首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A heparin derivative that had been O/N-desulphated and re-N-acetylated was investigated by 13C n.m.r. spectroscopy and potentiometric titration. Three forms of uronic acid were observed, tentatively identified as beta-D-glucuronate, and two different forms of alpha-L-iduronate. A comparison of the n.m.r. spectra of heparin, an oligosaccharide (beta-D-glucuronate-2-acetamido-2-deoxy-alpha-D-glucose)n, and heparin that had been subjected to selective oxidation of beta-D-glucuronate, enabled the position of the anomeric carbon of the latter residue to be assigned [delta 102.9 (p.p.m.)]. Periodate oxidation of O/N-desulphated heparin destroyed in addition, approx. 40% of the alpha-L-iduronate content. The remainder of the alpha-L-iduronate residues displayed only one anomeric resonance, at delta 99.7 (p.p.m.). In another preparation, after sequential desulphation of heparin (N-desulphation, re-N-acetylation and O-desulphation) the anomeric resonance of the alpha-L-iduronate residue shifted downfield [from delta99.7 (p.p.m.) to delta 102.3]indicating a change in ring conformation. These data support the interpretation that the unsulphated alpha-L-iduronate residues may adopt two conformations. It was shown that the proportions of alpha-L-iduronate conformers are determined by the sequence of desulphation operations. Also minor components of heparin were assigned.  相似文献   

2.
The metabolic fate of heparan N-[(35)S]sulphate was studied in rats. Heparan sulphate was obtained from either bovine aorta or lung and labelled with (35)S by desulphation and subsequent resulphation in vitro. Experiments in which heparan N-[(35)S]sulphate was administered intravenously to either free-range or wholly anaesthetized rats with ureter cannulae established that substantial desulphation occurs in vivo, with elimination of inorganic [(35)S]sulphate in urine. Oligosaccharides labelled with (35)S, possible intermediates in heparan sulphate degradation, could not be detected in urine or blood. The general distribution of radioactivity after administration of heparan N-[(35)S]sulphate, as demonstrated by whole-body radioautography, suggested that desulphation was not restricted to one organ in particular. Support for this view was obtained in experiments in which heparan N-[(35)S]sulphate was administered to animals after the removal of kidneys, liver, spleen, pancreas or gastrointestinal tract. In all cases inorganic [(35)S]sulphate was still produced. The ability of rats of desulphate heparan N-[(35)S]sulphate was progressively impaired by increasing concentrations of heparin administered simultaneously. It was concluded that heparan sulphate is metabolized at a number of sites in the body by a sequence of degradative events leading to the formation of inorganic sulphate. It is also concluded that at least some of these events are common to heparan sulphate and heparin.  相似文献   

3.
Secretory granules exocytosed from rat serosal mast cells bind low density lipoprotein (LDL), and on being phagocytosed by macrophages, carry the bound LDL into these cells (Kokkonen, J. O., and Kovanen, P. T. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 2287-2291). The binding of LDL to the granules is mediated through interactions between the apolipoprotein B (apoB) component of LDL and the heparin proteoglycan component of the granules. Here we report how degradation of apoB by the neutral proteases of the granules affects the granule-mediated uptake of LDL by cultured mouse macrophages. During incubation of LDL with proteolytically inactive granules, the rate of uptake of LDL by macrophages increased by 10-fold; whereas during incubation with proteolytically active granules, it increased by 50-fold, the increase in the rate of uptake during proteolysis correlating with the degree of apoB degradation. The 5-fold greater capacity of the proteolytically active granules to enhance the uptake of LDL resulted from their greater capacity to bind LDL, and consequently, to carry it into the macrophages. Electron microscopic analysis of LDL bound to the proteolytically active granules disclosed large spherical particles of fused LDL. The diameters of the granule-bound particles ranged up to 90 nm compared with an average diameter of 22 nm for both native LDL and the LDL bound to proteolytically inactive granules. The results show that granule proteases, by inducing fusion of granule-bound LDL, increase the amount of LDL bound per unit weight of granule heparin proteoglycan. Hence, the two components of mast cell granules, the proteases and the heparin proteoglycan, act in concert to promote the uptake of LDL by macrophages in vitro.  相似文献   

4.
Stimulation of rat serosal mast cells in vitro triggers exocytosis of secretory granules from their cytoplasm. Thereupon, the granules lose their perigranular membranes, and about 40% of the heparin proteoglycans and all of the chondroitin sulfate proteoglycans that they initially contained are released into the incubation medium. At physiologic ionic strength and calcium ion concentration, the solubilized heparin proteoglycans, but not the chondroitin sulfate proteoglycans, form insoluble complexes with the low density lipoproteins (LDL) present. We calculated that the heparin proteoglycans could bind approximately seven times their own mass (Mr about 1 x 10(6)) of LDL cholesterol. Using gold-labeled LDL, we observed massive phagocytosis of the heparin proteoglycan-LDL complexes by cultured mouse macrophages in vitro, which was inhibited by cytochalasin B. Uptake of LDL by mouse macrophages was 45-fold higher in the presence of solubilized heparin proteoglycans than in their absence, and continued unabated over a 72-h period, indicating that the uptake process was not under negative feedback control. Excess amounts of acetyl-LDL or polyinosinic acid inhibited the uptake of these insoluble heparin proteoglycan-LDL complexes, indicating that their phagocytosis was mediated by scavenger receptors of the acetyl-LDL receptor type. The experiments reveal the following pathophysiologic mechanism relevant to atherogenesis: stimulated mast cells secrete soluble heparin proteoglycans capable of forming insoluble complexes with LDL and thereby trigger uptake of LDL by macrophages through scavenger receptor-mediated phagocytosis.  相似文献   

5.
A high-affinity heparin subfraction accounting for 8% of whole heparin from bovine lung was isolated by low-density lipoprotein (LDL)-affinity chromatography. When compared to whole heparin, the high-affinity subfraction was relatively higher in molecular weight (11,000 vs. 17,000) and contained more iduronyl sulfate as hexuronic acid (76% vs. 86%), N-sulfate ester (0.75 vs. 0.96 mol/mol hexosamine), and O-sulfate ester (1.51 vs. 1.68 mol/mol hexosamine). Although both heparin preparations formed insoluble complexes with LDL quantitatively in the presence of 30 mM Ca2+, the concentrations of NaCl required for 50% reduction in maximal insoluble complex formation was markedly higher with high-affinity subfraction (0.55 M vs. 0.04 M). When compared to complex of 125I-LDL and whole heparin (H-125I-LDL), complex of 125I-LDL and high-affinity heparin subfraction (HAH-125I-LDL) produced marked increase in the degradation of lipoproteins by macrophages (7-fold vs. 1.4-fold over native LDL, after 5 h incubation) as well as cellular cholesteryl ester synthesis (16.7-fold vs. 2.2-fold over native LDL, after 18 h incubation) and content (36-fold vs. 2.7-fold over native LDL, after 48 h incubation). After a 5 h incubation, macrophages accumulated 2.3-fold more cell-associated radioactivity from HAH-125I-LDL complex than from [125I]acetyl-LDL. While unlabeled HAH-LDL complex produced a dose-dependent inhibition of the degradation of labeled complex, native unlabeled LDL did not elicit any effect even at a 20-fold excess concentration. Unlabeled particulate LDL aggregate competed for 33% of degradation of labeled complex; however, cytochalasin D, known inhibitor of phagocytosis, did not effectively inhibit the degradation of labeled complex. Unlabeled acetyl-LDL produced a partial (33%) inhibition of the degradation of labeled complex. These results indicate that (1) the interaction of high-affinity heparin subfraction with LDL leads to scavenger receptor mediated endocytosis of the lipoprotein, and stimulation of cholesteryl ester synthesis and accumulation in the macrophages; and (2) with respect to macrophage recognition and uptake, HAH-LDL complex was similar but not identical to acetyl-LDL. These observations may have implications for atherogenesis, because both mast cells and endothelial cells can synthesize heparin in the arterial wall.  相似文献   

6.
Plasma cholesteryl ester transfer protein (CETP) mediates the transfer of cholesteryl esters (CE) between lipoproteins and was reported to also directly mediate the uptake of high density lipoprotein (HDL) CE by human Hep G2 cells and fibroblasts. The present study investigates that uptake and its relationship to a pathway for "selective uptake" of HDL CE that does not require CETP. HDL3 labeled in both the CE and apoprotein moieties was incubated with Hep G2 cells. During 4-h incubations, CE tracer was selectively taken up from doubly labeled HDL3 in excess of apoA-I tracer, and added CETP did not modify that uptake. However, during 18-20-h incubations, CETP stimulated the uptake of CE tracer more than 4-fold without modifying the uptake of apoA-I tracer. This suggested that secreted products, perhaps lipoproteins, might be required for the CETP effect. Four inhibitors of lipoprotein uptake via low density lipoprotein (LDL) receptors (heparin, monensin, an antibody against the LDL receptor, and antibodies against the receptor binding domains of apoB and apoE) effectively blocked the CETP stimulation of CE tracer uptake. Heparin caused an increase in CE tracer in a d less than 1.063 g/ml fraction of the medium that more than accounted for the heparin blockade of CETP-stimulated CE uptake. CETP did not affect the uptake of doubly labeled HDL3 by human fibroblasts, even at twice plasma levels of activity, and heparin did not modify uptake of HDL3 tracers. Thus the CETP effect on Hep G2 cells can be accounted for by transfer of HDL CE to secreted lipoproteins which are then retaken up, and there is no evidence for a direct effect of CETP on cellular uptake of HDL CE.  相似文献   

7.
The sulphated polysaccharide of Pachymenia carnosa and its desulphated derivative have been studied by methylation analysis. Depolymerization during the desulphation process has been shown to occur mainly through the cleavage of (1→3) linkages. The methylation results indicate that the ratio of (1→4) to (1→3) linkages in the native polysaccharide is 1:2.26. The sulphate groups occur on positions 2, 4, and 2,6 of (1→3)-linked galactose residues. Methylations carried out in methyl sulphoxide with the Purdie reagents lead to extensive desulphation; 2-sulphate units appear to be more susceptible to desulphation than 4- or 6-sulphate units. Desulphation does not occur during methylation by the Hakomori method.  相似文献   

8.
We have previously shown that heparin was bound and internalized by cultured human endothelial cells. In this study, we have investigated the effect of heparin on endothelial cells growth. We found that heparin inhibited 3H-thymidine uptake as well as actual cell growth in a dose-dependent manner in the presence of low concentrations of human serum. Inhibition was maximal at 1% serum concentration and was abolished at 10%. Chasing experiments supported the role of membrane-bound heparin in this inhibition. Low molecular weight heparin fractions, or pentosan polysulfate, were equally effective in inhibiting 3H-thymidine uptake. On the other hand, the simultaneous addition of heparin and ECGS was synergic in stimulating 3H-thymidine uptake. These results suggest a modulatory role of heparin in endothelial cells growth.  相似文献   

9.
The effect of various well-characterized heparin preparations on the inactivation of human Factor XIa by human antithrombin III was studied. The heparin preparations used were unfractionated heparin and four heparin fractions obtained after anion-exchange chromatography. Inactivation of Factor XIa was monitored with S2366 as chromogenic substrate and followed pseudo-first-order reaction kinetics under all reaction conditions tested. Enhancement of the rate of inhibition of Factor XIa in the presence of unfractionated heparin correlated to the binding of antithrombin III to heparin. From the kinetic data a binding constant of 0.1 microM was inferred. The maximum rate enhancement, achieved at saturating heparin concentrations, was 30-fold. The rate enhancement achieved in the presence of each of the heparin fractions could also be correlated to the binding of antithrombin III to the heparin. The binding constant inferred from the kinetic data varied from 0.10 to 0.28 microM and the number of binding sites for antithrombin III varied from 0.06 to 0.74 site per heparin molecule. The maximum rate enhancements, achieved at saturating heparin concentrations, were strongly dependent on the type of heparin used and varied from 7-fold for fraction A to 41-fold for fraction D. Therefore, although the stimulation of Factor XIa inactivation by antithrombin III could be quantitatively correlated to the binding of antithrombin III to heparin, the heparin-catalysed inhibition of Factor XIa is dependent not only upon the degree of binding of antithrombin III to heparin but also upon the type of heparin to which antithrombin III is bound.  相似文献   

10.
Chylomicron remnants labelled biologically with [3H]cholesterol were efficiently taken up by freshly isolated hepatocytes during a 3 h incubation in Krebs bicarbonate medium. Their [3H]cholesteryl ester was hydrolysed (74% net hydrolysis), and 0.1 mM-chloroquine could partially inhibit this hydrolysis, provided that hepatocytes were first preincubated for 2 h 30 min at 37 degrees C. This hydrolysis was also measured in preincubated cells with remnants double-labelled (3H and 14C) on their free cholesterol moiety; [3H]cholesterol arising from [3H]cholesteryl ester hydrolysis was recovered in the free [3H]cholesterol pool. A dose-response study showed saturation of remnant uptake at 180 micrograms of remnant protein/10(7) cells. Heparin (10 units/ml) increased remnant uptake by 63% (P less than 0.01), [3H]cholesteryl ester accumulation in the cell pellet by 110% (P less than 0.025) and hepatic lipase activity secreted in the medium by 2.4-fold (P less than 0.01) and by 3.3-fold (P less than 0.01) at the end of the preincubation and incubation periods respectively. Addition of 100 munits of semi-purified hepatic lipase preparation/flask stimulated remnant uptake by 44-69%, and [3H]cholesteryl ester accumulation in the presence of chloroquine by 2.1-fold (P less than 0.025). When hepatic lipase was incubated solely with the remnants, it decreased their triacylglycerol and phospholipid contents by 24% and 26% respectively. Thus freshly isolated hepatocytes may be used to study chylomicron-remnant uptake. Hepatic lipase, which seems to underly the stimulating effect of heparin, facilitates remnant uptake in vitro, and this could be mediated by at least one (or both) of its hydrolytic properties.  相似文献   

11.
The influence of heparin on the inhibition of factor Xa has been studied under conditions where factor Xa is bound to collagen-thrombin-stimulated platelets to form the prothrombinase complex. Unfractionated heparin was found to cause a concentration-dependent acceleration of the inhibition of the platelet prothrombinase complex up to a maximum rate constant of 4.1 X 10(7) M-1 X min-1 at heparin concentrations of 0.2 microM and above. This is equivalent to a 4800-fold acceleration over the rate constant for the inhibition in the absence of heparin, and is 6.8-fold lower than the rate constant for the inhibition of uncomplexed factor Xa in the presence of saturating concentrations of heparin which was determined as 2.8 X 10(8) M-1 X min-1. The effects of three Mr fractions of heparin were also studied. These were a gel-filtered heparin of Mr 15000, a gel-filtered heparin of Mr 6000 and a heparin oligosaccharide (primarily 8-10 monosaccharide units) prepared by nitrous acid depolymerization, each with high affinity for antithrombin III. These fractions all accelerated the rate of the antithrombin III inhibition of the platelet prothrombinase complex, with maximum rate constants of 6.8 X 10(7), 1.4 X 10(7) and 9.8 X 10(6) M-1 X min-1, respectively. On comparison with the effect of these heparin fractions on the rate of inhibition of uncomplexed factor Xa a progressively increasing disparity between the rate of inhibition of uncomplexed and complexed factor Xa was observed, rising from 1.7-fold with the oligosaccharide to 6.8-fold with the unfractionated heparin. A possible mechanism for this differential activity between uncomplexed and complexed factor Xa with the various heparin fractions is discussed in terms of an involvement of heparin binding to factor Xa.  相似文献   

12.
We have studied the ability of bovine adrenal capillary cells cultured in vitro to uptake and metabolize heparin. We have previously demonstrated that endogenous heparin can be extracted from human plasma (Vannucchi, S. et al., (1985) Biochem. J. 227, 57-65), and here we show that also endothelial cells contain heparin. However, experiments with (35S)sodium sulfate labeling indicate that these cells do not synthesize de novo heparin, but they uptake it from culture serum. Bovine adrenal capillary endothelial cells are able to bind and uptake (3H)heparin added to culture medium and they also release its low molecular weight degradation products, thus indicating a metabolism of heparin. We discuss about the role of endothelial cell-mediated uptake and metabolism of endogenous heparin in relationship with circulating heparin. We also discuss about these events as related to some of the antithrombogenic properties of the endothelium.  相似文献   

13.
Turnover of radioactive sulphate-labelled proteoglycans in cultured rat smooth muscle cells was detected by pulse chase techniques. The degradation appeared to take the form of desulphation of sulphated macromolecules, with a loss in total sulphate of approximately 50% in 5 days. The desulphation process occurred in the pericellular/matrix compartment of the culture system and was unaffected by inhibition of matrix formation by beta-aminopropionitrile, or by incubation of cells with lysomotropic inhibitors. There was no evidence for further degradation of desulphated species even when exogenous, radio-labelled proteoglycans were added to fresh cultures and incubated for four days. Labelled macromolecules initiated on xyloside acceptors were desulphated by rat smooth muscle cell cultures more slowly than intact proteoglycans.  相似文献   

14.
Granzyme B (GrB) is a key effector of cytotoxic lymphocyte-mediated cell death. It is delivered to target cells bound to the proteoglycan serglycin, but how it crosses the plasma membrane and accesses substrates in the cytoplasm is poorly understood. Here we identify two cationic sequences on GrB that facilitate its binding and uptake. Mutation of cationic sequence 1 (cs1) prevents accumulation of GrB in a distinctive intracellular compartment and reduces cytotoxicity 20-fold. Mutation of cs2 reduces accumulation in this intracellular compartment and cytotoxicity two- to threefold. We also show that GrB-mediated cytotoxicity is abrogated by heparin and that target cells deficient in cell surface sulfate or glycosaminoglycans resist GrB. However, heparin does not completely prevent GrB internalization and chondroitin 4-sulfate does not inhibit cytotoxicity, suggesting that glycosaminoglycans are not essential GrB receptors. We propose that GrB enters cells by nonselective adsorptive pinocytosis, exchanging from chondroitin sulfate on serglycin to anionic components of the cell surface. In this electrostatic "exchange-adsorption" model, cs1 and cs2 participate in binding of GrB to the cell surface, thereby promoting its uptake and eventual release into the cytoplasm.  相似文献   

15.
Yang L  Ding Q  Huang X  Olson ST  Rezaie AR 《Biochemistry》2012,51(19):4078-4085
High-molecular weight heparins promote the protein Z-dependent protease inhibitor (ZPI) inhibition of factors Xa (FXa) and XIa (FXIa) by a template mechanism. To map the heparin-binding site of ZPI, the role of basic residues of the D-helix (residues Lys-113, Lys-116, and Lys-125) in the interaction with heparin was evaluated by either substituting these residues with Ala (ZPI-3A) or replacing the D-helix with the corresponding loop of the non-heparin-binding serpin α(1)-proteinase inhibitor (ZPI-D-helix(α1-PI)). Furthermore, both the C-helix (contains two basic residues, Lys-104 and Arg-105) and the D-helix of ZPI were substituted with the corresponding loops of α(1)-proteinase inhibitor (ZPI-CD-helix(α1-PI)). All mutants exhibited near normal reactivity with FXa and FXIa in the absence of cofactors and in the presence of protein Z and membrane cofactors. By contrast, the mutants interacted with heparin with a lower affinity and the ~48-fold heparin-mediated enhancement in the rate of FXa inhibition by ZPI was reduced to ~30-fold for ZPI-3A, ~15-fold for ZPI-D-helix(α1-PI), and ~8-fold for ZPI-CD-helix(α1-PI). Consistent with a template mechanism for heparin cofactor action, ZPI-CD-helix(α1-PI) inhibition of a FXa mutant containing a mutation in the heparin-binding site (FXa-R240A) was minimally affected by heparin. A significant decrease (~2-5-fold) in the heparin template effect was also observed for the inhibition of FXIa by ZPI mutants. Interestingly, ZPI derivatives exhibited a markedly elevated stoichiometry of inhibition with FXIa in the absence of heparin. These results suggest that basic residues of both helices C and D of ZPI interact with heparin to modulate the inhibitory function of the serpin.  相似文献   

16.
A variety of sulphated polyanions in addition to heparin and dermatan sulphate stimulate the inhibition of thrombin by heparin cofactor II (HCII). Previous investigations indicated that the binding sites on HCII for heparin and dermatan sulphate overlap but are not identical. In this study we determined the concentrations (IC50) of various polyanions required to stimulate thrombin inhibition by native recombinant HCII in comparison with three recombinant HCII variants having decreased affinity for heparin (Lys-173-->Gln), dermatan sulphate (Arg-189-->His), or both heparin and dermatan sulphate (Lys-185-->Asn). Pentosan polysulphate, sulphated bis-lactobionic acid amide, and sulphated bis-maltobionic acid amide resembled dermatan sulphate, since their IC50 values were increased to a much greater degree (>/=8-fold) by the mutations Arg-189-->His and Lys-185-->Asn than by Lys-173-->Gln (Gln and Lys-185-->Asn (>/=6-fold) than by Arg-189-->His (相似文献   

17.
Although fibrin-bound thrombin is resistant to inactivation by heparin.antithrombin and heparin.heparin cofactor II complexes, indirect studies in plasma systems suggest that the dermatan sulfate.heparin cofactor II complex can inhibit fibrin-bound thrombin. Herein we demonstrate that fibrin monomer produces a 240-fold decrease in the heparin-catalyzed rate of thrombin inhibition by heparin cofactor II but reduces the dermatan sulfate-catalyzed rate only 3-fold. The protection of fibrin-bound thrombin from inhibition by heparin.heparin cofactor II reflects heparin-mediated bridging of thrombin to fibrin that results in the formation of a ternary heparin.thrombin.fibrin complex. This complex, formed as a result of three binary interactions (thrombin.fibrin, thrombin.heparin, and heparin.fibrin), limits accessibility of heparin-catalyzed inhibitors to thrombin and induces conformational changes at the active site of the enzyme. In contrast, dermatan sulfate binds to thrombin but does not bind to fibrin. Although a ternary dermatan sulfate. thrombin.fibrin complex forms, without dermatan sulfate-mediated bridging of thrombin to fibrin, only two binary interactions exist (thrombin.fibrin and thrombin. dermatan sulfate). Consequently, thrombin remains susceptible to inactivation by heparin cofactor II. This study explains why fibrin-bound thrombin is susceptible to inactivation by heparin cofactor II in the presence of dermatan sulfate but not heparin.  相似文献   

18.
Binding and internalization of heparin by vascular smooth muscle cells   总被引:13,自引:0,他引:13  
Previous work from our laboratory has demonstrated that heparin specifically inhibits the proliferation of vascular smooth muscle cells in vivo and in vitro. In this paper, we examine the binding and mode of internalization of heparin by smooth muscle cells. For these studies, radiolabeled and fluoresceinated (FITC) heparin probes were synthesized that retained their antiproliferative capacity. Binding of 3H-heparin to these cells occurs via specific, high-affinity binding sites (Kd = 10(-9) M, 100,000 binding sites per cell). Approximately 80% of the heparin bound to the cell surface was shed into the culture medium within 2 hr. The heparin that was left on the cell surface was internalized with biphasic kinetics. Approximately 50% of the bound material was internalized within 2 hr. After this initial rapid uptake, the rate slowed substantially, with the remaining heparin requiring 1-2 days to be internalized. Binding and uptake of FITC heparin was monitored using video image intensification fluorescence microscopy. When smooth muscle cells were exposed to FITC heparin at 4 degrees C, a diffuse surface staining pattern was observed. After warming the cells to 37 degrees C, intensely fluorescent vesicles were seen superimposed over the diffuse surface staining within 2 min. After 15 min at 37 degrees C, numerous large punctate vesicles were seen inside the cell. After 2 hr these vesicles had concentrated in the perinuclear region. This pattern of uptake, when considered along with the presence of specific, high-affinity binding sites and the initial rapid uptake of 3H-heparin, suggests that heparin enters smooth muscle cells by both receptor-mediated and other endocytic pathways.  相似文献   

19.
Rat plasma low- and high-density lipoproteins were labeled with [3H]cholesteryl linoleyl ether and isolated by rate-zonal ultracentrifugation into apolipoprotein B-containing LDL, apolipoprotein E-containing HDL1 and apolipoprotein E-poor HDL2. These fractions were incubated with cultured rat hepatocytes and comparable amounts of all lipoproteins were taken up by the cells. Rat HDL was isolated at d 1.085-1.21 g/ml and apolipoprotein E-free HDL was prepared by heparin Sepharose chromatography. The original HDL and the apolipoprotein E-free HDL were labeled with 125I or with [3H]cholesteryl linoleyl ether and incubated with rat hepatocytes or adrenal cells in culture. The uptake of apolipoprotein E-free [3H]cholesterol linoleyl ether HDL by the cultured hepatocytes was 20-40% more than that of the original HDL. Comparison of uptake of cholesteryl ester moiety (represented by uptake of [3H]cholesteryl linoleyl ether) and of protein moiety (represented by metabolism of 125I-labeled protein) was carried out using both original and apolipoprotein E-free HDL. In experiments in which low concentrations of HDL were used, the ratio of 3H/125I exceeded 1.0. In cultured adrenal cells, the uptake of [3H]cholesteryl linoleyl ether-labeled HDL was stimulated 3-6-fold by 1 X 10(-7) M ACTH, while the uptake of 125I-labeled HDL increased about 2-fold. The ratio of 3H/125I representing cellular uptake was 2-3 and increased to 5 in ACTH-treated cells. The present results indicate that in cultured rat hepatocytes the uptake of homologous HDL does not depend on the presence of apolipoprotein E. Evidence was also presented for an uptake of cholesteryl ester independent of protein uptake in cultured rat adrenal cells and to a lesser extent in rat hepatocytes.  相似文献   

20.
Calcium uptake and (Ca2+ + Mg2+)-ATPase activity in canine cardiac microsomes were found to be stimulated by heparin and various other polyanions. Prior treatment of the microsomes with the ionophores alamethicin or A23187 produced no change in the extent of stimulation of the ATPase activity by heparin yet eliminated net calcium uptake. This finding and a lack of change in the stoichiometric ratio of mol of calcium transported/mol of ATP hydrolyzed (calcium:ATP) suggest that the effect of heparin is on the calcium pump rather than on a parallel calcium efflux pathway. Certain polycationic compounds including poly-L-arginine and histone inhibited both cardiac and fast skeletal muscle microsomal calcium uptake and also produced no change in the stoichiometric ratio of calcium to ATP. Several lines of evidence indicate that the polyanionic compounds tested stimulate calcium uptake by interacting with phospholamban, the putative phosphorylatable regulator of the cardiac sarcoplasmic reticulum calcium pump, whereas polycationic compounds appear to interact with the pump. (i) Heparin stimulated calcium uptake to the same extent as protein kinase A or trypsin, whereas prior phosphorylation or tryptic cleavage of phospholamban from the membrane abolished the stimulatory effect of heparin. (ii) Calcium uptake and (Ca2+ + Mg2+)-ATPase activity in fast skeletal muscle microsomes, which lack phospholamban, were unaffected by heparin. (iii) Purified cardiac (Ca2+ + Mg2+)-ATPase activity was no longer stimulated by heparin yet was still inhibited by polycationic compounds. The heparin-induced stimulation of calcium uptake was dependent on the pH and ionic strength of the heparin-containing preincubation medium, hence electrostatic interactions appear to play a significant role in heparin's stimulatory action. The data are consistent with an inhibitory role of the positively charged cytoplasmic domain of phospholamban with respect to calcium pump activity and the relief of the inhibition upon reduction in phospholamban's positive charge by phosphorylation or binding of polyanions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号