips of rabbit aorta and of coeliac and mesenteric arteries, is soluble in diethyl ether, has a half-life of about 40 seconds at 37°C and of 100 seconds at 22°C. Its generation is blocked by various inhibitors of prostaglandin biosynthesis. The thromboxane A2 synthetase inhibitor imidazole and its analogue benzimidazolamine also suppress generation of vessel contracting activity in incubates of dog platelets and prostaglandin H2. Since dog platelets also transform prostaglandin H2 into thromboxane A2 their failure to aggregate, when stimulated by arachidonic acid or by prostaglandin H2, is not due to lack of thromboxane synthesizing ability.  相似文献   

6.
Addition of the one-, two- or three- series endoperoxide to human platelet-rich plasma tend to supress aggregation, through the action of their respective non-enzymatic breakdown products PGE1, PGD2, or PGD3 all of which elevate cyclic AMP levels. On the other hand, these stable primary products do not arise in appreciable amounts from intrinsic endoperoxides generated from either endogenous or exogenous free fatty acids. 5,8,11,14,17-Eicosapentaenoic acid (EPA) suppresses arachidonic acid (5,8,11,14-eicosatetraenoic acid) conversion by cycloogygenase (as well as lipoxygenase) to aggregatory metabolites in platelets. Exogenously added EPA was capable of inhibiting PRP aggregation induced either by exogenous or endogenous (released by ADP or collagen) arachidonate. The hypothetical combination of an EPA-rich diet and a thromboxane synthetase inhibitor might abolish production of the pro-aggregatory species, thromboxane A2, and enhance formation of the anti-aggregatory metabolite, prostacyclin.Whereas EPA is not detectably metabolized by platelets, dihomo-γ-linolenic acid (8,11,14,-eicosatrienoic acid) is primariley converted by cyclooxygenase and thromboxane synthetase into the inactive metabolite, 12-hydroxyheptadecadienoic (HHD) acid. Pretreatment of human platelet suspensions with the thromboxane synthetase inhibitor imidazole unmasks the aggregatory property of PGH1 and DLL which was partially compromised by the PGE1 formed. The combination of the thromboxane synthetase inhibitor and an adenylate cyclase inhibitor unmasks a complete irreversible aggregation by DLL or PGH1. The basis of a dietary strategy that replaces AA with DLL must rely on the production by the platelet of an inactive metabolite (HHD) rather than thromboxane A2.  相似文献   

7.
The thromboxane synthetase inhibitor, 9,11-azoprosta-5,13-dienoic acid, blocks both platelet aggregation and the cyclic AMP lowering activity of the prostaglandin endoperoxide PGH2. These data indicate PGH2 must be converted into thromboxane A2 in order to lower cAMP or induce platelet aggregation.  相似文献   

8.
Imidazole inhibits the enzymatic conversion of the endoperoxides (PGG2 and PGH2) to thromboxane A2 by platelet microsomes (IC50: 22 μg/ml; determined by bioassay). The inhibitor is selective, for prostaglandin cyclo-oxygenase is only affected at high doses. Radiochemical data confirms that imidazole blocks the formation of 14C-thromboxane B2 from 14C-PHG2. Several imidazole analogues and other substances were tested but only 1-methyl-imidadole was more potent that imidazole iteself. The use of imidazole of inhibit thromboxane formation could help to elucidate the role of thromboxanes in physiology or pathophysiology.  相似文献   

9.
Clausine-D inhibited concentration-dependently the aggregation and release of washed rabbit platelets induced by arachidonic acid and collagen, without affecting those induced by U46619, PAF and thrombin. The IC50 values of clausine-D on arachidonic acid-and collagen-induced platelet aggregation were calculated to be 9.0±1.1 and 58.9±0.9 μM, respectively. Thromboxane B2 and prostaglandin D2 formation in platelets caused by arachidonic acid were also suppressed. Clausine-D inhibited increased intracellular concentration of calcium in platelets caused by arachidonic acid and collagen, and also abolished the generation of inositol monophosphate caused by arachidonic acid, but not that by collagen U46619, PAF and thrombin. In human citrated platelet-rich plasma, clausine-D inhibited the secondary phase, but not the primary phase, of aggregation induced by epinephrine and ADP. These results indicate that the antiplatelet effect of clausine-D is due to inhibition of the formation of thromboxane A2.  相似文献   

10.
Three clinically efficacious vasodilatory drugs were found to be selective inhibitors of thromboxane A2 biosynthesis. Hydralazine, dipyridamole, and diazoxide inhibited platelet aggregation at 1 × 10?4 M, 1.75 × 10?4 M, and 2 × 10?3 M respectively. Their relative inhibitory potencies on thromboxane B2 production in human platelet microsomes were examined and found to be similar to that observed for their inhibition on human platelet aggregation. At 10?3 M, hydralazine, dipyridamole, and diazoxide inhibited thromboxane B2 formation by 65 percent, 27 percent and 18 percent respectively. These compounds were examined in the sheep vesicular gland system, and they were shown not to be inhibitors of the cyclooxygenase enzyme. Thus, the inhibition of thromboxane A2 biosynthesis by these three drugs in human platelet microsomes appeared to be specific at the thromboxane synthetase level.  相似文献   

11.
The effects of a coronary vasoconstrictor, obtained from human blood plasma, on aggregation and arachidonate metabolism by human platelets was determined. At low concentrations, the vasoactive factor stimulated formation of prostaglandins, thromboxane B2, and 12-L-hydroxyeicosatetraenoic acid in both intact platelets and in platelet microsomal enzyme preparations. As factor concentration was increased, thromboxane B2 formation decreased, but production of the other products continued to rise. Low concentrations of factor initiated platelet aggregation, whereas high concentrations prevented arachidonate-induced aggregation. Low levels of factor could induce aggregation via stimulation of thromboxane A2 production. Increases in formation of 12-hydroperoxyeicosatetraenoic acid at high factor concentrations could inhibit formation of thromboxane A2 and thus prevent aggregation.  相似文献   

12.
The effects of imidazole, 1-methyl-imidazole and benzimidazole on bone metabolism in vitro were investigated. The relative potencies of these compounds with respect to the inhibition of bone resorption was found to be comparable to their relative effectiveness as inhibitors of platelet microsome thromboxane synthetase activity. Since studies by others have shown that thromboxanes are produced by resorbing bone in vitro, these results suggest that the inhibition of bone resorption by imidazole is related to the inhibition of thromboxane A2 formation. This could imply that thromboxane A2 is an additional arachidonic acid oxidation product that is of importance in the regulation of bone metabolism.  相似文献   

13.
Platelet rich plasma transforms exogenous prostaglandin endoperoxide H2 into thromboxane A2 immediately prior to the initiation of irreversible aggregation. Selective thromboxane synthetase inhibitors block thromboxane A2 formation and aggregation. Thromboxane A2 formation appears to be essential during arachidonate mediated aggregation. The results presented reconcile the previously accepted paradoxical behavior of thromboxane synthetase in platelet rich plasma toward the prostaglandin endoperoxide H2 substrate.  相似文献   

14.
The effects on human platelets of two synthetic analogues of prostaglandin endoperoxides were examined in order to explore the relationship between aggregation and prostaglandin and cyclic nucleotide metabolism, and to help elucidate the role of the natural endoperoxide intermediates in regulating platelet function.Both analogues (Compound I, (15S)-hydroxy-9α,11α-(epoxymethano)-prosta-(5Z,13E)-dienoic acid, and Compound II, (15S)-hydroxy-11α,9α-(epoxymethano)-prosta-(5Z,13E)-dienoic acid) caused platelets to aggregate, an effect which could be inhibited by prostaglandin E1 but not by indomethacin. Compound II produced primary, reversible aggregation at concentrations which did not induce release of 5-hydroxytryptamine. Production of thromboxane B2 and malonyldialdehyde was monitored as an index of endogenous production of prostaglandin endoperoxides and thromboxane A2 and were increased after incubation of human platelets with thrombin, collagen or arachidonic acid. However, neither malonydialdehyde nor thromboxane B2 levels were significantly influenced by the endoperoxide analogues. Both analogues produced a small elevation of adenylate cyclase activity in platelet membranes and of cyclic AMP content in intact platelets, but neither had any modifying effect on the much greater stimulation of adenylate cyclase and cyclic AMP levels by prostaglandin E1. Of all the aggregating agents tested, only arachidonic acid produced any significant increase in platelet cyclic GMP levels.These results suggest that the epoxymethano analogues of prostaglandin endoperoxides induce platelet aggregation independently of thromboxane biosynthesis and without inhibiting adenylate cyclase or lowerin platelet cyclic AMP levels. They therefore differ from better known aggregating agents such as ADP, epinephrine and collagen, which increase thromboxane A2 production and reduce cyclic AMP levels, at least in platelets previously exposed to prostaglandin E1.  相似文献   

15.
CGS 13080 inhibited cell-free thromboxane synthetase with an IC50 of 3 nM. It was at least five orders of magnitude less potent toward other key enzymes involved in arachidonic acid metabolism. Submicromolar concentrations inhibited calcium ionophore-induced formation of thromboxane B2 by intact human platelets with concomitant accumulation of prostaglandin E2. Oral doses lower than 1 mg/kg in rats suppressed the elevations of plasma thromboxane B2 induced by calcium ionophore. This was attended by shunting of endoperoxide substrate to 6-keto-prostaglandin F1α and prostaglandin E2. CGS 13080 is one of the most potent and selective thromboxane synthetase inhibitors yet identified.  相似文献   

16.
The prostaglandin endoperoxide PGH2, HHT, HETE, thromboxane A2, and thromboxane B2, which are all products of arachidonic acid metabolites of human platelets, were tested for their ability to modulate platelet cyclic nucleotide levels. None of the compounds tested altered the basal level of cAMP or cGMP, and only PGH2 and thromboxane A2 inhibited PGE1-stimulated cAMP accumulation. Thromboxane A2 was found to be a more potent inhibitor of PGE1-stimulated cAMP accumulation and inducer of platelet aggregation thatn PHG2.  相似文献   

17.
A radioimmunoassay was developed for a mono-O-methyl derivative of thromboxane B2. The antibodies showed high specificity for this compound and cross reacted only 1.2% with thromboxane B2 and less than 0.1% with prostaglandins and prostaglandin metabolites. The method had a sensitivity of 7 picog. The radioimmunoassay was employed in studies where thromboxane A2 was generated in human platelets and immediately converted into mono-O-methyl thromboxane B2 by treatment of the sample with a large volume of methanol. In some of the experiments, thromboxane B2 was simultaneously measured by a separate radioimmunoassay. Using these two assays it was demonstrated that thromboxane A2 could be detected only during the earlier stages of the platelet aggregation, whereas thromboxane B2 rapidly reached a constant level. In a separate experiment, the half-life of thromboxane A2 in buffer was found to be 32.5±2.5 (S.D.) sec at 37°C; the compound was more stable at lower temperatures. The for thromboxane A2 was also considerably longer in plasma.  相似文献   

18.
Previous studies have demonstrated that 13-azaprostanoic acid (13-APA) is a potent and specific antagonist of thromboxane A2/prostaglandin H2 (TXA2/PGH2) at the platelet receptor level. In the present study we evaluated the effects of a new azaprostanoid, 2-(6-carboxyhexyl) cyclopentanone hexylhydrazone (CPH), on human platelet function. This hydrazone was found to completely inhibit arachidonic acid (AA)-induced platelet aggregation at 1 uM CPH. On the other hand, CPH was not an effective inhibitor of PGH2-induced aggregation. Furthermore, 100 uM CPH was completely ineffective in blocking platelet aggregation stimulated by adenosine diphosphate (ADP) or the stable prostaglandin endoperoxide analog U46619 (which presumably acts at the TXA2/PGH2 receptor). Measurement of platelet thromboxane B2 (TXB2) production demonstrated that the primary site-of-action of CPH is at the cyclo-oxygenase level. Thus, CPH inhibited TXB2 formation from AA in a dose-dependent manner (0.1 uM–100 uM CPH)2. In contrast, CPH blocked TXB2 production from PGH2 only at the highest CPH concentration tested, i.e., 100 uM. These results indicate that relative to 13-APA, addition of a second nitrogen at C14 and a double bond between the 12- and 13- positions results in a loss of receptor activity but produces a high affinity for the platelet cyclo-oxygenase.  相似文献   

19.
Homogenates of phagocytosing polymorphonuclear leukocytes obtained from rabbit peritoneum were incubated with the prostaglandin endoperoxides PGG2 or PGH2. After 2 min at 0°C, incubation mixtures contained an increased rabbit aorta contracting activity. Ether extracts of incubation mixtures contained a substance which contracted the superfused strips of rabbit aorta and coeliac artery and had a half life which was similar to thromboxane A2. The generation of thromboxane A2-like activity from PG endoperoxides was prevented by boiling the homogenate prior to incubation, or by pretreatment with benzydamine, a drug which blocks thromboxane formation in platelets. Production of thromboxane A2-like material by leukocyte homogenates was compared with platelet microsomal thromboxane synthetase.  相似文献   

20.
A newly synthesized 9α-homo-9,11-epoxy-5,13-prostadienoic acid analogue, SQ 26,536, (8(R)9(S)11(R)12(S)-9α-homo-9,11-epoxy-5(Z), 13(E)-15S-hydroxyprostadienoic acid) inhibited arachidonic acid (AA)-induced platelet aggregation with an I50 value of 1.7 μ . SQ 26,536 did not inhibit prostaglandin (PG) synthetase activity of bovine seminal vesicle microsomes or thromboxane (Tx) synthetase activity of lysed human blood platelets. SQ 26,536 also inhibited platelet aggregation induced by epinephrine (secondary phase), 9,11-azoPGH2 and collagen but did not inhibit the primary phase of epinephrine-induced aggregation or ADP-induced platelet aggregation. SQ 26,538 (8(R)9(S)11(R)12(S)-9α-homo-9-, 11-epoxy-5(Z),13(E)-15R-hydroxyprostadienoic acid), a 15-epimer of SQ 26,536, induced platelet aggregation with an A50 value of 2.5 μ . SQ 26,536 competitively inhibited SQ 26,538-induced platelet aggregation with a Ki value of 3 μ . Neither indomethacin, a PG synthetase inhibitor, nor SQ 80,338 (1-(3-phenyl-2-propenyl)-1H-imidazole), a Tx synthetase inhibitor, inhibited SQ 26,538- or 9,11-azoPGH2-induced platelet aggregation. These data indicate that SQ 26,536 and SQ 26,538 are stable antagonist and agonist, respectively, of the human blood platelet thromboxane receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号