首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Bovine nasal cartilage was extracted with 0.5 M LaCl3 and the extract then diluted with nine volumes of water. The resulting precipitated (PLaCl3) contained the proteoglycan subunits, together with minor protein components, but was essentially free from hyaluronic acid. The properties of PLaCl3 were investigated by chemical analysis, electrophoresis, viscometry and analytical ultracentrifugation, and the results compared with those for proteoglycan obtained by caesium chloride density gradient centrifugation of 2 M CaCl2 cartilage extracts. Proteoglycan subunits (A1D1) prepared from PLaCl3 showed identical properties to those obtained from other high ionic strength cartilage extracts.  相似文献   

2.
3.
4.
1. Proteoglycans were extracted from bovine nasal cartilage with 2.0M-CaC2 or with 0.15M-KCl followed by 2.0M-CaC2.. Proteoglycan fractions were prepared from the extracts by density-gradient centrifugation in CsCl under 'associative' and 'dissociative' conditions. 2. The heterogeneity of the proteoglycan fractions was investigated by large-pore-gel electrophoresis. It was concluded that extracts made with 2.0M-CaCl2 or sequential 2.0M-CaCl2 contain two major species of proteoglycan 'subunit' of different hydrodynamic size, together with proteoglycan aggregates. Both 'subunits' have mobilities that are greater than those of proteoglycans obtained from pig articular cartilage McDevitt & Muir (1971) Anal. Biochem. 44, 612-622] and are therefore probably smaller in size than the latter. 3. Proteoglycan fractions isolated from cartilage extracted lith 0.15M-KCl separated into two main components on large-pore-gel electrophoresis with mobilities greater than those of proteoglycans extracted with 2.0M-CaCl2. Proteoglycans extracted at low ionic strength from bovine nasal cartilage are of similar hydrodynamic size to those extracted from pig articular cartilage under the same conditions [McDevitt & Muir (1971) Anal. Biochem. 44, 612-622]. 4. The role of endogenous proteolytic enzymes in producing proteoglycan heterogeneity, particularly in low-ionic-strength cartilage extracts is discussed. 5. Hyaluronic acid and 'link proteins' were present in the proteoglycan fraction separated from KCl extracts as well as in the fraction separated from CaCl2 extracts. Hyaluronic acid can only be identified in proteoglycan fractions by large-pore-gel electrophoresis after proteolysis and further purification of the fraction. 6. Collagen was extracted by both salt solutions and was tentatively identified as type II. Small amounts of collagen appear to be associated with the proteoglycan-aggregate fraction from the high-ionic-strength extract but not with the corresponding fraction from the KCl extract.  相似文献   

5.
Biosynthesis of the undersulfated proteoglycan found in brachymorphic mouse (bm/ bm) cartilage has been investigated. Similar amounts of cartilage proteoglycan core protein, as measured by radioimmune inhibition assay, and comparable activity levels of four of the glycosyltransferases requisite for synthesis of chondroitin sulfate chains were found in cartilage homogenates from neonatal bm/bm and normal mice, suggesting normal production of glycosylated core protein acceptor for sulfation. When incubated with 35S-labeled 3′-phosphoadenosine 5′-phosphosulfate (PAPS), bm/bm cartilage extracts showed a higher than control level of sulfotransferase activity. In contrast, when synthesis was initiated from ATP and 35SO42?, mutant cartilage extracts showed lower incorporation of 35SO42? into endogenous chondroitin sulfate proteoglycan (19% of control level) and greatly reduced formation of PAPS (10% of control level). Results from coincubations of normal and mutant cartilage extracts exhibited intermediate levels of sulfate incorporation into PAPS and endogenous acceptors, suggesting the absence of an inhibitor for sulfate-activating enzymes or sulfotransferases. Degradation rates of 35S]PAPS and of 35S-labeled adenosine 5′-phosphosulfate (APS) were comparable in bm/bm and normal cartilage extracts. Specific assays for both ATP sulfurylase (sulfate adenylyltransferase; ATP:sulfate adenylyltransferase, EC 2.7.7.4) and APS kinase (adenylylsulfate kinase; ATP:adenylylsulfate 3′-phosphotransferase, EC 2.7.1.25) showed decreases in the former (50% of control) and the latter (10–15% of control) enzyme activities in bm/bm cartilage extracts. Both enzyme activities were reduced to intermediate levels in extracts of cartilage from heterozygous brachymorphic mice (ATP-sulfurylase, 80% of control; APS kinase, 40–70% of control). Furthermore, the moderate reduction in ATP sulfurylase activity in bm/bm cartilage extracts was accompanied by increased lability to freezing and thawing of the residual activity of this enzyme. These results indicate that under-sulfation of chondroitin sulfate proteoglycan in bm/bm cartilage is due to a defect in synthesis of the sulfate donor (PAPS), resulting from diminished activities of both ATP sulfurylase and APS kinase, although the reduced activity of the latter enzyme seems to be primarily responsible for the defect in PAPS synthesis.  相似文献   

6.
7.
Treatment of osteoarthritis (OA) with nonsteroidal anti-inflammatory drugs (NSAIDs) diminishes inflammation along with mediators of cartilage destruction. However, NSAIDs may exert adverse direct effects on cartilage, particularly if treatment is prolonged. We therefore compared the direct effects of indomethacin, naproxen, aceclofenac and celecoxib on matrix turnover in human OA cartilage tissue. Human clinically defined OA cartilage from five different donors was exposed for 7 days in culture to indomethacin, naproxen, aceclofenac and celecoxib – agents chosen based on their cyclo-oxygenase (COX)-2 selectivity. As a control, SC-560 (a selective COX-1 inhibitor) was used. Changes in cartilage proteoglycan turnover and prostaglandin E2 production were determined. OA cartilage exhibited characteristic proteoglycan turnover. Indomethacin further inhibited proteoglycan synthesis; no significant effect of indomethacin on proteoglycan release was found, and proteoglycan content tended to decrease. Naproxen treatment was not associated with changes in any parameter. In contrast, aceclofenac and, prominently, celecoxib had beneficial effects on OA cartilage. Both were associated with increased proteoglycan synthesis and normalized release. Importantly, both NSAIDs improved proteoglycan content. Inhibition of prostaglandin E2 production indirectly showed that all NSAIDs inhibited COX, with the more COX-2 specific agents having more pronounced effects. Selective COX-1 inhibition resulted in adverse effects on all parameters, and prostaglandin E2 production was only mildly inhibited. NSAIDs with low COX-2/COX-1 selectivity exhibit adverse direct effects on OA cartilage, whereas high COX-2/COX-1 selective NSAIDs did not show such effects and might even have cartilage reparative properties.  相似文献   

8.
Two types of sialic acid-containing component are released from articular cartilage proteoglycan monomer (D1) treated with 0.05 M NaOH containing 1 M NaBH4. The smaller component, which has not been described before, contains galactosamine, glucosamine, galactose and sialic acid (Molar ratio 1:1:1:2). It is eluted from ECTEOLA-cellulose with low molarity (0.4 M) sodium formate and has a Kav of 0.70 on Bio-gel P30. Its presence on the proteoglycan monomer was demonstrated at all stages of foetal and adult life.  相似文献   

9.
High-buoyant-density proteoglycan aggregates could not be prepared from extracts of adult human cartilage by associative CsCl-density-gradient centrifugation with a starting density of 1.68 g/ml, even though proteoglycan subunits, hyaluronic acid and link proteins were all present. In contrast, aggregates could be prepared when extracts of neonatal human cartilage or bovine nasal cartilage were subjected to the same procedure. This phenomenon did not appear to be due to a defect within the hyaluronic acid-binding region of the adult proteoglycan subunit, but rather to an interference in the stability of the interaction between the proteoglycan subunit and hyaluronic acid towards centrifugation. The factor responsible for this instability was shown to reside within the low-density cartilage protein preparation obtained by direct dissociative CsCl-density-gradient centrifugation of the adult cartilage extract.  相似文献   

10.
Secondary monolayer and spinner cultures of rabbit articular chondrocytes released into the culture medium prostaglandins the synthesis of which was inhibited by sodium meclofenamate. The prostaglandins measured by radioimmunoassay were, in order of decreasing abundance, prostaglandin E2, 6-oxoprostaglandin F, (the stable metabolite of prostacyclin) and prostaglandin F. Several lines of evidence indicated that chondrocytes synthesize little if any thromboxane B2 (the stable metabolite of thromboxane A2). The presence of prostaglandins was confirmed by radiometric thin-layer chromatography of extracts of culture media incubated with [3H]arachidonic acid-labeled cells. In monolayer culture, chondrocytes synthesized immunoreactive prostaglandins in serum-free as well as serum-containing medium. Monolayer chondrocytes produced higher levels of prostaglandin E2 relative to 6-oxo-prostaglandin F than did spinner cells, but the latter synthesized more total prostaglandins. The identity of endogenous prostaglandins as well as those synthesized in short-term culture by rabbit cartilage slices was compared to those produced by chondrocytes in long-term culture. Chondrocytes synthesized all of the prosta-glandins found in articular cartilage. Minimal quantities of thromboxane B2 were detected in cartilage. A higher percentage of 6-oxo-prostaglandin F relative to other prostaglandins was found in cartilage than in either monolayer or spinner chondrocyte cultures. These results demonstrate that articular chondrocytes synthesize prostaglandins and prostacyclin. These prostaglandins may exert significant physiological effects on cartilage, since exogenous prosta-glandins depress chondrocyte sulfated-proteoglycan synthesis and may even promote proteoglycan degradation.  相似文献   

11.
Lanthanum (La)-based binder appears effective in reducing serum inorganic phosphate (Pi) levels among chronic dialysis patients, yet concern remains about La accumulation in bone during long-term oral administration. In this study, the effect of lanthanum chloride (LaCl3) on bone marrow stromal cells (BMSCs) viability was investigated under high Pi situation. We found low concentration (10?9 M) of LaCl3 increased BMSCs viability, while high concentration (10?5 M) of LaCl3 not only inhibited BMSCs viability but also stimulated high Pi induced cell apoptosis. In addition, La-containing calcium phosphate (CaP) particles can be detected on cell surfaces and inside cells. We also found that inhibition of CaP formation by adding sodium pyrophosphate, a recognized inhibitor of hydroxyapatite formation, abrogated LaCl3 induced the BMSCs viability. For isolated La-containing CaP particles, the particle size increased and crystal phase switched with elevated concentration of LaCl3. These results demonstrated that La-containing CaP particles were associated with the process of LaCl3 mediated BMSCs viability and the physicochemical properties of these particles played an important role in modulating BMSCs function.  相似文献   

12.
Certain monoclonal antibodies (mAbs) to type II collagen (CII) induce arthritis in vivo after passive transfer and have adverse effects on chondrocyte cultures and inhibit self assembly of collagen fibrils in vitro. We have examined whether such mAbs have detrimental effects on pre-existing cartilage. Bovine cartilage explants were cultured over 21 days in the presence of two arthritogenic mAbs to CII (CIIC1 or M2139), a non-arthritogenic mAb to CII (CIIF4) or a control mAb (GAD6). Penetration of cartilage by mAb was determined by immunofluorescence on frozen sections and correlated with changes to the extracellular matrix and chondrocytes by morphometric analysis of sections stained with toluidine blue. The effects of mAbs on matrix components were examined by Fourier transform infrared microspectroscopy (FTIRM). A possible role of Fc-binding was investigated using F(ab)2 from CIIC1. All three mAbs to CII penetrated the cartilage explants and CIIC1 and M2139, but not CIIF4, had adverse effects that included proteoglycan loss correlating with mAb penetration, the later development in cultures of an abnormal superficial cellular layer, and an increased proportion of empty chondrons. FTIRM showed depletion and denaturation of CII at the explant surface in the presence of CIIC1 or M2139, which paralleled proteoglycan loss. The effects of F(ab)2 were greater than those of intact CIIC1. Our results indicate that mAbs to CII can adversely affect preformed cartilage, and that the specific epitope on CII recognised by the mAb determines both arthritogenicity in vivo and adverse effects in vitro. We conclude that antibodies to CII can have pathogenic effects that are independent of inflammatory mediators or Fc-binding.  相似文献   

13.
Highly purified plasma membranes were isolated by aqueous two-phase partitioning from rice (Oryza sativa) seedling roots. The effects of lanthanum chloride (LaCl3) on the activities of lipid peroxidation, the redox system and H+-ATPase, Ca2+-ATPase of plasma membranes were studied. The lipid peroxidation of plasma membranes could be depressed by certain low concentrations of LaCl3 and enhanced by high concentrations of LaCl3, while the lipid peroxidation was also dependent on the plasma membrane protein and incubation time. The relative activity of O2 uptake of plasma membranes was inhibited by all tested LaCl3 concentrations. In contrast, the reduction rate of Fe(CN)6 3– by plasma membranes was stimulated below 40 M of LaCl3, but was reduced above 60 M of LaCl3. The relative activities of both H+-ATPase and Ca2+-ATPase increased constantly from control to LaCl3 of concentration 60 M where the activities of both enzymes were the maximum, but decreased remarkably at 80 M LaCl3 concentrations various LaCl3 were added to culture solutions. In the other measurement case in which various LaCl3 concentrations were added directly to reaction medium and the plasma membrane vesicles only came from the control cultured rice seedling roots, the response of H+-ATPase activity to La3+ was similar to the response in culture solution. However, the La3+ concentration was only 20 M when the activity of H+-ATPase was the maximum. In contrast to the case of LaCl3 addition to culture solution, Ca2+-ATPase activity was inhibited by all concentrations of La3+ which were added directly to the reaction medium. The above results revealed that REEs inhibited electron transfer from NADH to oxygen in plant plasma membranes, depressed the production of active oxygen radicals, and reduced the formation of lipid peroxides through plasma membrane lipid peroxidation. REEs ions also enhanced the H+ extrusion by both standard redox system and H+-ATPase in plasma membranes at certain concentrations. A possible role for the plant cell wall in REEs effects on plasma membranes was also suggested.  相似文献   

14.
Four bovine articular cartilages have been compared with regard to the chemical composition of the whole cartilages, the amount of proteoglycan selectively extracted with 3 M MGCl2 or with 3 M guanidine-HCl, and the compositions and physical properties of the isolated proteoglycans. The whole cartilages differ but slightly in composition. Occipital condylar cartilage, a thin cartilage from the smallest joint, contains 4% more collagen and proportionately less proteoglycan than proximal humeral, the thickest cartilage from the largest joint. Each cartilage contains a pool of proteoglycan that resists extraction with 3 M MgCl2 but is extracted with 3 M guanidine-HCl. The proteoglycan extracted from each cartilage with 3 M guanidine-HCl contains a high molecular weight proteoglycan-collagen complex demonstrated by analytical ultracentrifugation and by the turbidity of its visible and ultra-violet spectra. The four cartilages appear to differ most remarkably in the fraction of total proteoglycan extracted from each as proteoglycan-collagen complex.  相似文献   

15.
Previous work demonstrated that micropuncture aspirates from rat epiphysical plate cartilage contain a nucleating agent for Ca3(PO4)2 mineral growth, and that the nucleation is inhibited by proteoglycan aggregates. In this report data are described which show that mammalian lysozyme inactivates the inhibition. When micropuncture aspirates are incubated in vitro with mammalian lysozyme, a rapid, spontaneous initiation of mineral growth occurs. Incubation of proteoglycan aggregate preparations in the presence of cartilagea lysozyme, but not hen egg white lysozyme, causes a marked decrease of the sedimentation coefficients of the proteoglycans, usually to values close to those obtained with proteoglycan monomer preparations. The inhibition of this effect of mammalian lysozyme by a specific inhibitor of the enzyme tri(N-acetyl-D-glucosamine) suggests that it may be enzymatic in nature.  相似文献   

16.
We have propsed earlier a three gene loci model to explain the expression of the aldo-keto reductases in human tissues. According to this model, aldose reductase is a monomer of α subunits, aldehyde reductase I is a dimer of α, β subunits, and aldehyde reductase II is a monomer of δ subunits. Using immunoaffinity methods, we have isolated the subunits of aldehyde reductase I (α and β) and characterized them by immunocompetition studies. It is observed that the two subunits of aldehyde reductase I are weakly held together in the holoenzyme and can be dissociated under high ionic conditions. Aldose reductase (α subunits) was generated from human placenta and liver aldehyde reductase I by ammonium sulfate (80% saturation). The kinetic, structural and immunological properties of the generated aldose reductase are similar to the aldose reductase obtained from the human erythrocytes and bovine lens. The main characteristic of the generated enzyme is the requirement of Li2SO4(0.4 M) for the expression of maximum enzyme activity, and its Km for glucose is less than 50 mM, whereas the parent enzyme, aldehyde reductase I, is completely inhibited by 0.4 M Li2SO4 and its Km for glucose is more than 200 mM. The β subunits of aldehyde reductase I did not have enzyme activity but cross-reacted with anti-aldehyde reductase I antiserum. The β subunits hybridized with the α subunits of placenta aldehyde I, and aldose reductase purified from human brain and bovine lens. The hybridized enzyme had the characteristics properties of placenta aldehyde reductase I.  相似文献   

17.
Laser light-scattering has been used to investigate the size of native proteoglycan aggregates (PGA-aA1) from day-8 chick limb-bud chondrocyte cultures isolated under associative extraction and purification conditions in 0.4M guanidinium chloride (GdnHCl) solution. Dynamic light-scattering measurements yielded a hydrodynamic radius, Rs, of 244 ± 10 nm for PGA-aA1 in 0.4M GdnHCl, and a weight-average molecular weight (M w) of 150 ± 50 × 106 was obtained from a Zimm plot. Disaggregation in 4.0M GdnHCl aqueous solution yielded proteoglycan subunits (PGS) with Rs = 39 ± 2 nm, M w = 1.6 ± 0.3 × 106, which reassembled in 0.4M GdnHCl to form “reconstituted native” aggregates (PGA-raA1) with Rs = 121 ± 6 nm, M w = 17 ± 3 × 106. A second specimen of PGA-aA1 had Rs = 192 ± 10 nm, M w = 100 ± 10 × 106. The latter value was estimated from an empirical relationship between M w and Rs. After dissociation, this specimen reassembled to form PGA-raA1 with Rs = 85 ± 5 nm, M w = 12 ± 1 × 106. These data are compared with those for a specimen of reconstituted aggregate (PGA-A1) that had been extracted under dissociative conditions and then reaggregated by dialysis to 0.4M GdnHCl aqueous solution, for which Rs = 138 ± 9 nm, M w = 45 ± 8 × 106. From these values, we have calculated the weight-average number of subunits per aggregate Nw: 111 for PGA-aA1 and 12 for raA1 (70 and 7 for the second PGA-aA1 and PGA-raA1 specimen, respectively) as compared to 32 for PGA-A1. The numbers of subunits per aggregate were also determined from electron micrographs of spread specimens. The latter results show the same trends as those obtained by light scattering, but lead in each case to lower numbers of subunits per aggregate. These data demonstrate conclusively that PGA samples exhibit a higher degree of aggregation in solution than visualized in typical electron microscopy (EM) preparations, probably due to disaggregation during EM specimen preparation. Since Nw determined both by light scattering (LS) and by EM are larger for native versus reconstituted aggregate samples, our data point to a more compact aggregation of subunits along the hyaluronic acid (HA) chains in the former.  相似文献   

18.
The effect of various anti-inflammatory drugs on the production of prostaglandins E2 and F2α, 6 keto PGF1α and thromboxane B2 by bovine articular chondrocytes was measured by radioimmunoassay. While indomethacin and meclofenamic acid caused a dose-dependent inhibition of all prostanoids measured, the effects of hydrocortisone and colchicine varied with respect to different prostanoids. Hydrocortisone (10−7M – 10−3M) both in the presence and absence of added arachidonic acid, resulted in an inhibition of prostaglandins E2 and F2, and to a lesser extent, 6 keto PGF1α, but T×B2 production was only slightly inhibited by the drug in the absenced of arachidonic acid and markedly increased in its presence. Colchicine (10−7M – 10−3M) had the opposite effect, causing an inhibition of T×B2 and stimulating PGE2 and 6 keto PGF1α production. These findings suggest that certain anti-inflammatory drugs may, in addition to their action on phospholipase A2 and cyclo-oxygenase, exert potent effects at the level of the different synthetases. In order to see whether these alterations in relative prostanoid levels affected proteoglycan metabolism, the effect of anti-inflammatory drugs on proteoglycan synthesis by cultured chondrocytes was tested using 35SO4 labeling methodology. The results showed that the concentrations tested (10−5M to 10−7M), indomethacin, dexamethasone, hydrocortisone and colchicine inhibited 35SO4 incorporation into newly synthesized proteoglycan molecules both in the presence (10−6M) and absence of exogenous arachidonic acid. In the same concentration range choroquine had no effect.These results do not support the hypothesis of direct prostanoid involvement in the modulation of proteoglycan synthesis in articular cartilage.  相似文献   

19.
Adult human articular cartilage contains a hyaluronic acid-binding protein of Mr 60 000-75 000, which contains disulphide bonds essential for this interaction. The molecule can compete with proteoglycan subunits for binding sites on hyaluronic acid, and can also displace proteoglycan subunits from hyaluronic acid if their interaction is not stabilized by the presence of link proteins. The abundance of this protein in the adult accounts for the reported inability to prepare high-buoyant-density proteoglycan aggregates from extracts of adult human cartilage [Roughley, White, Poole & Mort (1984) Biochem. J. 221, 637-644], whereas the deficiency of the protein in newborn human cartilage allows the normal recovery of proteoglycan aggregates from this tissue. The protein shares many common features with a hyaluronic acid-binding region derived by proteolytic treatment of a proteoglycan aggregate preparation, and this may also represent its origin in the cartilage, with its production increasing during tissue maturation.  相似文献   

20.
Lanthanum chloride (LaCl3) can affect neurobehavioral development and impair cognitive abilities. The mechanism underlying LaCl3-induced neurotoxic effects is still unknown. The purpose of this research was to investigate the neuronal impairment induced by LaCl3 and discuss the possible mechanism from the aspects of the alteration of glutamate level, intracellular calcium concentration ([Ca2+]i), Bax, Bcl-2 and caspases expression in the hippocampus. Lactational rats were exposed to 0, 0.25, 0.50 and 1.0 % LaCl3 in drinking water, respectively. Their offspring were exposed to LaCl3 by parental lactation and then administrated with 0, 0.25, 0.50 and 1.0 % LaCl3 in drinking water for 1 month. The results showed that 0.25, 0.50 and 1.0 % LaCl3 exposure induced neuronal impairment in the hippocampus of young rat. Hippocampal glutamate level, [Ca2+]i and ratio of Bax and Bcl-2 expression increased significantly after LaCl3 exposure. Besides, LaCl3 exposure increased GRP78, GRP94, GADD153 and p-JNK expression, promoted the activation of caspase-3, caspase-9 and caspase-12, induced PARP cleavage and caused excessive apoptosis. These results indicate that LaCl3 increases glutamate level, [Ca2+]i and ratio of Bax and Bcl-2 expression, which cause excessive apoptosis by the mitochondrial and endoplasmic reticulum stress-induced pathway, and thus neuronal damages in the hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号