首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding proteins for retinoic acid and retinol were separated from a supernatant prepared from bovine retina. Fraction IV from DEAE-cellulose chromatography bound exogenous [3H] retinoic acid which could not be effectively displayed by retinol, retinal, retinyl acetate or palmitate, but which was readily displaced with excess retinoic acid. [3H] Retinol was bound by fraction V from DEAE-cellulose chromatography and was not displaced by retinal, retinoic acid, retinyl acetate or retinyl palmitate, but was readily displaced by excess retinol. Unlike bovine serum retinol-binding protein, neither intracellular binding protein formed a complex with purified human serum prealbumin. The supernatant from bovine retinas was estimated to contain five times more retinoic acid binding than retinol binder.  相似文献   

2.
We have examined the effects of retinoids on growth of cultured human skin fibroblasts from four individuals. Retinoic acid and retinol both produce a dose-dependent inhibition of growth in the four strains examined; retinoic acid was more potent than retinol in this respect. The growth inhibitory effect of retinoic acid is characterized by a decrease in the exponential growth rate, which is reversible upon removal of retinoic acid from the growth medium; the final saturation density, however, is not modified by retinoic acid treatment. No alterations of cell morphology, viability, or adhesiveness to substratum are induced by the retinoid concentrations utilized. The inhibitory effect of 10−6 M retinoic acid on cell growth is not affected by the concentration of fetal calf serum (FCS) in the medium. In all four human fibroblast strains examined, specific binding of [3H]retinoic acid to cytosol is present as determined by sucrose-density gradient centrifugation. Despite the effects of retinol on fibroblast growth, no cytoplasmic binding of [3H]retinol could be demonstrated in these cells.  相似文献   

3.
Binding proteins for retinoic acid and retinol were separated from a supernatant prepared from bovine retina. Fraction IV from DEAE-cellulose chromatography bound exogenous [3H] retinoic acid which could not be effectively displaced by retinol, retinal, retinyl acetate or palmitate, but which was readily displaced with excess retinoic acid. [3H] Retinol was bound by fraction V from DEAE-cellulose chromatography and was not displaced by retinal, retinoic acid, retinyl acetate or retinyl palmitate, but was readily displaced by excess retinol. Unlike bovine serum retinol-binding protein, neither intracellular binding protein formed a complex with purified human serum prealbumin. The supernatant from bovine retinas was estimated to contain five times more retinoic acid binding than retinol binder.  相似文献   

4.
A protein with binding specificity for retinol was purified from human liver. [3H]Retinol was added to liver extracts and the [3H]retinol-binding protein isolated by conventional chromatographic techniques including ion-exchange chromatography on DEAE-Sepharose, gel filtration on Sephadex G-75 and G-50 and preparative isoelectric focusing. The yield was 10–15% in different preparations and the degree of purification was about 3000-fold. The purified protein had a molecular weight of about 15 000 as estimated from both gel filtration and polyacrylamide gel electrophoresis in sodium dodecyl sulphate and was homogeneous in several electrophoretic systems. Isoelectric focusing of the purified protein gave a doublet band. Only one fluorescent band at pH 4.70 was seen if the protein solution was incubated with excess retinol prior to isoelectric focusing. The isolated protein did not react with antiserum to the retinol-binding protein of plasma. The amino acid composition and the amino terminal amino acid sequence for the first sixteen amino acids of the purified protein differed significantly from that of the plasma retinol-binding protein.  相似文献   

5.
Characterization of retinoid metabolism in the developing chick limb bud   总被引:8,自引:0,他引:8  
Retinoids (vitamin A derivatives) have been shown to have striking effects on developing and regenerating vertebrate limbs. In the developing chick limb, retinoic acid is a candidate morphogen that may coordinate the pattern of cellular differentiation along the anteroposterior limb axis. We describe a series of investigations of the metabolic pathway of retinoids in the chick limb bud system. To study retinoid metabolism in the bud, all-trans-[3H]retinol, all-trans-[3H]retinal and all-trans-[3H]retinoic acid were released into the posterior region of the limb anlage, the area that contains the zone of polarizing activity, a tissue possibly involved in limb pattern formation. We found that the locally applied [3H]retinol is primarily converted to [3H]retinal, [3H]retinoic acid and a yet unidentified metabolite. When [3H]retinal is locally applied, it is either oxidized to [3H]retinoic acid or reduced to [3H]retinol. In contrast, local delivery of retinoic acid to the bud yields neither retinal nor retinol nor the unknown metabolite. This flow of metabolites agrees with the biochemical pathway of retinoids that has previously been elucidated in a number of other animal systems. To find out whether metabolism takes place directly in the treated limb bud, we have compared the amount of [3H]retinoid present in each of the four limb anlagen following local treatment of the right wing bud. The data suggest that retinoid metabolism takes place mostly in the treated limb bud. This local metabolism could provide a simple mechanism to generate in a controlled fashion the biologically active all-trans-retinoic acid from its abundant biosynthetic precursor retinol. In addition, local metabolism supports the hypothesis that retinoids are local chemical mediators involved in pattern formation.  相似文献   

6.
α-Bungarotoxin has been labeled with [3H]pyridoxamine phosphate, by reaction with pyridoxal phosphate followed by reduction with sodium boro[3H]hydride. Specific activities of up to 27 Ci/mmol have been obtained. Mono- and dilabeled toxins bind irreversibly to the acetylcholine receptor from Torpedo electroplax, despite a change in isoelectric point from 9.2 for native toxin to 6.2 for dilabeled toxin. The 3H-labeled α-bungarotoxin is usable for over a year.  相似文献   

7.
Vitamin A (VA) metabolism in neonates is virtually uncharacterized. Our objective was to develop a compartmental model of VA metabolism in unsupplemented and VA-supplemented neonatal rats. On postnatal day 4, pups (n = 3/time) received 11,12-[3H]retinol orally, in either oil (control) or VA combined with retinoic acid (VARA) [VA (∼6 mg/kg body weight) + 10% retinoic acid]. Plasma and tissues were collected at 14 time points up to 14 days after dose administration. VARA supplementation rapidly, but transiently, increased total retinol mass in plasma, liver, and lung. It decreased the peak fraction of the dose in plasma. A multi-compartmental model developed to fit plasma [3H]retinol data predicted more extensive recycling of retinol between plasma and tissues in neonates compared with that reported in adults (144 vs. 12–13 times). In VARA pups, the recycling number for retinol between plasma and tissues (100 times) and the time that retinol spent in plasma were both lower compared with controls; VARA also stimulated the uptake of plasma VA into extravascular tissues. A VARA perturbation model indicated that the effect of VARA in stimulating VA uptake into tissues in neonates is both dramatic and transient.  相似文献   

8.
Some parameters of the receptor element from the rat olfactory epithelium are evaluated; it is characterized by a high affinity for camphor (KD = 1.5 · 10?9 M). Triton X-100 has no marked effect on the binding of [3H]camphor. Neither RNAase nor phospholipase C affected [3H]camphor-binding activity. Pronase and trypsin abolished [3H]camphor binding activity by 65 and 40%, respectively. Sulfhydryl reagents decrease the binding of [3H]camphor by a factor of 5–8. The isoelectric point of the receptor solubilized with Triton X-100 is 4.8, as determined by isoelectric focusing. The molecular weight of the receptor as determined by gel electrophoresis is about 120 000. It is proposed that the camphor receptor is a membrane protein containing sulfhydryl groups and playing a key role in olfactory reception.  相似文献   

9.
All-trans retinoic acid increased the incorporation of D-[3H]galactose into particulate and soluble glycoproteins in the epidermis of cultured pig skin slices nearly two-fold. Increased incorporation of D-[3H]galactose was not blocked by tunicamycin. This effect was specific for D-[3H]galactose since the incorporation of D-[3H]glucosamine and L-[14C]leucine into epidermal glycoproteins was unaffected by all-trans retinoic acid. All-trans retinoic acid and 13-cis retinoic acid had quantitatively similar effects on D-[3H]galactose incorporation. All-trans retinyl acetate and an aromatic retinoic acid analogue (‘Etretinate’) were less effective. SDS polyacrylamide gel electrophoresis and fluorography showed increased incorporation of D-[3H]galactose into all epidermal glycoproteins in the presence of all-trans retinoic acid. There was no evidence for synthesis of new glycoproteins such as mucins.  相似文献   

10.
Gel filtration studies demonstrate that retinol receptors of chick retinal and pigment epithelial cytosols are (1) of very similar nature (2) of small molecular size (about 18 000 daltons) and are different in character from serum proteins. Citral inhibits the binding of [3H] retinol to the retinal 2 S receptor. Retinol acetate competes with retinol for binding to 2 S receptor in both retina and pigment epithelium whereas retinol palmitate is an effective competitor only in the pigment epithelium. Dithiothreitol maximizes 2 S binding in retina and pigment epithelial cytosol; its absence does not lead to receptor aggregation however. A limited number of high affinity binding sites (2 S receptor) appear to be present in retina and pigment epithelium. A 5 S binding species is also present in pigment epithelium; it is similar in character to [3H] retinol binding in serum and may arise from serum contamination of the pigment epithelial preparation. Binding affinity in retina is high with possibly two classes of retinol binding sites present of KD about 1·10?9 and 4·10?8.  相似文献   

11.
The interaction of acetylcholine receptor and acetylcholinesterase with lipid monolayers was followed by measuring changes in surface pressure.When injected into the subphase of a lipid monolayer, the proteins caused increases in surface pressure from 5 to 10 dynes/cm, indicating a penetration of protein into the monolayer. At pH values below the isoelectric point of the proteins the incorporation was improved. The same was observed when Ca2+ (2 mM) was added.The presence of the enzyme in the mixed film could be demonstrated by using diiso[3H]propyl fluorophosphate-labelled acetylcholinesterase as well as by measuring enzyme activity. Acetylcholine receptor was shown to be present in the mixed film by using a complex made of the receptor and α-[3H]neurotoxin.  相似文献   

12.
When the 100,000 X g supernatant fractions of several rat organs are incubated with all-trans-[3H]retinoic acid, a binding component for retinoic acid with a sedimentation coefficient of 2 S can be detected by sucrose gradient centrifugation. This tissue binding protein for retinoic acid is distinct from the tissue binding protein for retinol which has been previously described. The tissue retinoic acid-binding protein has been partially purified from rat testis and this partially purified protein would appear to have a molecular weight of 14,500 as determined by gel filtration and high binding specificity for all-trans-retinoic acid. Binding of [3H]retinoic acid is not diminished by a 200-fold molar excess of retinal, retinol, or oleic acid but is reduced by a 200-fold excess of unlabeled retinoic acid. Tissue retinoic acid-binding protein can be detected in extracts of brain, eye, ovary, testis, and uterus but is apparently absent in heart muscle, small intestine, kidney, liver, lung, gastrocnemious muscle, serum, and spleen. This distribution is different than that observed for the tissue retinol-binding protein. Tissue retinol-binding protein was also purified extensively from rat testis. The partially purified protein has an apparent molecular weight of 14,000 and high binding specificity for all-trans-[3H]retinol as only unlabeled all-trans-retinol but not retinal, retinoic acid, retinyl acetate, retinyl palmitate, or oleic acid could diminish binding of the 3H ligand under the conditions employed. The partially purified protein has a fluorescence excitation spectrum with lambda max at 350 nm. In contrast, the retinol-binding protein isolated from rat serum and described by others has a fluorescence excitation spectrum with lambda max at 334 nm and an apparent molecular weight of 19,000. When partially purified tissue retinol-binding protein is extracted with heptane, the heptane extract has a fluorescence excitation spectrum similar to that of all-trans-retinol.  相似文献   

13.
The kinetic properties and subcellular distribution of an esterifying enzyme in the pigment epithelium of bovine retina have been studied using both [1-3H]retinol and [3H]retinol bound to cellular retinol-binding protein as substrates. The most active esterifying fraction in pigment epithelial cell preparations was the microsomes, but the lysosome plus mitochondria fraction also showed some activity, probably due to endoplasmic reticulum present as an impurity. The microsomal enzyme showed optimum activity at pH 7.5, and the reaction was linear up to 30 μg protein and for the first 10–15 min. The apparent Km values were 16.6 · 10?6 and 5.5 · 10?6 M for [3H]retinol and bound [3H]retinol, respectively. This is the first time that retinol bound to cellular retinol-binding protein has been shown to undergo metabolic stransformation. The microsomal esterifying activity was destroyed by boiling for 1 min, or after freezing for 2 months. No clear requirement for ATP, CoA or fatty acid could be demonstrated.Of all the other tissues examined under the same experimental conditions as those used for the pigment epithelium, onlt intestine showed measurable activity. With larger amounts of tissue protein and longer incubation periods, activity was also detectable in microsomes of liver, testis and retina  相似文献   

14.
Metabolism of retinoids by embryonal carcinoma cells   总被引:4,自引:0,他引:4  
Several embryonal carcinoma (EC) cell lines were tested in culture for their ability to metabolize all-trans-[3H]retinol, all-trans-[3H]retinyl acetate, and all-trans-[3H]retinoic acid. There was little, if any, metabolism of all-trans-retinol to more polar compounds; we failed to detect conversion to acidic retinoids by reverse-phase high performance liquid chromatography and derivatization. We also did not observe [3H]retinoic acid when EC cells were incubated with [3H]retinyl acetate. Unlike the other retinoids, all-trans-[3H]retinoic acid, even at micromolar levels, was almost totally modified by cells from several EC lines within 24 h. Most of the labeled products were secreted into the medium. Some EC lines metabolized retinoic acid constitutively, whereas others had an inducible enzyme system. A differentiation-defective line, which contains little or no cellular retinoic acid-binding protein activity, metabolized retinoic acid poorly, even after exposure to inducers. At least eight retinoic acid metabolites were generated; many contain hydroxyl residues. Our data lead us to propose that retinol does not induce differentiation of EC cells in vitro via conversion to retinoic acid. Also, the relatively rapid metabolism of retinoic acid by EC cells suggests either that the induction of differentiation need involve only a transient exposure to this retinoid or that one or more of the retinoic acid metabolites can also promote differentiation.  相似文献   

15.
Analysis of the sucrose-density-gradient patterns of the 110 000g supernatant fractions of adult and foetal retina and pigment epithelium showed them to contain a limited number of highly specific binding sites ('receptors') for [3H]retinoic acid that sediment at approx. 2S. Binding in pigment epithelium is higher than in any tissue yet reported. A 5S binding component is also observed and is probably due to serum contamination. Fractionation studies indicate that [3H]retinoic acid binding in the retina is lower in the photoreceptor units than in the retinal inner layers. This is in contrast with previous results that show greater [3H]retinol binding in photoreceptors. Studies with dystrophic human and rat retinas, which lack the photoreceptor layers, confirm that [3H]retinoic acid binding is greater in the non-photoreceptor layers of the retina. No specific [3H]retinoic acid binding is found in corneal epithelium, although endothelium and the conjunctiva demonstrate specific 2S binding. Such differences in retinol and retinoic acid binding may indicate different roles for the two compounds in ocular tissues.  相似文献   

16.
As reported previously squamous cell differentiation of rabbit tracheal epithelial (RTE) cells in culture is a multi-step process. This program of differentiation is inhibited by retinoic acid and retinol; retinoic acid is about 100 times more effective than retinol. To examine the metabolism of these agents in this in vitro model system, RTE cells were grown in the presence of all-trans-[3H]retinol or all-trans-[3H]retinoic acid and their metabolites analyzed by high-pressure liquid chromatography. RTE cells converted most of the retinol to retinyl esters, predominantly retinyl palmitate. A small fraction was metabolized to polar compounds, one of which coeluted with retinoic acid. After methylation this compound eluted as 13-cis-methyl retinoate and as all-trans-methyl retinoate. Conversion to 13-cis-retinol was also observed. All-trans-retinoic acid was rapidly taken up by RTE cells and converted to more polar (peak 1) and less polar (peak 3) metabolites. A proportion of all-trans-[3H]retinoic acid was metabolized to 13-cis-[3H]retinoic acid. These metabolic reactions appeared to be constitutive and were not induced by pretreatment with retinoic acid. The peak 1 metabolites were rapidly secreted into the medium whereas the peak 3 metabolites were retained by the cells and were not detected in the medium. Alkaline hydrolysis of the metabolites in peak 3 yielded retinoic acid, indicating the formation of retinoyl derivatives. Our results establish that RTE cells can convert all-trans-retinol to 13-cis-retinol and retinoic acid. RTE can metabolize all-trans-retinoic acid to 13-cis-retinoic acid and to an unidentified ester of retinoic acid.  相似文献   

17.
18.
The covalent incorporation of [3H]all-trans-retinoic acid into proteins has been studied in tumoural Leydig (MLTC-1) cells. The maximum retinoylation activity of MLTC-1 cell proteins was 710 ± 29 mean ± SD) fmoles/8 × 104 cells at 37 °C. About 90% of [3H]retinoic acid was trichloroacetic acid-soluble after proteinase-K digestion and about 65–75% after hydrolysis with hydroxylamine. Thus, retinoic acid is most probably linked to proteins as a thiol ester. The retinoylation reaction was inhibited by 13-cis-retinoic acid and 9-cis-retinoic acid with IC50 values of 0.9 μM and 0.65 μM, respectively. Retinoylation was not inhibited by high concentrations of palmitic or myristic acids (250 μM); but there was an increase of the binding activity of about 25% and 130%, respectively. On the other hand, the retinoylation reaction was inhibited (about 40%) by 250 μM lauric acid. After pre-incubation of the cells with different concentrations of unlabeled RA, the retinoylation reaction with 100 nM [3H]RA involved first an increase at 100 nM RA and then a decrease of retinoylation activity between 200 and 600 nM RA. After cycloheximide treatment of the tumoural Leydig cells the binding activity of [3H]RA was about the same as that in the control, suggesting that the bond occurred on proteins in pre-existing cells. (Mol Cell Biochem 276: 55–60, 2005)This paper is dedicated to the memory of Prof. E. Quagliariello.  相似文献   

19.
The order of potency of retinoids as inhibitors of A23187-induced production of leukotriene B4 (LTB4) in human polymorphonuclear leukocytes (PMN) was retinoic acid greater than retinal greater than retinol. However, the conversion of exogenous arachidonate (AA) to LTB4 by PMN homogenates was inhibited in the rank order retinol greater than retinal much greater than retinoic acid. The agreement between active concentrations of retinol in these two systems is consistent with this compound acting directly to inhibit AA metabolism: this is not so for the other retinoids. The order of potency for inhibition of phorbol dibutyrate (PDBu)-stimulated superoxide (O-2) production in HL60 granulocytes was retinol greater than retinoic acid much greater than retinal (inactive); neither retinol nor retinal displaced [3H]PDBu from HL60 cells. We conclude that inhibition of LTB4 production by retinoic acid and retinal is neither through inhibition of AA metabolism nor through inhibition of protein kinase C.  相似文献   

20.
Corneas of normal and vitamin A-deficient rabbits were treated topically with [11, 12-3H] retinol or [11, 12-3H] all-trans retinoic acid. Methanol extracts of these corneas were analyzed by high pressure liquid chromatography. Radiolabeled compounds were extracted from the corneas which co-migrated chromatographically with known retinoid standards. In agreement with studies on other tissues and organs, retinol was metabolized to retinoic acid and more polar compounds by corneas of normal and vitamin A-deficient rabbits. All-trans retinoic acid was isomerized to 13-cis retinoic acid in normal rabbit corneas; however, this trans-cis isomerization did not occur in vitamin A-deficient, xerophthalmic corneas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号