首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There are always more evidences indicating that 17beta-estradiol (E2) is to be necessary for normal male fertility. Here we report the expression of the most ubiquitously expressed member of the akt family of genes, akt1, in the lizard (Podarcis s. sicula) testis. We have used a nonmammalian vertebrate model (the lizard P. s. sicula) to investigate the regulation of the serine/threonine kinase Akt activity, implicated in the control of cell proliferation, survival, and metabolism, in the testis during the annual sexual cycle and to study whether E2 exerts a role in the spermatogenesis through Akt-1 activity. Immunocytochemistry analysis show that Akt-1 proteins are present in the spermatogonia (SPG), and spermatocytes (SPC), and spermatids (SPT). The annual E2 profile shows a progressive increase during the active spermatogenesis (from April to June) and a peak in the month of August (spermatogonial mitosis). In parallel, Akt-1 (molecular weight 60 kDa) are highly phosphorylated during the period of active spermatogenesis and in post-refractory period (August) compared with the winter stasis (from November to March). Present results demonstrate that E2 treatment induces the activation of Akt-1, and this effect is counteracted by the anti-estrogen ICI 182-780.  相似文献   

2.
In higher vertebrates, considerable progress has been made in understanding the endocrine regulation of puberty; however, in teleosts, the regulatory mechanisms of spermatogenesis during the first annual cycle remain unclear. The present study was conducted to understand the regulatory mechanisms of spermatogenesis throughout the different stages of the first spermatogenic cycle and to check the ability of various steroids and hormones to induce in vitro spermatogonial proliferation in Japanese huchen (Hucho perryi ). The results indicate that the serum level of 11-ketotestosterone (11-KT) was positively associated with germ cell type; the level first began to rise with the appearance of late-type B spermatogonia and continued to increase gradually throughout the active spermatogenic stages and spermiogenesis, reaching a peak value 2 wk before spawning, and then declined. During the spermatogenic stages, the serum concentration of 17alpha,20beta-dihydroxy-4-pregnen-3-one (17alpha,20beta-DP) was undetectable. Only a small peak was detected with the appearance of spermatocytes and spermatids, and at the time of spawning, the level increased dramatically, reaching its maximum value with the onset of milt production. Despite the high variation in serum levels of 17beta-estradiol (E2) both between months and among the individuals, E2 was found during the whole reproductive cycle. From these results, we concluded that 1) 11-KT is necessary for the initiation of spermatogenesis and sperm production, and it probably plays a role in spermiation, 2) 17alpha,20beta-DP is essential for the final maturation stage, could play a significant role in the mitosis phase and meiosis process, and probably participates in the regulation of spawning behavior, and 3) estrogen is an indispensable male hormone that plays a physiological role in some aspects of testicular functions, especially during the mitotic phase. The three steroids were also able to induce DNA synthesis, spermatogonial renewal, and/or spermatogonial proliferation in vitro.  相似文献   

3.
The roe deer (Capreolus capreolus) is a seasonal breeder. The cyclic changes between totally arrested and highly activated spermatogenesis offer an ideal model to study basic mechanisms of spermatogenesis. In this study, we demonstrated, to our knowledge for the first time, c-kit receptor-positive cells in the testis of roe deer. They were immunohistologically identified mainly as spermatogonia. Analysis of the amount of those cells by flow cytometry shows a distinct seasonal pattern, with pronounced differences between cells in the diploid state and in the G2/M phase of mitosis. The specific seasonal pattern of spermatogonial proliferation results in the increased relative abundance of spermatogonia as well as in their increased total number per testis in November and December. This suggests that cell divisions continue on a level sufficient to accumulate spermatogonia during winter. The serum concentrations of LH and FSH showed a peak in spring; testosterone showed a maximum concentration during the rut (July/August). The peak of both gonadotropins seems to precede the period of stimulated spermatogonial proliferation in spring. The testosterone peak coincides with maximal meiotic intensity in August. The results suggest the importance of testosterone for sperm production, and they provide a basis for detailed investigations of regulatory factors of the proliferation of spermatogonia.  相似文献   

4.
A seasonal study of the seminal vesicles in relation to that of the testes had been conducted in the catfish, H. fossilis. The annual reproductive cycle of the catfish has been divided into (i) Preparatory period (February–April), (ii) Prespawning period (May–June), (iii) Spawning period (July–August) and (iv) Postspawning period (September–January). Testes exhibit initiation of spermatogenesis in the mid-preparatory period, but significant increase in weight of the testes accompanied by active spermatogenesis occurs during the prespawning period. In the spawning period, the testes are maximally enlarged and their seminiferous tubules are packed with spermatozoa. Following spawning, the testes gradually regress in the postspawning period. The seminal vesicles show initiation of secretory activity during the preparatory period but their recrudescence lags behind that of the testes by about a month. The seminal vesicles attain maximum weight and secretory activity during the spawning period. Thereafter, the seminal vesicles regress precipitously and sooner than the testes. The histochemical and biochemical studies on the seminal vesicles indicate that the secretion contains mucoproteins, acid mucopolysaccharides, primary proteoses, besides traces of phospholipids and native proteins.  相似文献   

5.
The Harderian gland of Pelophylax esculentus (previously: Rana esculenta) shows seasonal secretory activity changes. Specifically, the secretory activity reaches a maximum during the hottest months, i.e., July and August, drops in September and slowly increases from October onwards. Expressions of P-CaMKII, P-ERK1 and P-Akt1 correlate well with gland secretory activity; i.e., they peak immediately before the hottest part of the year (maximum secretory activity). When the gland activity declines, kinase expressions drop and remain low until February. Experiments of thermal manipulation indicate that high temperature induces the activation of CaMKII, ERK1 and Akt1, and at low temperatures, Akt1 expression decreases. Experiments of chemical castration indicate that the Harderian gland of Cyproterone acetate-treated frogs shows lower Akt1 activity as compared to controls, but the CaMKII and ERK1 activities remain unchanged. Furthermore, in a period of resumed gland activity (October–December) we observed the highest expression of PCNA, a mitotic marker. Immediately after the proliferative phase, we found the highest expression of caspase 3, an enzyme that plays a key role in apoptosis. In combination, the results suggest the following: 1) CaMKII, ERK1, and Akt1 modulate the annual secretory activity of the frog Harderian gland; 2) CaMKII and ERK1 activities are regulated by temperature, whereas both temperature and testosterone likely play a central role in Akt1 regulation; and 3) proliferation and apoptosis occur to restore and balance, respectively, an adequate cell number, which is essential to gland function.  相似文献   

6.
Spermatogenesis is a complicated and highly ordered process which begins with the differentiation of spermatogonial stem cells and ends with the formation of mature sperm. After meiosis, several morphological changes occur during spermatogenesis. During spermatogenesis, many proteins and organelles are degraded, and the ubiquitin–proteasome pathway (UPP) plays a key role in the process which facilitates the formation of condensed sperm. UPP contains various indispensable components: ubiquitin, ubiquitin-activating enzyme E1, ubiquitin-conjugating enzyme E2, ubiquitin ligase enzyme E3 and proteasomes. At some key stages of spermatogenesis, such as meiosis, acrosome biogenesis, and spermatozoa maturation, the ubiquitin-related components (including deubiquitination enzymes) exert positive and active functions. Generally speaking, deficient UPP will block spermatogenesis which may induce infertility at various degrees. Although ubiquitination during spermatogenesis has been widely investigated, further detailed aspects such as the mechanism of ubiquitination during the formation of midpiece and acrosome morphogenesis still remains unknown. The present review will overview current progress on ubiquitination during spermatogenesis, and will provide some suggestions for future studies on the functions of UPP components during spermatogenesis.  相似文献   

7.
Seasonal changes in reproductive activity in the adult male vizcacha (Lagostomus maximus maximus), a South American rodent, were investigated. Monthly, for 2 yr, the animals were killed and decapitated during the night near their burrows in the vicinity of San Luis, Argentina. The testes, epididymides, and pineal glands were removed and used for biochemical and structural studies. Significant changes associated with seasonal cycles were found. 1) In July-August (winter in South America), a short hibernal period of sexual quiescence, decline in testicular and epididymal weights, arrest of spermatogenesis, and decrease of serum testosterone were observed. The gonads regressed during this period, with regression most pronounced in August. 2) During September-November (spring), a recovery period--without arrest of spermatogenesis--was observed, with significant expression of gonadal activity during April-May (autumn). In this season, gonadal weight was increased and spermatogenesis was complete. These results indicate an increase in sexual activity as well as in the ability to secrete testosterone. A gradual reduction of testicular activity appeared in June-July (early winter). Conversely, in this period, the pineal hydroxyindole-O-methyl transferase activity decreased in contrast to the highest values observed in winter. Our findings indicate that the male adult vizcacha under natural conditions exhibits an annual reproductive cycle. A possible relationship between increased pineal activity and gonadal regression is also suggested.  相似文献   

8.
Precocious male puberty significantly compromises sustainability aspects of aquaculture in a number of finfish species. As part of a program aiming to understand and eventually control testis maturation in farmed Atlantic cod, we studied the first reproductive cycle. The gonadosomatic index shows a 41-fold increase from immature (August) to mature (March) stages, reaching almost 10% of the total body weight. The paired cod testes are composed of several lobes arranged around a central collecting duct. In each individual lobe, spermatogenesis occurs in a marked gradient of development, with undifferentiated spermatogonia in the periphery of the lobe and the most advanced germ cells in the vicinity of the collecting duct, suggesting a tight spatiotemporal organization of spermatogenesis in the testis lobes of this species. Spermatogonial proliferation starts in August and continues for about 6 mo. Meiosis and spermiogenesis are first observed in October and are completed in all cysts by February, when a 2-mo-long spawning season starts. Spermatogonia go through 11 mitotic divisions before differentiating to primary spermatocytes. Apoptosis is rare, but when observed it occurs mainly during the last spermatogonial generations. Our observations suggest a model in which a maturational wave progresses through each growing lobe that is first driven by appositional growth from the lobe's periphery, reflecting spermatogonial proliferation and cyst formation which, when ceasing, is terminated by completing spermiogenesis and spermiation that progress toward the lobe's periphery.  相似文献   

9.
In this work, we examined the functions of the female hormone "estrogen" on spermatogenesis of the Japanese eel (Anguilla japonica). Estradiol-17beta (E(2)), a natural estrogen in vertebrates, was present in the serum and its receptor was expressed in the testis during the whole process of spermatogenesis. Spermatogonial stem cell renewal was promoted by E(2) implantation but was suppressed by tamoxifen (an antagonist of estrogen). In vitro, 10 pg/ml of E(2) was sufficient to induce spermatogonial stem cell division in cultured testicular tissue, therefore confirming the in vivo observations. These results clearly show that estrogen is an indispensable "male hormone" in the early spermatogenetic cycle.  相似文献   

10.
Although stem cells are believed to divide infinitely by self-renewal division, there is little evidence that demonstrates their infinite replicative potential. Spermatogonial stem cells are the founder cell population for spermatogenesis. Recently, in vitro culture of spermatogonial stem cells was described. Spermatogonial stem cells can be expanded in vitro in the presence of glial cell line-derived neurotrophic factor (GDNF), maintaining the capacity to produce spermatogenesis after transplantation into testis. Here, we examined the stability and proliferative capacity of spermatogonial stem cells using cultured cells. Spermatogonial stem cells were cultured over 2 years and achieved approximately 10(85)-fold expansion. Unlike other germline cells that often acquire genetic and epigenetic changes in vitro, spermatogonial stem cells retained the euploid karyotype and androgenetic imprint during the 2-year experimental period, and produced normal spermatogenesis and fertile offspring. However, the telomeres in spermatogonial stem cells gradually shortened during culture, suggesting that they are not immortal. Nevertheless, the remarkable stability and proliferative potential of spermatogonial stem cells suggest that they have a unique machinery to prevent transmission of genetic and epigenetic damages to the offspring, and these characteristics make them an attractive target for germline modification.  相似文献   

11.
BACKGROUND: Formation of the mammalian orofacial region involves multiple signaling pathways regulating sequential expression of and interaction between molecular signals during embryogenesis. The present study examined the expression patterns of members of the MAPK family in developing murine orofacial tissue. METHODS: Total RNA was extracted from developing embryonic orofacial tissue during gestational days (GDs) 12-14 and used to prepare biotinylated cDNA probes, which were then denatured and hybridized to murine MAPK signaling pathways gene arrays. RESULTS: Expression of a number of genes involved in the (ERK1/2) cascade transiently increased in the embryonic orofacial tissue over the developmental period examined. Numerous members of the SAPK/JNK cascade were constitutively expressed in the tissue. Genes known to play a role in p38 MAPK signaling exhibited constitutive expression during orofacial development. Western blot analysis demonstrated that ERK2/1, p38, and SAPK/JNK kinases are present in embryonic orofacial tissue on each of GD 12, 13, and 14. By using phospho-specific antibodies, active ERK was shown to be temporally regulated during orofacial development. Minimal amounts of active p38 and active SAPK/JNK were detected in orofacial tissue during GDs 12-14. CONCLUSIONS: Our study documents specific expression patterns of genes coding for proteins belonging to the ERK1/2, p38, and SAPK/JNK MAPK families in embryonic orofacial tissue. We also demonstrate that active, phosphorylated forms of ERK1/2 only were detected in the embryonic tissue investigated, suggesting a more central role for members of this family in embryonic orofacial development.  相似文献   

12.
The anatomy, biology, and chronology of reproduction in the male of the long penile form of Mormopterus planiceps was studied in southeast South Australia and Victoria. In the morphology of its primary and accessory reproductive organs, M. planiceps was generally reminiscent of other Molossidae; however, in the specialized (sebaceous) nature of the Cowper's gland ducts, in the presence of para-anal glands, and in the unusual, horizontally bifid glans penis and the greatly elongated os penis, it was distinct from other Molossidae studied to date. Young of the year were not reproductively active. Adults displayed a single annual spermatogenic cycle that commenced in spring (September/October) and culminated in spermiogenesis in autumn (February-May), during which period plasma levels of testosterone overtook androstenedione. Thereafter, spermatogenesis appeared to cease (though scattered sperm were seen in the seminiferous tubules until August), but abundant epididymal sperm reserves persisted until September/(October). The accessory glands were hypertrophied during this period, becoming involuted by October. Although the numbers of animals available for study were small, these observations, together with the appearance of spermatozoa in the ductus deferens in August/September suggested that mating could occur during the interval from autumn to spring. Late winter/spring insemination is normal for molossids from temperate environments. However, protracted spermatogenesis commencing in spring that is not accompanied by the availability of spermatozoa until autumn, and a subsequent apparent extension of fertility (epididymal sperm storage, accessory gland hypertrophy) beyond the testicular gametogenic phase, are aspects of the male reproductive cycle in M. planiceps that have not heretofore been described in another molossid bat.  相似文献   

13.
Activation of cyclin-dependent kinase 2 (CDK2)-cyclin E in the late G(1) phase of the cell cycle is important for transit into S phase. In Chinese hamster embryonic fibroblasts (IIC9) phosphatidylinositol 3-kinase and ERK regulate alpha-thrombin-induced G(1) transit by their effects on cyclin D1 protein accumulation (Phillips-Mason, P. J., Raben, D. M., and Baldassare, J. J. (2000) J. Biol. Chem. 275, 18046-18053). Here, we show that ERK also affects CDK2-cyclin E activation by regulating the subcellular localization of CDK2. Ectopic expression of cyclin E rescues the inhibition of alpha-thrombin-induced activation of CDK2-cyclin E and transit into S phase brought about by treatment of IIC9 cells with LY29004, a selective inhibitor of mitogen stimulation of phosphatidylinositol 3-kinase activity. However, cyclin E expression is ineffectual in rescuing these effects when ERK activation is blocked by treatment with PD98059, a selective inhibitor of MEK activation of ERK. Investigation into the mechanistic reasons for this difference found the following. 1) Although treatment with LY29004 inhibits alpha-thrombin-stimulated nuclear localization, ectopic expression of cyclin E rescues CDK2 translocation. 2) In contrast to treatment with LY29004, ectopic expression of cyclin E fails to restore alpha-thrombin-stimulated nuclear CDK2 translocation in IIC9 cells treated with PD98059. 3) CDK2-cyclin E complexes are not affected by treatment with either inhibitor. These data indicate that, in addition to its effects on cyclin D1 expression, ERK activity is an important controller of the translocation of CDK2 into the nucleus where it is activated.  相似文献   

14.
The mitogen-activated protein (MAP) kinases, extracellular signal-related kinase 1 (ERK1) and ERK2, regulate cellular responses by mediating extracellular growth signals toward cytoplasmic and nuclear targets. A potential target for ERK is topoisomerase IIalpha, which becomes highly phosphorylated during mitosis and is required for several aspects of nucleic acid metabolism, including chromosome condensation and daughter chromosome separation. In this study, we demonstrated interactions between ERK2 and topoisomerase IIalpha proteins by coimmunoprecipitation from mixtures of purified enzymes and from nuclear extracts. In vitro, diphosphorylated active ERK2 phosphorylated topoisomerase IIalpha and enhanced its specific activity by sevenfold, as measured by DNA relaxation assays, whereas unphosphorylated ERK2 had no effect. However, activation of topoisomerase II was also observed with diphosphorylated inactive mutant ERK2, suggesting a mechanism of activation that depends on the phosphorylation state of ERK2 but not on its kinase activity. Nevertheless, activation of ERK by transient transfection of constitutively active mutant MAP kinase kinase 1 (MKK1) enhanced endogenous topoisomerase II activity by fourfold. Our findings indicate that ERK regulates topoisomerase IIalpha in vitro and in vivo, suggesting a potential target for the MKK/ERK pathway in the modulation of chromatin reorganization events during mitosis and in other phases of the cell cycle.  相似文献   

15.
Stimulation of the Ras/extracellular signal-regulated kinase (ERK) pathway can modulate cell growth, proliferation, survival, and motility. The p90 ribosomal S6 kinases (RSKs) comprise a family of serine/threonine kinases that lie at the terminus of the ERK pathway. Efficient RSK activation by ERK requires its interaction through a docking site located near the C terminus of RSK, but the regulation of this interaction remains unknown. In this report we show that RSK1 and ERK1/2 form a complex in quiescent HEK293 cells that transiently dissociates upon mitogen stimulation. Complex dissociation requires phosphorylation of RSK1 serine 749, which is a mitogen-regulated phosphorylation site located near the ERK docking site. Using recombinant RSK1 proteins, we find that serine 749 is phosphorylated by the N-terminal kinase domain of RSK1 in vitro, suggesting that ERK1/2 dissociation is mediated through RSK1 autophosphorylation of this residue. Consistent with this hypothesis, we find that inactivating mutations in the RSK1 kinase domains disrupted the mitogen-regulated dissociation of ERK1/2 in vivo. Analysis of different RSK isoforms revealed that RSK1 and RSK2 readily dissociate from ERK1/2 following mitogen stimulation but that RSK3 remains associated with active ERK1/2. RSK activity assays revealed that RSK3 also remains active longer than RSK1 and RSK2, suggesting that prolonged ERK association increased the duration of RSK3 activation. These results provide new evidence for the regulated nature of ERK docking interactions and reveal important differences among the closely related RSK family members.  相似文献   

16.
The conversion from mitosis to meiosis is a phenomenon specific to the cellular progenitors of gametes; however, the mechanism or mechanisms responsible for this conversion are poorly understood. To this end, some morphological and molecular changes that occur during the initiation of meiosis in newt spermatogenesis are reported in the present paper. In situ morphologic studies revealed that spermatogonial stages comprise two phases: early mitotic generations (G1-G4) and late mitotic generations (G5-G8). Morphologic conversion from secondary spermatogonia to primary spermatocytes occurred during the intermediate stage of premeiotic DNA replication. The expression of proliferating cell nuclear antigen (PCNA), a DNA polymerase-delta auxiliary protein, in spermatogonia was weak in G1, highest during DNA synthesis (S), decreased in G2 and was not detectable in dividing cells. Complementary DNA for newt homologs of DMC1 (disrupted meiotic cDNA), which is an Escherichia coli RecA-like protein specifically active during meiosis, were isolated. The newt Dmc1 mRNA was first expressed significantly during the preleptotene stage and this continued into the spermatid stage. These observations present a basis for investigating the mechanism(s) controlling the conversion of newt spermatogonial cells from mitosis to meiosis.  相似文献   

17.
Mutated B-Raf-mediated constitutive activation of ERK1/2 is involved in about 66% of cutaneous melanoma. By contrast, activating mutations in B-RAF are rare in ocular melanoma. This study aimed to determine the role of wild-type B-Raf ((WT)B-Raf) in uveal melanoma cell growth. We used cell lines derived from primary tumors of uveal melanoma to assess the role of (WT)B-Raf in cell proliferation and to characterize its upstream regulators and downstream effectors. Melanoma cell lines expressing (WT)B-Raf and (WT)Ras grew with similar proliferation rates, showed constitutive activation of ERK1/2, and had similar levels of B-Raf expression and B-Raf kinase activity as melanoma cell lines expressing the activating V600E mutation ((V600E)B-Raf). They were equally as sensitive to pharmacological inhibition of MEK1/2 for cell proliferation and transformation as (V600E)B-Raf cells. siRNA-mediated depletion of Raf-1 did not affect either ERK1/2 activation, whereas siRNA-mediated depletion of B-Raf reduced cell proliferation by up to 65% through the inhibition of ERK1/2 activation, irrespective of the mutational status of B-Raf. Pharmacological inhibition of cAMP-dependent protein kinase (PKA) and siRNA-mediated depletion of PKA greatly reduced B-Raf activity, ERK1/2 activation, and cell proliferation in (WT)B-Raf cells, whereas it did not affect (V600E)B-Raf cells, demonstrating a key role of PKA in mediating (WT)B-Raf/ERK signaling for uveal melanoma cell growth. Moreover, inactivation or depletion of PKA did not affect Rap-1 activity, and Rap-1 depletion did not affect either B-Raf activity or ERK1/2 activation. This ruled out a role for Rap1 in the PKA-mediated B-Raf/ERK activation in (WT)B-Raf cells. Finally, we demonstrated the importance of cyclin D1 in mediating PKA/(WT)B-Raf signaling for cell proliferation. Altogether, our results suggest that the PKA/B-Raf pathway is a potential target for therapeutic strategies against (WT)B-Raf-expressing uveal melanoma.  相似文献   

18.
Intracellular activation and trafficking of extracellular signal-regulated protein kinases (ERK) play a significant role in cell cycle progression, contributing to developmental brain activities. Additionally, mitochondria participate in cell signalling through energy-linked functions, redox metabolism and activation of pro- or anti-apoptotic proteins. The purpose of the present study was to analyze the presence of ERK1/2 in mitochondria during rat brain development. Immunoblotting, immune electron microscopy and activity assays demonstrated that ERK1/2 are present in fully active brain mitochondria at the outer membrane/intermembrane space fraction. Besides, it was observed that ERK1/2 translocation to brain mitochondria follows a developmental pattern which is maximal between E19-P2 stages and afterwards declines at P3, just before maximal translocation to nucleus, and up to adulthood. Most of mitochondrial ERK1/2 were active; upstream phospho-MAPK/ERK kinases (MEK1/2) were also detected in the brain organelles. Mitochondrial phospho-ERK1/2 increased at 1 microm hydrogen peroxide (H(2)O(2)) concentration, but it decreased at higher 50-100 microm H(2)O(2), almost disappearing after the organelles were maximally stimulated to produce H(2)O(2) with antimycin. Our results suggest that developmental mitochondrial activation of ERK1/2 cascade contributes to its nuclear translocation effects, providing information about mitochondrial energetic and redox status to the proliferating/differentiating nuclear pathways.  相似文献   

19.
Normal spermatogenesis is essential for reproduction and depends on proper spermatogonial stem cell (SSC) function. Genes and signaling pathways that regulate SSC function have not been well defined. We report that glial cell-line-derived neurotrophic factor (GDNF) signaling through the RET tyrosine kinase/GFRA1 receptor complex is required for spermatogonial self-renewal in mice. GFRA1 and RET expression was identified in a subset of gonocytes at birth, was restricted to SSCs during normal spermatogenesis, and RET expressing cells were abundant in a cryptorchid model of SSC self-renewal. We used the whole-testis transplantation technique to overcome the limitation of neonatal lethality of Gdnf-, Gfra1-, and Ret-deficient mice and found that each of these genes is required for postnatal spermatogenesis and not for embryological testes development. Each mutant testis shows severe SSC depletion by Postnatal Day 7 during the first wave of spermatogenesis. These defects were due to lack of SSC proliferation and an inability of SSCs to maintain an undifferentiated state. Our results demonstrate that GDNF-mediated RET signaling is critical for the fate of undifferentiated spermatogonia and that abnormalities in this pathway may contribute to male infertility and testicular germ cell tumors.  相似文献   

20.
Reproductive cycles in a reared strain of the mummichog, a daily spawner   总被引:1,自引:0,他引:1  
Annual, lunar, and diel samplings were taken from a strain of mummichog (Arasaki strain) reared in outdoor tanks under natural conditions, to examine gonadal maturity. Gonads of yearling fish were quite immature in September. During late autumn and winter, a gradual increase in the GSI of both sexes was observed, and the growth of cortical alveolus phase oocytes in females and basal spermatogenesis in males progressed. In late February, a rapid increase in the GSI of both sexes, vitellogenesis in females, and active spermatogenesis in males, occurred. The spawning period of the yearling fish was from late March to August judging from the presence of milt-producing males and ovulated females. The spawning period of the underyearling fish started in the same month as the yearlings, but terminated 1 month earlier. Plasma levels of oestradiol-17 β (E2) in females and testosterone in males were high during the spawning period in the yearlings. In the underyearlings, however, E2 levels peaked in early spring, and declined in the latter part of the spawning period. Neither a lunar nor semilunar cycle was evident in the reproductive activity of this fish, which proved to be a typical daily spawner. Females showed an apparent daily reproductive cycle; oocyte maturation commenced at about 1200 hours, germinal vesicle breakdown (GVBD) occurred at about 2400 hours, and ovulation was completed by 2400 hours, 24 h after GVBD. Such clear annual and daily reproductive cycles make this strain of mummichog a suitable model for the study of environmental and endocrine regulation of reproductive cycles in marine and estuarine teleosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号