首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hong DJ  Pei AL  Sun FY  Zhu CQ 《生理学报》2003,55(2):142-146
近年来研究发现,阿尔茨海默病(Alzheimer′s disease,AD)病人脑内神经元细胞周期相关蛋白的异常表达与AD相关病理改变存在关联。为探讨β-淀粉样蛋白(β—amyloid,Aβ)的毒性作用能否导致成年脑神经元表达细胞周期相关蛋白,以及细胞周期相关蛋白表达与神经损伤之间的关系,我们运用免疫组化、积分光密度分析等方法对Aβ25-35多肽片段单侧杏仁核注射的大鼠脑进行了研究。结果显示,Aβ25-35注射的大鼠脑内除了有与神经纤维缠结相关的磷酸化tau蛋白和凋亡相关蛋白Bax蛋白水平增加外,术后7d细胞周期相关蛋白cyclin A和cyclin B1蛋白在神经元内异常表达,但术后21d时cyclin A的表达有所降低,而cyclin B1在脑内神经元中已检测不到;免疫荧光双标结果显示Aβ25-35注射后7d的大鼠脑内有较多的cyclin B1和Bax、cyclin B1和磷酸化tau蛋白共存的神经元,而Bax与磷酸化tau蛋白阳性信号很少共存在同一细胞上。以上结果提示,Aβ可导致成年脑神经元表达细胞周期相关蛋白,这些神经元可能会通过与Bax相关的凋亡途径死亡,或首先导致与AD神经纤维缠结相关的tau蛋白磷酸化。  相似文献   

2.
A large body of data suggests that the Alzheimer's amyloid peptide (Abeta) causes degeneration and death of neurons by mechanisms that involve reactive oxygen species. The pathways involved in Abeta-mediated oxidative injury are only partially understood. We theorized that abnormal microaggregates and/or pathological conformations of Abeta peptides may behave as xenobiotics and trigger the induction of NADPH cytochrome P450 reductase (CP450r), an enzyme which, if induced by non-physiological substrates (such as xenobiotics like drugs or other 'foreign molecules'), is known to cause oxidative stress. In order to test this hypothesis, i.e. that Abeta can increase the expression of CP450r, SK-N-SH human neuroblastoma cells were exposed to Abeta25-35 and Abeta1-42 and then examined for induction of this enzyme in immunoblots, using specific antibodies. Following exposure to Abeta peptides, neuroblastoma cells showed a clear-cut induction of CP450r. To determine whether this mechanism is operational in vivo, we investigated the expression of CP450r in a transgenic mouse model of Alzheimer's disease (AD) and in brains from patients afflicted with AD, using an immunocytochemical approach. Tissue sections from brains of transgenic mice exhibited strong immunoreactivity for CP450r, surrounding amyloid deposits. The pattern of expression of CP450r was similar to that exhibited by neuritic and oxidative stress markers. Sections from non-transgenic mice showed no detectable immunoreactivity. Immunostaining of sections from four brains with neuropathologically confirmed AD showed a pattern of abnormality different from transgenic mice that was characterized by abnormal immunoreactivity for CP450r within the cytoplasm of cortical neurons. No labeling was seen in sections from aged-matched control brains. The data showed that CP450r is induced by Alzheimer amyloid peptide and that such a response must be considered as one possible mechanism whereby Abeta causes oxidative stress.  相似文献   

3.
Tau in Alzheimer neurofibrillary tangles has been shown to be hyperphosphorylated and CDK5, GSK3, MAP kinase and SAP kinases are the candidate kinases for the phosphorylation of tau. Recently, it was reported that the conversion of p35, the activator of CDK5, to p25 was upregulated in Alzheimer's disease (AD) brains, and that p35 is cleaved to yield p25 by calpain. Here we show that p35 is rapidly cleaved to p25 in rat and human brains within a short postmortem delay and that the conversion of p35 to p25 is partially dependent on calpain activity. Immunoblot analysis of brains prepared from patients with AD or age-matched control individuals with a short postmortem delay revealed no specific increase in the levels of p25 in AD brains, whereas the levels of active form of calpain were increased in AD brains compared to the those in controls. These observations suggest that the conversion of p35 to p25 is a postmortem degradation event and may not be upregulated in AD brains.  相似文献   

4.
Díaz-Nido J  Wandosell F  Avila J 《Peptides》2002,23(7):1323-1332
Protein aggregation into dense filamentous inclusions is a characteristic feature of many etiologically diverse neurodegenerative disorders including Alzheimer's disease (AD), spongiform encephalopathies, and tauopathies. Thus, beta-amyloid peptide (Abeta) accumulates within senile amyloid plaques in AD, protease-resistant prion protein constitutes the amyloid deposits in spongiform encephalopathies and tau protein gives rise to neurofibrillary tangles (NFT) both in AD and in tauopathies. Curiously, these abnormal protein inclusions contain, in addition to their major peptide components, some associated sulfated glycosaminoglycans (sGAG). Here we discuss the proposal that the binding of sGAG to aggregate-forming peptides may modify the pathogenic process depending on their subcellular localization.  相似文献   

5.
One hallmark of Alzheimer's disease (AD) is the formation of neurofibrillary tangles, aggregated paired helical filaments composed of hyperphosphorylated tau. Amyloid-beta (Abeta) induces tau hyperphosphorylation, decreases microtubule (MT) stability and induces neuronal death. MT stabilizing agents have been proposed as potential therapeutics that may minimize Abeta toxicity and here we report that paclitaxel (taxol) prevents cell death induced by Abeta peptides, inhibits Abeta-induced activation of cyclin-dependent kinase 5 (cdk5) and decreases tau hyperphosphorylation. Taxol did not inhibit cdk5 directly but significantly blocked Abeta-induced calpain activation and decreased formation of the cdk5 activator, p25, from p35. Taxol specifically inhibited the Abeta-induced activation of the cytosolic cdk5-p25 complex, but not the membrane-associated cdk5-p35 complex. MT-stabilization was necessary for neuroprotection and inhibition of cdk5 but was not sufficient to prevent cell death induced by overexpression of p25. As taxol is not permeable to the blood-brain barrier, we assessed the potential of taxanes to attenuate Abeta toxicity in adult animals using a succinylated taxol analog (TX67) permeable to the blood-brain barrier. TX67, but not taxol, attenuated the magnitude of both basal and Abeta-induced cdk5 activation in acutely dissociated cortical cultures prepared from drug treated adult mice. These results suggest that MT-stabilizing agents may provide a therapeutic approach to decrease Abeta toxicity and neurofibrillary pathology in AD and other tauopathies.  相似文献   

6.
Alzheimer's disease (AD) may result from the accumulation of amyloid-beta (Abeta) peptides in the brain. The cysteine protease cathepsin B (CatB) is associated with amyloid plaques in AD brains and has been suspected to increase Abeta production. Here, we demonstrate that CatB actually reduces levels of Abeta peptides, especially the aggregation-prone species Abeta1-42, through proteolytic cleavage. Genetic inactivation of CatB in mice with neuronal expression of familial AD-mutant human amyloid precursor protein (hAPP) increased the relative abundance of Abeta1-42, worsening plaque deposition and other AD-related pathologies. Lentivirus-mediated expression of CatB in aged hAPP mice reduced preexisting amyloid deposits, even thioflavin S-positive plaques. Under cell-free conditions, CatB effectively cleaved Abeta1-42, generating C-terminally truncated Abeta peptides that are less amyloidogenic. Thus, CatB likely fulfills antiamyloidogenic and neuroprotective functions. Insufficient CatB activity might promote AD; increasing CatB activity could counteract the neuropathology of this disease.  相似文献   

7.
The carboxyl terminus of heat-shock cognate (Hsc)70-interacting protein (CHIP) is a ubiquitin E3 ligase that can collaborate with molecular chaperones to facilitate protein folding and prevent protein aggregation. Previous studies showed that, together with heat-shock protein (Hsp)70, CHIP can regulate tau ubiquitination and degradation in a cell culture system. Ubiquitinated tau is one component in neurofibrillary tangles (NFTs), which are a major histopathological feature of Alzheimer's disease (AD). However, the precise sequence of events leading to NFT formation and the mechanisms involved remain unclear. To confirm CHIP's role in suppressing NFT formation in vivo, we performed a quantitative analysis of CHIP in human and mouse brains. We found increased levels of CHIP and Hsp70 in AD compared with normal controls. CHIP levels in both AD and controls corresponded directly to Hsp90 levels, but not to Hsp70 or Hsc70 levels. In AD samples, CHIP was inversely proportional to sarkosyl-insoluble tau accumulation. In a JNPL3 mouse brain tauopathy model, CHIP was widely distributed but weakly expressed in spinal cord, which was the most prominent region for tau inclusions and neuronal loss. Protein levels of CHIP in cerebellar regions of JNPL3 mice were significantly higher than in non-transgenic littermates. Human tau was more highly expressed in this region of mouse brains, but only moderate levels of sarkosyl-insoluble tau were detected. This was confirmed when increased insoluble tau accumulation was found in mice lacking CHIP. These findings suggest that increases in CHIP may protect against NFT formation in the early stages of AD. If confirmed, this would indicate that the quality-control machinery in a neuron might play an important role in retarding the pathogenesis of tauopathies.  相似文献   

8.
Liu F  Su Y  Li B  Zhou Y  Ryder J  Gonzalez-DeWhitt P  May PC  Ni B 《FEBS letters》2003,547(1-3):193-196
The phosphorylation status of amyloid precursor protein (APP) at Thr668 is suggested to play a critical role in the proteolytic cleavage of APP, which generates either soluble APP(beta) (sAPP(beta)) and beta-amyloid peptide (Abeta), the major component of senile plaques in patient brains inflicted with Alzheimer's disease (AD), or soluble APP(alpha) (sAPP(alpha)) and a peptide smaller than Abeta. One of the protein kinases known to phosphorylate APP(Thr668) is cyclin-dependent kinase 5 (Cdk5). Cdk5 is activated by the association with its regulatory partner p35 or its truncated form, p25, which is elevated in AD brains. The comparative effects of p35 and p25 on APP(Thr668) phosphorylation and APP processing, however, have not been reported. In this study, we investigated APP(Thr668) phosphorylation and APP processing mediated by p35/Cdk5 and p25/Cdk5 in the human neuroblastoma cell line SH-SY5Y. Transient overexpression of p35 and p25 elicited distinct patterns of APP(Thr668) phosphorylation, specifically, p35 increasing the phosphorylation of both mature and immature APP, whereas p25 primarily elevated the phosphorylation of immature APP. Despite these differential effects on APP phosphorylation, both p35 and p25 overexpression enhanced the secretion of Abeta, sAPP(beta), as well as sAPP(alpha). These results confirm the involvement of Cdk5 in APP processing, and suggest that p35- and p25-mediated Cdk5 activities lead to discrete APP phosphorylation.  相似文献   

9.
The major pathological ramification of Alzheimer's disease (AD) is accumulation of beta-Amyloid (Abeta) peptides in the brain. An emerging therapeutic approach for AD is elimination of excessive Ass peptides and preventing its re-accumulation. Immunization is the most effective strategy in removing preexisting cerebral Abetas and improving the cognitive capacity as shown in transgenic mice model of AD. However, active immunization is associated with adverse effect such as encephalitis with perivascular inflammation and hemorrhage. Details about the mechanistic aspects of propagation of these toxic effects are matter of intense enquiry as this knowledge is essential for the understanding of the AD pathophysiology. The present work aimed to study the oxidative vulnerability in the plasma, liver and brain of the inflammation-induced rats subjected to Ass immunization. Induction of inflammation was performed by subcutaneous injection of 0.5?ml of 2% silver nitrate. Our present result shows that the proinflammatory cytokines such as IL1alpha and TNFalpha are increased significantly in the inflammation-induced, Abeta1-42, Abeta25-35 treated groups and inflammation with Abeta25-35 treated group when compared to control, complete Freund's adjuvant and Abeta35-25 treated groups. These increased proinflammatory cytokines concurrently releases significant amount of free radicals in the astrocytes of respected groups. The present result shows that nitric oxide (NO) level was significantly higher (P<0.001) in plasma, liver and brain of the rat subjected to inflammation, Abeta1-42, Abeta25-35 and inflammation with Abeta25-35 injected groups when compared to control. The increased level of lipid peroxides (LPO) (P<0.001) and decreased antioxidant status (P<0.05) were observed in the plasma, liver and brain of inflammation-induced group when compared to control. Our result shows that significant oxidative vulnerability was observed in the inflammation with Ass treated rats when compared to other groups. Based on our results, we suggest that immunization of AD patients with Ass should be done with caution as the increase in Ass could trigger the brain inflammation in uncontrollable level.  相似文献   

10.
11.
The deposition of amyloid beta-protein (Abeta) is an invariable feature of Alzheimer's disease (AD); however, the biological mechanism underlying Abeta assembly into fibrils in the brain remains unclear. Here, we show that a high-density cluster of GM1 ganglioside (GM1), which was detected by the specific binding of a novel peptide (p3), appeared selectively on synaptosomes prepared from aged mouse brains. Notably, the synaptosomes bearing the high-density GM1 cluster showed extraordinary potency to induce Abeta assembly, which was suppressed by an antibody specific to GM1-bound Abeta, an endogenous seed for AD amyloid. Together with evidence that Abeta deposition starts at presynaptic terminals in the AD brain and that GM1 levels significantly increase in amyloid-positive synaptosomes prepared from the AD brain, our results suggest that the age-dependent high-density GM1 clustering at presynaptic neuritic terminals is a critical step for Abeta deposition in AD.  相似文献   

12.
Hook V  Kindy M  Hook G 《Biological chemistry》2007,388(2):247-252
Abnormal accumulation of neurotoxic beta-amyloid peptides (Abeta) in brain represents a key factor in the progression of Alzheimer's disease (AD). Identification of small molecules that effectively reduce brain levels of Abeta is important for development of Abeta-lowering agents for AD. In this study, we demonstrate that in vivo Abeta levels in brain are significantly reduced by the cysteine protease inhibitor E64d and the related CA074Me inhibitor, which inhibits cathepsin B. Direct infusion of these inhibitors into brains of guinea pigs resulted in reduced levels of Abeta by 50-70% after 30 days of treatment. Substantial decreases in Abeta also occurred after only 7 days of inhibitor infusion, with a reduction in both Abeta40 and Abeta42 peptide forms. A prominent decrease in Abeta peptides was observed in brain synaptosomal nerve terminal preparations after CA074Me treatment. Analyses of APP-derived proteolytic fragments showed that CA074Me reduced brain levels of the CTFbeta fragment, and increased amounts of the sAPPalpha fragment. These results suggest that CA074Me inhibits Abeta production by modulating APP processing. Animals appeared healthy after treatment with these inhibitors. These results, showing highly effective in vivo decreases in brain Abeta levels by these cysteine protease inhibitors, indicate the feasibility of using related compounds for lowering Abeta in AD.  相似文献   

13.
Lau LF  Ahlijanian MK 《Neuro-Signals》2003,12(4-5):209-214
Alzheimer's disease (AD) is characterized by two pathological hallmarks, namely, senile plaques and neurofibrillary tangles (NFTs). The former are mainly composed of amyloid-beta peptides (Abeta) while the latter consists mainly of filaments of hyperphosphorylated tau. Cyclin-dependent kinase 5 (cdk5) has been implicated not only in the tangle pathology, but recent data also implicate cdk5 in the generation of Abeta peptides. Since both Abeta peptides and NFTs are believed to play a role in neurodegeneration in AD, this proline-directed serine/threonine protein kinase is likely to contribute to the pathogenesis of AD. In vitro and in vivo animal data demonstrate the ability of cdk5 to induce phosphorylation and aggregation of tau, and NFT deposition and neurodegeneration. Findings from AD brain samples also show an elevated cdk5 activity and conditions that support the activation of cdk5. Evidence for the role of cdk5 in regulating Abeta production is just emerging. The mechanisms for this potentially damaging activity of cdk5 are largely unknown although amyloid precursor protein and presenilin-1 are both cdk5 substrates.  相似文献   

14.
Blood-based neurochemical diagnosis of vascular dementia: a pilot study   总被引:3,自引:0,他引:3  
Blood-based tests for the differential diagnosis of Alzheimer's disease (AD) are under intensive investigation and have shown promising results with regard to Abeta40 and Abeta42 peptide species in incipient AD. Moreover, plasma Abeta40 was suggested as an independent cerebrovascular risk factor candidate. These considerations prompted us to analyse a total of 72 plasma samples in vascular dementias (VAD, n = 15), AD with cerebrovascular disease (AD with CVD, n = 7), AD (n = 15), Parkinson's disease and Parkinson's disease dementia (PD/PDD, n = 20) and 15 patients with depression that served as controls (DC) for distinct plasma amyloid-beta (Abeta) peptide patterns. For the analysis of plasma we used immunoprecipitation followed by the quantitative Abeta-SDS-PAGE/immunoblot. For comparison, CSF tau and Abeta1-42 analyses were performed. The major outcome was an increase in Abeta1-40 in plasma of VAD paralleled by a decrease in the ratio of Abeta1-38/Abeta1-40. The ratio Abeta1-38/Abeta1-40 in plasma enabled contrasts of beyond 85% and 80% for discriminating VAD from DC and all other patients, respectively. In CSF, we confirmed the typical CSF biomarker constellation of increased tau and diminished Abeta1-42 levels for AD. The diagnostic accuracy of plasma Abeta1-38/Abeta1-40 for VAD resembled the accuracy of CSF biomarkers for AD. From the presented results, we consider the ratio of plasma Abeta1-38/Abeta1-40 peptides to be a blood-based biomarker candidate for VAD.  相似文献   

15.
Amyloid beta (Abeta) is a 40- to 42-residue peptide that is implicated in the pathogenesis of Alzheimer's Disease (AD). As a result of conformational changes, Abeta assembles into neurotoxic fibrils deposited as 'plaques' in the diseased brain. In AD brains, the small heat shock proteins (sHsps) alphaB-crystallin and Hsp27 occur at increased levels and colocalize with these plaques. In vitro, sHsps act as molecular chaperones that recognize unfolding peptides and prevent their aggregation. The presence of sHsps in AD brains may thus reflect an attempt to prevent amyloid fibril formation and toxicity. Here we report that alphaB-crystallin does indeed prevent in vitro fibril formation of Abeta(1-40). However, rather than protecting cultured neurons against Abeta(1-40) toxicity, alphaB-crystallin actually increases the toxic effect. This indicates that the interaction of alphaB-crystallin with conformationally altering Abeta(1-40) may keep the latter in a nonfibrillar, yet highly toxic form.  相似文献   

16.
Aging and apolipoprotein E (APOE) isoform are among the most consistent risks for the development of Alzheimer's disease (AD). Metabolic factors that modulate risk have been elusive, though oxidative reactions and their by-products have been implicated in human AD and in transgenic mice with overt histological amyloidosis. We investigated the relationship between the levels of endogenous murine amyloid beta (Abeta) peptides and the levels of a marker of oxidation in mice that never develop histological amyloidosis [i.e. APOE knockout (KO) mice with or without transgenic human APOEepsilon3 or human APOEepsilon4 alleles]. Aging-, gender-, and APOE-genotype-dependent changes were observed for endogenous mouse brain Abeta40 and Abeta42 peptides. Levels of the oxidized lipid F2-isoprostane (F2-isoPs) in the brains of the same animals as those used for the Abeta analyses revealed aging- and gender-dependent changes in APOE KO and in human APOEepsilon4 transgenic KO mice. Human APOEepsilon3 transgenic KO mice did not exhibit aging- or gender-dependent increases in F2-isoPs. In general, the changes in the levels of brain F2-isoPs in mice according to age, gender, and APOE genotype mirrored the changes in brain Abeta levels, which, in turn, paralleled known trends in the risk for human AD. These data indicate that there exists an aging-dependent, APOE-genotype-sensitive rise in murine brain Abeta levels despite the apparent inability of the peptide to form histologically detectable amyloid. Human APOEepsilon3, but not human APOEepsilon4, can apparently prevent the aging-dependent rise in murine brain Abeta levels, consistent with the relative risk for AD associated with these genotypes. The fidelity of the brain Abeta/F2-isoP relationship across multiple relevant variables supports the hypothesis that oxidized lipids play a role in AD pathogenesis, as has been suggested by recent evidence that F2-isoPs can stimulate Abeta generation and aggregation.  相似文献   

17.
To improve clinical, neuropsychological and behavioural characterisation of the cerebrospinal fluid (CSF) biomarkers beta-amyloid((1-42)) protein (Abeta42), protein tau (tau) and tau phosphorylated at threonine 181 (P-tau181) across diagnostic dementia categories, a prospective study was set up. Patients with probable Alzheimer's disease (AD) (n=201), AD with cerebrovascular disease (CVD) (AD+CVD) (n=33), frontotemporal dementia (FTD) (n=27), dementia with Lewy bodies (DLB) (n=22) and healthy controls (n=148) were included. All patients underwent neuropsychological examination and behavioural assessment by means of a battery of behavioural assessment scales. CSF was obtained by lumbar puncture and levels of Abeta42, tau and P-tau181 were determined with commercially available ELISA kits. Negative correlations between CSF Abeta42 levels and aggressiveness (Spearman: r=-0.223; p=0.002) and positive correlations with age at inclusion (r=0.195; p=0.006), age at onset (r=0.205; p=0.003) and MMSE scores (r=0.198; p=0.005) were found in AD. In AD+CVD, CSF Abeta42 levels were correlated with MMSE (r=0.482; p=0.006), Hierarchic Dementia Scale (r=0.503; p=0.017) and Boston Naming Test (r=0.516; p=0.012) scores. In controls, age was positively correlated with CSF tau (r=0.465; p<0.001) and P-tau181 levels (r=0.312; p<0.001). CSF tau and P-tau181 levels correlated significantly in all groups, whereas CSF Abeta42 correlated with tau and P-tau181 levels in healthy controls only. Negative correlations between CSF Abeta42 levels and aggressiveness were found in AD patients. CSF Abeta42 seems to be a stage marker for AD (+/-CVD) given the positive correlations with neuropsychological test results suggesting that CSF Abeta42 might be of help for monitoring disease progression. Different correlations between age and CSF biomarker levels were obtained in healthy controls compared to AD patients, indicating that AD-induced pathophysiological processes change age-dependent regulation of CSF biomarker levels.  相似文献   

18.
One neurotoxic mechanism of amyloid-beta peptide (Aβ), the major component of senile plaques in the brains of Alzheimer's disease (AD) patients, is to trigger cell cycle reentry in fully differentiated neurons. However, the detailed underlying mechanisms remain unclear. Using Aβ25-35–treated primary rat cortical neurons as the experimental system, in the present study we tested whether Aβ-induced inhibitor of differentiation-1 (Id1)/hypoxia-inducible factor-1alpha (HIF-1α) and cyclin-dependent kinase-5 (CDK5) contribute to cell cycle reentry in fully differentiated post-mitotic neurons. We found that Id1-induced HIF-1α mediated Aβ25-35–dependent expression of the cell cycle markers cyclin D1 and proliferating cell nuclear antigen (PCNA), both colocalized with microtubule-associated protein-2 (MAP-2) + cells, indicative of cell cycle reentry in the mature neurons. Aβ25-35 also enhanced p35 cleavage to p25 without affecting CDK5 expression. The CDK5 inhibitor roscovitine and the siRNA targeting CDK5 both suppressed Aβ25-35–dependent HIF-1α expression and cell cycle reentry. Intriguingly, Aβ25-35–induced Id1 repressed p25 production while CDK5/p25 reciprocally inhibited Id1 expression, despite the observation that both Id1 and CDK5/p25 acted upstream of HIF-1α. These results demonstrated that both Id1/HIF-1 and CDK5/HIF-1 contribute to Aβ-induced cell cycle reentry in post-mitotic neurons; furthermore, Id1 and CDK5/p25 reciprocally suppress expression of each other.  相似文献   

19.
The amyloid beta peptide abeta (25-35) induces apoptosis independent of p53   总被引:5,自引:0,他引:5  
Apoptosis of neuronal cells apparently plays a role in Alzheimer's disease (AD). The amyloid beta (Abeta) peptide derived from beta-amyloid precursor protein is found in AD brain in vivo and can induce apoptosis in vitro. While p53 accumulates in cells of AD brain, it is not known if p53 plays an active role in Abeta-induced apoptosis. We show here that inactivation of p53 in two experimental cell lines, either by expression of the papillomavirus E6 protein or by a shift to restrictive temperature, does not affect apoptosis induction by Abeta (25-35), indicating that Abeta induces apoptosis in a p53-independent manner.  相似文献   

20.
The many faces of amyloid beta in Alzheimer's disease   总被引:1,自引:0,他引:1  
The 'amyloid cascade hypothesis' links amyloid beta peptide (Abeta) with the pathological process of Alzheimer's disease (AD) and it still awaits universal acceptance. Amyloid precursor protein (APP), through the actions of the gamma-secretase complex, eventually becomes a different Abetaspecies. The various Abeta species have proven to be difficult to investigate under physiological conditions, and the species of Abeta responsible for neurotoxicity has yet to be unequivocally identified. The two important Abeta peptides involved are Abeta(1-40) and Abeta(1-42), and each has been ascribed both toxic and beneficial attributes. The ratio between the two species can be important in AD etiology. Additionally, shorter variants of Abeta peptides such as Abeta(1-8), Abeta(9-16) and Abeta(16) have also been shown to be potential participants in AD pathology. Interestingly, a new 56-kDa Abeta peptide (Abeta*56) disrupts memory when injected into the brains of young rats. Transgenic mice models are complicated by the interplay between various human Abeta types and the mouse Abeta types in the mouse brains. However, the accumulation of Abeta(1-42) in the brains of transgenic C. elegans worms and Drosophila is indeed detrimental. A less investigated aspect of AD is epigenetics, but in time the investigation of the role of epigenetics in AD may add to our understanding of the development of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号