首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Receptors for thyrotropin-releasing hormone were solubilized by Triton X-100. Membrane fractions from GH3 pituitary tumor cells were incubated with thyrotropin-releasing hormone in order to saturate specific receptor sites before the addition of detergent. The amount of protein-bound hormone solubilized by Triton X-100 was proportional to the fractional saturation of specific membrane receptors. Increasing detergent:protein ratios from 0.5 to 20 led to a progressive loss of hormone . receptor complex from membrane fractions with a concomitant increase in soluble protein-bound hormone. The soluble hormone . receptor complex was not retained by 0.22 micron filters and remained soluble after ultracentrifugation. Following incubation with high (2.5--10%) concentrations of Triton X-100 and other non-ionic detergents, or following repeated detergent extraction, at least 18% of specifically bound thyrotropin-releasing hormone remained associated with particulate material. Unlike the hormone receptor complex, the free hormone receptor was inactivated by Triton X-100. A 50% loss of binding activity was obtained with 0.01% Triton X-100, corresponding to a detergent:protein ratio of 0.033. The hormone . receptor complex was included in Sepharose 6B and exhibited an apparent Stoke radius of 46 A in buffers containing Triton X-100. The complex aggregated in detergent-free buffers. Soluble hormone receptors were separated from excess detergent and thyrotropin-releasing hormone by chromatography on DEAE-cellulose. Thyrotropin-releasing hormone dissociated from soluble receptors with a half-time of 120 min at 0 degrees C, while the membrane hormone . receptor complex was stable for up to 5 at 0 degrees C.  相似文献   

2.
Gonadotropin receptors which bind luteinizing hormone (lutropin) and human chorionic gonadotropin (hCG) in the ovaries of immature female rats showed a 30-fold increase after treatment of animals with pregnant mare serum gonadotropin (PMSG) and hCG. This marked induction of lutrophin/hCG receptors in the rat ovary was not accompanied by a change in binding affinity for labeled hCG. Such luteinized ovaries have been found consistently to contain a small proportion of soluble receptor sites, which comprised about 5% of the total receptor population. The soluble receptor sites were present in the floating lipid fraction of the 360 000 × g supernatant of homogenate prepared from luteinized ovaries, and could not be detected in similar fractions prepared from interstitial cells or homogenates of the normal rat testis.The physico-chemical properties of the spontaneously soluble ovarian receptors were similar to those derived for detergent-solubilized receptors prepared by extraction of particulate ovarian binding fractions with Triton X-100. The affinity constant to the soluble ovarian receptor sites for [125I]hCG was 0.70 · 1010 M?1, and that of the receptors solubilized by Triton X-100 was 0.72 · 1010 M?1. The sedimentation pattern of the soluble receptors during sucrose density gradient centrifugation showed extensive aggregation into rapidly sedimenting forms. However, centrifugation of the cytosol receptor in the presence of Triton X-100 gave a single 6.5 S component, corresponding to the solubilized receptors previously characterized in detergent extracts of the rat ovary and testis.The pesence of a spontaneously soluble lutropin/hCG receptor in ovarian cytosol fractions suggests that rapid synthesis and assembly of receptors in ovaries of PMSG-hCG-treated rats is accompanied by increased production of cytoplasmic receptor precursors; alternatively, this receptor population may represent a fraction that has been internalized or processed as during receptor turnover in the cell membrane.  相似文献   

3.
The gonadotropin receptors associated with plasma membrane fractions were solubilized by detergents, including Triton X-100, Lubrol WX, Lubrol PX and sodium deoxycholate before and after equilibration with 125I-labelled human chorionic gonadotropin. The binding activity remained in solution even after centrifugation at 300 000 × g for 3 h. The solubilized gonadotropin receptor or gonadotropin receptor complex was characterized by gel filtration and sucrose density gradient centrifugation. Sucrose density gradient centrifugation of solubilized gonadotropin-receptor complex in the presence of Triton X-100 had a sedimentation coefficient of 6.5 S whereas the solubilized uncomplexed receptor had a sedimentation coefficient of 5.1 S. In the absence of the detergent, solubilized hormone receptor complex from plasma membrane fractions I and II sedimented with a apparent sedimentation coefficient of 6.6 S and 7.4 S, respectively. Similary, the free receptor also showed higher sedimentation profile with a apparent sedimentation coefficient of 6.7 S for fraction I and 7.2 S for fraction II. Treatment of plasma membranes with phospholipase A and C inhibited the binding of 125I-labelled human chorionic gonadotropin in a dose dependent manner, whereas phospholipase D was without any effect. Doses of 1.4 mI.U. of phospholipase A or 0.6 mI.U. of phospholipase C were required to produce 50% inhibition of the binding activity. These phospholipases had no effect on the performed 125I-labelled human chorionic gonadotropin-receptor complex nor on the sedimentation profile of solubilized gonadotropin receptor complex.  相似文献   

4.
The gonadotropin receptors associated with plasma membrane fractions were solubilized by detergents, including Triton X-100, Lubrol WX, Lubrol PX and sodium deoxycholate before and after equilibration with 125I-labelled human chorionic gonadotropin. The binding activity remained in solution even after centrifugation at 300 000 X g for 3 h. The solubilized gonadotropin receptor or gonadotropin receptor complex was characterized by gel filtration and sucrose density gradient centrifugation. Sucrose density gradient centrifugation of solubilized gonadotropin-receptor complex in the presence of Triton X-100 had a sedimentation coefficient of 6.5 S whereas the solubilized uncomplexed receptor had a sedimentation coefficient of 5.1 S. In the absence of the detergent, solubilized hormone receptor complex from plasma membrane fractions I and II sedimented with an apparent sedimentation coefficient of 6.6 S and 7.4 S, respectively. Similarly, the free receptor also showed higher sedimentation profile with an apparent sedimentation coefficient of 6.7 S for fraction I and 7.2 S for fraction II. Treatment of plasma membranes with phospholipase A and C inhibited the binding of 125I-labelled human chorionic gonadotropin in a dose dependent manner, whereas phospholipase D was without any effect. Doses of 1.4 mI. U. of phospholipase A or 0.6 mI.U. of phospholipase C were required to produce 50% inhibition of the binding activity. These phospholipases had no effect on the preformed 125I-labelled human chorionic gonadotropin-receptor complex nor on the sedimentation profile of solubilized gonadotropin receptor complex.  相似文献   

5.
M Gavish 《Life sciences》1983,33(15):1479-1483
Benzodiazepine receptors were solubilized from calf brain cortex by the ionic detergent deoxycholate and by the nonionic detergent Triton X-100. Approximately 90% of the soluble benzodiazepine receptors of both preparations were heat inactivated within 30 min at 55 degrees C. 100 microM of gamma-aminobutyric acid (GABA) protected 80% of Triton X-100 solubilized benzodiazepine receptors and 56% of the deoxycholate soluble benzodiazepine receptors from heat inactivation. Time course of heat inactivation showed that the deoxycholate soluble receptors are more sensitive to heat than the Triton X-100 soluble receptors.  相似文献   

6.
The hydrodynamic properties of rat hepatic prolactin receptors have been determined by a combination of gel chromatography and ultracentrifugation. Prolactin receptors were detergent extracted from partially purified plasma membranes prepared from female rat livers. Fifteen different nonionic detergents were tested for solubilizing prolactin receptors, including Triton X-100, Polyoxyethylene W-1, Lubrol WX, detergents of the Tween and Brij series, and digitonin. When the receptors were detergent solubilized after ligand was bound to the receptor, 1% Triton X-100 had the highest efficacy of solubilization. However, if the receptors were solubilized prior to exposure to ligand, maximum binding was to receptors solubilized with 0.25% Triton X-100. The Kd of 43.2–74.5 pM for binding to the soluble receptor was three to fivefold lower than the Kd for the membrane receptor. Gel chromatography (Bio-Gel A-1.5m, 2.5 × 50 cm) of the soluble receptor indicated a Stokes radius (Rs) of 5.0 nm for the hormonereceptor-detergent complex. The hydrodynamic properties of the receptor-detergentligand complex were determined by centrifugation in 5–20% sucrose gradients in H2O and in D2O. They are v? = 0.7; s20,w = 4.7; ff0 = 1.49; Mr = 118,000 for the complex, 73,000 for the receptor alone. Approximately 0.22 mg of Triton X-100 is estimated bound per milligram of protein. This represents about 25 mol detergent/mol receptor.  相似文献   

7.
Adenylate cyclase and the [8-lysine]vasopressin receptor were solubilized from pig kidney medulla membranes using the nonionic detergent Triton X-100. Optimal conditions for solubilization were under continuous stirring in a medium containing 0.5% (/v) Triton X-100, 100 mM Tris-HCl, pH 8, and 10 mM MgCl2. Both adenylate cyclase activity and [3H][8-lysine]vasopressin binding activity were recovered in a -26,000 X g supernatant of detergent-treated membranes. The yield of solubilized adenylate cyclase was nearly 100%. The soluble enzyme was no longer sensitive to antidiuretic hormone but was slightly activated by sodium fluoride. The affinity of the soluble receptor for [8-lysine]vasopresin was les than that of the membrane-bound receptor (mean apparent Km values, respectively 10(-7) M and 2 X 10(-8) M), however binding cooperativity was preserved. Hill coefficients were 1.42 for the soluble receptor and 1.50 for the membrane receptor. The soluble receptor discriminated as efficiently as did the membrane receptor between [8-lysine-a1vasopressin and oxytocin. The yield of spolubilized receptor was only 30% despite the fact that all binding activity had disappeared from the residual pellet of detergent-treated membranes. When the membranous receptors were occupied before solubilization and the latter was performed under conditions in which dissociation of the hormone-receptor comples is slow, i.e. at low temperature, 65% to 100% of the hormone-receptor complex was recovered in the soluble fraction. The soluble hormone-receptor complex partially dissociated on rewarming whereas the free hormone concentration was kept unchanged in the medium. The residual binding capacity, which was 30% of the initial value, was identical with that determined when the receptor was solubilized in free form before incubation with labeled hormone. It was concluded that (a) solubilization of the receptor molecules was complete, (b) during solubilization two forms of the receptor appear, of which only one is accessible to the hormone, (c) occupancy of the receptor by the hormone prevented the formation of the nonaccessible form, and (d) some component or components of the soluble fraction might be responsible for the loss in apparent affinity.  相似文献   

8.
Receptors for 125I-labelled human prolactin have been identified in the crude membrane fraction isolated from human ovarian tissue. The non-ionic detergent Triton X-100, has been used to solubilize the membrane fraction. The presence of the receptor in the detergent extract was demonstrated by gel filtration and sucrose density gradient centrifugation. The binding was time-temperature dependent, being maximal at 23 degrees C after 15 h of incubation. Large amounts of other peptide hormones did not inhibit the binding of 125I-labelled human prolactin. The binding Scatchard analysis demonstrated that the affinity of the soluble receptor (Ka 1.13 +/- 0.15 X 10(10) M-1) for the labelled hormone was slightly greater than that of the crude membrane fraction (Ka 0.91 +/- 0.12 X 10(10) M-1). The binding capacity of the solubilized receptor was also significantly greater than that seen in the particulate before solubilization. The apparent Stokes radius of the solubilized receptor was estimated to be 57 A and that the hormone-receptor complex 60 A. The sedimentation coefficient of the solubilized receptor was 7.0 +/- 0.1 s, whereas that of the hormone-receptor complex was 7.5 +/- 0.2 s.  相似文献   

9.
Limited proteolysis was used to probe and compare the conformation of the rat lung vasoactive intestinal peptide (VIP) receptor in membrane-bound and detergent-solubilized states. It had been shown previously that the activity of the detergent-solubilized VIP receptor is sensitive to the nature of the detergent used for extraction (Patthi, S., Simerson S. and Velicelebi, G. (1988) J. Biol. Chem., 263, 19363-19369). Receptors that were extracted from the membrane using digitonin retained the ability to bind 125I-VIP, while those solubilized in Triton X-100 displayed little or no detectable activity. In order to correlate the differences observed in the activity of the receptor with its folded state, membrane-bound and detergent-solubilized receptors were covalently labeled with 125I-VIP and subjected to limited proteolysis using trypsin, chymotrypsin or carboxypeptidase Y. Digitonin-solubilized receptors most closely resembled the membrane-bound protein in terms of protease sensitivity and proteolytic cleavage products. By contrast, receptors solubilized in Triton X-100 displayed increased sensitivity to proteases and produced distinctly different proteolytic patterns. Thus, the differences observed in the activities of receptors solubilized in digitonin and those solubilized in Triton X-100 could be correlated with detectable differences in the conformation of the protein in each respective detergent solution. These results suggest that digitonin provides an environment that is more compatible with the native folded state of the receptor, similar to its conformation in the membrane.  相似文献   

10.
Somatostatin receptors of plasma membranes from beta cells of hamster insulinoma were covalently labelled with 125I-[Leu8,D-Trp22,Tyr25]somatostatin-28 (125I-somatostatin-28) and solubilized with the non-denaturing detergent Triton X-100. Analysis by SDS/PAGE and autoradiography revealed three specific 125I-somatostatin-28 receptor complexes with similar molecular masses (228 kDa, 128 kDa and 45 kDa) to those previously identified [Cotroneo, P., Marie, J.-C. & Rosselin, G. (1988) Eur. J. Biochem. 174, 219-224]. The major labelled complex (128 kDa) was adsorbed to a wheat-germ-agglutinin agarose column and eluted by N-acetylglucosamine. Also, the binding of 125I-somatostatin-28 to plasma membranes was specifically inhibited by the GTP analog, guanosine-5'-O-(3-thiotriphosphate) (GTP[S]) in a dose-dependent manner. Furthermore, when somatostatin-28 receptors were solubilized by Triton X-100 as a reversible complex with 125I-somatostatin-28, GTP[S] specifically dissociated the bound ligand to a larger extent from the soluble receptors than from the plasma-membrane-embedded receptors, the radioactivity remaining bound after 15 min at 37 degrees C being 30% and 83% respectively. After pertussis-toxin-induced [32P]ADP-ribosylation of pancreatic membranes, a 41-kDa [32P]ADP-ribose-labelled inhibitory guanine nucleotide binding protein coeluted with the 128-kDa and 45-kDa receptor complexes. The labelling of both receptor proteins was sensitive to GTP[S]. The labelling of the 228-kDa band was inconsistent. These results support the conclusion that beta cell somatostatin receptors can be solubilized as proteins of 128 kDa and 45 kDa. The major labeled species corresponds to the 128-kDa band and is a glycoprotein. The pancreatic membrane contains a 41-kDa GTP-binding protein that can complex with somatostatin receptors.  相似文献   

11.
—Highly purified fractions of synaptic vesicles were prepared from rat cerebrum or cerebral cortex by density gradient centrifugation. Treatment of synaptic vesicle fractions by autoincubation, freeze-thawing and sonication in an isotonic alkaline-salt medium or in 0·1-0·3% (v/v) Triton X-100 released increasing quantities of synaptic vesicle protein and phospholipid into solution. When the soluble synaptic vesicle proteins were extracted with 0·1% (v/v) Triton X-100, the insoluble residue consisted mostly of 5–8 nm-thick membranes resembling the limiting membranes of intact synaptic vesicles. This finding, together with other considerations, suggested that the soluble proteins and accompanying phospholipids originated from the interior of the synaptic vesicles. A 0·3% (v/v) Triton X-100 extract of synaptic vesicle was fractionated by ultracentrifugal flotation and dialysis into three lipoprotein fractions: a low density lipoprotein (d < 1·21 g/ml), a high density lipoprotein (d = 1·21–1·35 g/ml) and a very high density lipoprotein (d > 1·35 g/ml). The phospholipid contents of the low, high and very high density lipoprotein fractions were 0·74, 0·38 and 0·20 mg/mg of protein, respectively. All three apolipoproteins had a high ratio of acidic to basic, and of polar to nonpolar, amino acids, and were rich in glycine, alanine and serine. Polyacrylamide gel electrophoresis of the alkaline-salt and Triton X-100 extracts of synaptic vesicles at pH 8·8 resolved a single anionic component which stained for protein, lipid (Sudan black B; iodine) and anionic groups (acridine orange). Polyacrylamide gel electrophoresis of synaptic vesicle extracts at pH 2·7 in 5 m urea and 0·25% (v/v) Triton X-100 resolved about 20 protein components. However, the protein profiles of electropherograms of the Triton X-100 and alkaline-salt extracts differed in certain respects, suggesting that these media to some extent solubilized different proteins. However, most of the protein bands in electropherograms of the Triton X-100 and alkaline-salt extracts also stained for lipid and anionic groups. In addition, two lipoprotein components in the alkaline-salt extract and four in the Triton X-100 extract contained carbohydrate. Isoelectric focusing of synaptic vesicle extracts resolved 6–8 protein fractions. The major fraction in Triton X-100 and alkaline-salt extracts had an apparent isoelectric point of approximately 4·2 and contained 0·24 mg of phospholipid per mg of protein. Soluble synaptic vesicle proteins released by incubating, freeze-thawing and sonicating in the alkaline-salt medium, and protein fractions of the latter obtained by electrofocusing had an absorption maximum of 260–265 nm which was enhanced in a cold 0·5 n perchloric acid extract, an observation suggesting the presence of a bound nucleotide. These findings demonstrate that rat brain synaptic vesicles contain a heterogenous array of soluble acidic lipoproteins which vary in buoyant density, lipid content, amino acid and carbohydrate composition and electrophoretic mobility in polyacrylamide gels. These acidic lipoproteins apparently comprise the bulk of the macromolecular contents of synaptic vesicles and probably serve as ‘carrier’ proteins for the binding and sequestration of the neurotransmitters.  相似文献   

12.
Rabbit intestinal microvillus membranes possess high-affinity receptors for iron whose activity reflects homeostatic changes in mucosal iron transport. To isolate and characterize these membrane components, purified microvilli were radiolabelled with 59Fe(II) and solubilized in Triton X-100. 59Fe in 105000g supernatants co-eluted with a major broad protein peak (Mr approx. 100000) on gel-permeation chromatography and was rendered diffusible by Pronase digestion but not mild periodate degradation. Fluorescence studies with castor-bean lectin conjugates showed specific binding of this affinity probe exclusively to brush-border membranes in the intestinal epithelium. Affinity chromatography of solubilized membrane proteins showed binding to columns of immobilized lectin. Elution with D(+)-galactose released glycoprotein-bound 59Fe purified up to sevenfold over initial membrane extracts. The lectin bound up to 82% of protein-bound 59Fe. In contrast polyspecific antisera raised against rabbit microvilli in guinea-pigs precipitated less than 10% of solubilized radioactivity. Significantly more protein-bound 59Fe in detergent extracts of microvilli purified from bled animals interacted specifically with the lectin, suggesting that membrane glycoprotein receptors are involved in the homeostatic control of intestinal iron transport.  相似文献   

13.
1. A fraction enriched in plasma membranes of human tumour KB cell line, a permissive cell for adenovirus type 5, was obtained. 2. Electrophoresis of the membranes in polyacrylamide gels with buffers containing sodium dodecyl sulphate showed that the membranes after reduction with 2-mercaptoethanol contained over 20 polypeptide species. Three polypeptides were glycosylated and had apparent mol.wts. of 92000, 72000 and 62000. 3. The glycoproteins and the specific receptors responsible for adenovirus adsorption to the membranes were readily extracted into solutions containing low concentrations of Triton X-100. Glycolipids and proteins were also made soluble. A membranous residue obtained after Triton X-100 extraction was enriched in several proteins that appeared to consist of polypeptides of lower molecular weight than the average of KB membrane polypeptides. 4. Sphingomyelin, cholesterol and triglycerides were similarly concentrated in the insoluble residue remaining after successive extractions of KB membranes with Triton X-100. Further, ceramide trihexoside was significantly less easily extracted from KB membranes than lactosyl ceramide. 5. The differences noted in the ease of extraction of membrane components are discussed. 6. The components of membranes made soluble by detergent extraction and containing the large part of the KB membrane glycoproteins were subjected to chromatography on Sepharose 6B and DEAE-cellulose and to isoelectric focusing in the presence of buffers containing Triton X-100. In general, the degree of separation into fractions enriched in individual glycoproteins was disappointing. Possible reasons for the poor fractionation of membrane components by chromatographic systems conveniently used for purification of proteins and glycoproteins of non-membranous origin are briefly discussed.  相似文献   

14.
Activation and membrane binding of carboxypeptidase E   总被引:3,自引:0,他引:3  
Carboxypeptidase E (CPE) is a carboxypeptidase B-like enzyme that is thought to be involved in the processing of peptide hormones and neurotransmitters. Soluble and membrane-associated forms of CPE have been observed in purified secretory granules from various hormone-producing tissues. In this report, the influence of membrane association on CPE activity has been examined. A substantial amount of the membrane-associated CPE activity is solubilized upon extraction of bovine pituitary membranes with either 100 mM sodium acetate buffer (pH 5.6) containing 0.5% Triton X-100 and 1 M NaCl, or by extraction with high pH buffers (pH greater than 8). These treatments also lead to a two- to threefold increase in CPE activity. CPE extracted from membranes with either NaCl/Triton X-100 or high pH buffers hydrolyzes the dansyl-Phe-Ala-Arg substrate with a lower Km than the membrane-associated CPE. The Vmax of CPE present in extracts and membrane fractions after the NaCl/Triton X-100 treatment is twofold higher than in untreated membranes. Treatment of membranes with high pH buffers does not affect the Vmax of CPE in the soluble and particulate fractions. Pretreatment of membranes with bromoacetyl-D-arginine, an active site-directed irreversible inhibitor of CPE, blocks the activation by NaCl/Triton X-100 treatment. Thus the increase in CPE activity upon extraction from membranes is probably not because of the conversion of an inactive form to an active one, but is the result of changes in the conformation of the enzyme that effect the catalytic activity.  相似文献   

15.
Rat lung membrane vasoactive intestinal peptide (VIP) receptors were covalently labeled with 125I-VIP, extracted in Triton X-100 and n-octyl-beta-D-glucopyranoside, and analyzed by gel filtration and sucrose density gradient sedimentation. The fractions were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography, and the identity of the 125I-VIP.receptor complex was demonstrated by its co-migration with the covalently labeled 55-kDa receptor unit identified previously. Furthermore, the radioactivity in the peak corresponding to the 125I-VIP.receptor complex was displaced in the presence of unlabeled VIP in a dose-dependent manner. The following hydrodynamic properties were determined for VIP receptors in each detergent solution: in Triton X-100, Stokes radius of 6.1 +/- 0.4 nm, sedimentation coefficient (S20,w) of 7.35 +/- 0.45 S, and partial specific volume (v) of 0.809 +/- 0.015 ml/g; in n-octyl-beta-D-glucopyranoside, Stokes radius of 5.6 +/- 0.00 nm, S20,w of 10.87 +/- 0.22 S, and partial specific volume of 0.783 +/- 0.020 ml/g. The apparent molecular weight of the 125I-VIP.receptor.detergent complex was calculated as 270,000 +/- 36,000 in Triton X-100 and 320,000 +/- 32,000 in n-octyl-beta-D-glucopyranoside. The amount of detergent bound to the receptor was estimated by using the two sets of hydrodynamic data and the significantly different partial specific volumes of the two detergents. Thus, the molecular weight of the receptor alone was calculated as 54,600 daltons, indicating that approximately 3.9 g of Triton X-100 and 4.9 g of n-octyl-beta-D-glucopyranoside were bound per g of receptor. This species contained the 55-kDa binding unit and appeared to be glycosylated as evidenced by its specific binding to wheat germ agglutinin-Sepharose. These results indicate that the rat lung VIP receptor is a glycoprotein with a single polypeptide chain of 55 kDa. The large amount of detergent bound suggests that the receptor is extensively embedded in the membrane.  相似文献   

16.
Treatment of a partially purified preparation of cell walls of Escherichia coli with Triton X-100 at 23 C resulted in a solubilization of 15 to 25% of the protein. Examination of the Triton-insoluble material by electron microscopy indicated that the characteristic morphology of the cell wall was not affected by the Triton extraction. Contaminating fragments of the cytoplasmic membrane were removed by Triton X-100, including the fragments of the cytoplasmic membrane which were normally observed attached to the cell wall. Treatment of a partially purified cytoplasmic membrane fraction with Triton X-100 resulted in the solubilization of 60 to 80% of the protein of this fraction. Comparison of the Triton-soluble and Triton-insoluble proteins from the cell wall and cytoplasmic membrane fractions by polyacrylamide gel electrophoresis after removal of the Triton by gel filtration in acidified dimethyl formamide indicated that the detergent specifically solubilized proteins of the cytoplasmic membrane. The proteins solubilized from the cell wall fraction were qualitatively identical to those solubilized from the cytoplasmic membrane fraction, but were present in different proportions, suggesting that the fragments of cytoplasmic membrane which are attached to the cell wall are different in composition from the remainder of the cytoplasmic membrane of the cell. Treatment of unfractionated envelope preparations with Triton X-100 resulted in the solubilization of 40% of the protein, and only proteins of the cytoplasmic membrane were solubilized. Extraction with Triton thus provides a rapid and specific means of separating the proteins of the cell wall and cytoplasmic membrane of E. coli.  相似文献   

17.
Cage convulsant t-butyl bicyclophosphoro[35S]thionate binding activity in rat brain membrane homogenates was solubilized with the zwitterionic detergent 3-[(3-cholamidopropyl)-dimethylammonio]propane sulfonate (Chaps) and shown to co-purify with the benzodiazepine--gamma-aminobutyric acid (GABA) receptor complex on gel filtration and affinity chromatography. Whereas convulsant binding activity, but not GABA and benzodiazepine receptor binding, was eliminated by solubilization in other detergents like sodium deoxycholate or Triton X-100, or by addition of Triton X-100 to the extracts solubilized in the zwitterionic detergent, convulsant activity was not irreversibly lost or selectively unstable, but could be restored by exchanging the protein back into the detergent Chaps. The GABA-benzodiazepine receptor activity solubilized in Chaps alone, containing convulsant activity, and a sample in Chaps supplemented with Triton X-100 and lacking convulsant activity, did not differ in size as measured by gel filtration column chromatography or by radiation inactivation target size analysis. This suggests that convulsant binding activity does not require any additional protein subunits or other macromolecules nor any unique aggregation state relative to GABA and benzodiazepine receptor binding, and that all three activities reside on the same protein complex. As in intact brain, the target size for convulsant binding activity was 3-5 times that of benzodiazepine binding activity, suggesting that an oligomeric protein structure of the receptor complex with intact strong subunit interactions present in the native membrane environment is needed for convulsant activity, and that this and other properties are more preserved in Chaps than in other detergents.  相似文献   

18.
A semicarbazide-sensitive clorgyline-resistant amine oxidase (SSAO) was solubilized from membrane fractions of rat brown adipose tissue by the non-ionic detergent, Triton X-100. Alteration of ionic strength or addition of chelating agents alone failed to release the enzyme from its membrane. Lipid-depletion led to loss of enzyme activity and alteration of substrate affinity. Over 80% of the activity of the solubilized enzyme was found in gel filtration fractions corresponding to an Mr of between 160 000 and 180 000. The glycoprotein nature of SSAO was established from affinity chromatography with either immobilized concanavalin A or Lens culinaris lectin. Elution of over 50% SSAO activity from the lentil lectin was achieved with 0.25M-alpha-methyl D-mannoside to give 80-90-fold purification of the enzyme. Irradiation inactivation gave a value for Mr of around 183 000 for both soluble and membrane-bound SSAO. Substrate affinity and inhibitor sensitivity of the enzyme were unaltered by solubilization. The copper-chelating agent, diethyldithiocarbamate, did not affect the enzyme, shedding doubt on the suggestion that SSAO is a copper-requiring enzyme. The significance of these findings in relation to the nature of SSAO and to its disposition within the cell membrane is discussed.  相似文献   

19.
D A Ray  J A Oka  P H Weigel 《Biochemistry》1986,25(20):6097-6103
When digitonin is used to expose intracellular galactosyl (Gal) receptors in isolated rat hepatocytes, only about half of the binding activity for 125I-asialoorosomucoid (ASOR) is found as compared to cells solubilized with Triton X-100. The increased ligand binding in the presence of detergent is not due to a decrease in Kd but could be due either to an increase in the number of ASORs bound per receptor or to exposure of additional receptors. Several experiments support the former explanation. No additional activity is exposed even when 80% of the total cell protein is solubilized with 0.4% digitonin. It is, therefore, unlikely that receptors are in intracellular compartments not permeabilized by digitonin and inaccessible to 125I-ASOR. Digitonin-treated cells are not solubilized by Triton X-100 if they are first treated with glutaraldehyde under conditions that retain specific binding activity. 125I-ASOR binding to these permeabilized/fixed cells increases about 2-fold in the presence of Triton X-100 and a variety of other detergents (e.g., Triton X-114, Nonidet P-40, Brij-58, and octyl glucoside) but not with the Tween series, saponin, or other detergents. When these fixed cells are washed to remove detergent, 125I-ASOR binding decreases almost to the initial level. Affinity-purified Gal receptor linked to Sepharose 4B binds approximately twice as much 125I-ASOR in the presence of Triton X-100 as in its absence. The results suggest that the increase in Gal receptor activity in the presence of nonionic detergents is due to an increase in the valency of the receptor rather than to exposure of additional receptors.  相似文献   

20.
A rapid one-step method was developed for harvesting and concentrating insulin receptors from solubilized adipocytes, which entails precipitating soluble receptors with polyethylene glycol and resuspending the receptor-containing pellet in a reduced volume of binding buffer. With this procedure 90-100% of receptors were recovered, while 80% of cellular protein was removed, thus resulting in a marked reduction of both ligand and receptor proteases and about a 5-fold purification of the receptor. More importantly, greater than 98% of the Triton X-100 detergent was removed during this procedure so that the reduced receptor affinity observed in solubilized extracts (due to detergent) was restored to normal. Reconstituted receptors exhibited normal binding characteristics similar to those observed for plasma membrane receptors. The general utility of our receptor precipitation-reconstitution method is highlighted by studies on insulin-induced translocation of receptors from the cell-surface to the cell-interior of adipocytes and studies on the assessment of the binding affinity of nascent intracellular receptors. The results of these studies are consistent with the following. 1) Insulin initiates endocytotic uptake of insulin receptors, which then recycle back to the cell-surface. 2) Chloroquine impairs the recycling of internalized receptors while preventing receptor degradation, resulting in the progressive trapping and accumulation of receptors within cells during insulin treatment. 3) Receptor translocation during acute insulin-induced down-regulation is stoichiometric in that receptors lost from the cell-surface can be quantitatively recovered within the cell-interior. 4) In the absence of ligand, these receptors within adipocytes are mainly newly synthesized receptors enroute to the cell-surface, and they possess an affinity similar, if not identical, to mature receptors on the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号