首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Micrococcus sp. strain 12B was isolated by enriching for growth with dibutylphthalate as the sole carbon and energy source. A pathway for the metabolism of dibutylphthalate and phthalate by micrococcus sp. strain 12B is proposed: dibutylphthalate leads to monobutylphthalate leads to phthalate leads to 3,4-dihydro-3,4-dihydroxyphthalate leads to 3,4-dihydroxyphthalate leads to protocatechuate (3,4-dihdroxybenzoate). Protocatechuate is metabolized both by the meta-cleavage pathway through 4-carboxy-2-hydroxymuconic semialdehyde and 4-carboxy-2-hydroxymuconate to pyruvate and oxaloacetate and by the ortho-cleavage pathway to beta-ketoadipate. Dibutylphthalate- and phthalate-grown cells readily oxidized dibutylphthalate, phthalate, 3,4-dihydroxyphthalate, and protocatechuate. Extracts of cells grown with dibutylphthalate or phthalate contained the 3,4-dihydroxyphthalate decarboxylase and the enzymes of the protocatechuater 4,5-meta-cleavage pathway. Extracts of dibutylphthalate-grown cells also contained the protocatechuate ortho-cleavage pathway enzymes. The dibutylphthalate-hydrolyzing esterase and 3,4-dihydroxyphthalate decarboxylase were constitutively synthesized; phthalate-3,4-dioxygenase (and possibly the "dihydrodiol" dehydrogenase) was inducible by phthalate or a metabolite occurring before protocatechuate in the pathway; two protocatechuate oxygenases and subsequent enzymes were inducible by protocatechuate or a subsequent metabolic product. During growth at 37 degrees C, strain 12B gave clones at high frequency that had lost the ability to grow with phthalate esters. One of these nonrevertible mutants, strain 12B-Cl, lacked all of the enzymes required for the metabolism of dibutylphthalate through the protocatechuate meta-cleavage pathway. Enzymes for the metabolism of protocatechuate by the ortho-cleavage pathway were present in this strain grown with p-hydroxybenzoate or protocatechuate.  相似文献   

2.
Abstract Acinetobacter sp. strain 4-CB1 cometabolized 3,4-dichlorobenzoate (3,4-DCB), via 3-chloro-4-hydroxybenzoate (3-C-4-OHB) and 4-carboxy-1,2-benzoquinone, in the presence of 4-chlorobenzoate (4-CB) as a growth substrate. In resting cell incubations, 3,4-DCB acted competitively as an inhibitor with 4-CB metabolism, and as a substrate inhibitor of its own metabolism. The inhibitor constant K i and the affinity constant K m were 800 and 181 μM, respectively with a maximal rate of 3,4-DCB disappearance of 18.8 nmol 3,4-DCB min−1 (mg protein)−1, in resting cells incubated solely with 3,4-DCB. Resting cells were less tolerant to 3,4-DCB than growing cells, as noted from the inhibition constants ( K i). Moreover, 3-C-4-OHB competitively inhibited 4-hydroxybenzoate monooxygenase by acting as a pseudosubstrate ( K i= 7.3 μ M). The next sequential intermediate, 4-carboxy-1,2-benzoquinone, uncompetitively inhibited 4-CB metabolism in resting cell incubations. Thus, 3,4-DCB inhibited its own cometabolism as well as metabolism of 4-CB in Acinetobacter sp. strain 4-CB1.  相似文献   

3.
Both 3,4-dihydroxyphenylalanine and 2,4,5-trihydroxyphenylalanine were oxidized with periodate and mushroom tyrosinase to determine whether the latter compound is an intermediate in melanin biosynthesis. Matrix analysis of the spectra obtained with a rapid scan spectrophotometer and comparison of the spectra of quinone intermediates with model quinones disclosed that, although 2,4,5-trihydroxyphenylalanine can be oxidized to 2-carboxy-2,3-dihydroindole-5,6-quinone (dopachrome), this oxidation proceeds through a stable intermediate, 5-(2-carboxy-2-aminoethyl)-2-hydroxy-1,4-benzoquinone, which does not appear in the oxidation of 3,4-dihydroxyphenylalanine to dopachrome. Thus, these studies are in agreement with the original postulate, that 4-(2-carboxy-2-aminoethyl)-1,2-benzoquinone and leukodopachrome are the intermediates in the major pathway for dopachrome synthesis.  相似文献   

4.
Acinetobacter sp. strain 4CB1 was isolated from a polychlorobiphenyl-contaminated soil sample by using 4-chlorobenzoate as a sole source of carbon and energy. Resting cells of Acinetobacter sp. strain 4CB1 hydrolytically dehalogenated 4-chlorobenzoate under aerobic and anaerobic conditions, but 4-hydroxybenzoate accumulated only under anaerobic conditions. Cell extracts of Acinetobacter sp. strain 4CB1 oxidized 4-hydroxybenzoate by an NADH-dependent monooxygenase to form protocatechuate, which was subsequently oxidized by both ortho- and meta-protocatechuate dioxygenase reactions. When grown on biphenyl, Acinetobacter sp. strain P6 cometabolized 4,4'-dichlorobiphenyl primarily to 4-chlorobenzoate; however, when this strain was grown in a coculture with Acinetobacter sp. strain 4CB1, 4-chlorobenzoate did not accumulate but was converted to inorganic chloride. When resting cells of Acinetobacter sp. strain 4CB1 were incubated anaerobically with 3,4-dichlorobenzoate, they accumulated 4-carboxy-1,2-benzoquinone as a final product. Since 3,4-dichlorobenzoate is a product that is formed from the cometabolism of 3,4-dichloro-substituted tetrachlorobiphenyls by Acinetobacter sp. strain P6, the coculture has a potential application for dehalogenation and mineralization of specific polychlorobiphenyl congeners.  相似文献   

5.
Pseudomonas putida B2 is able to grow on o-nitrophenol (ONP) as the sole source of carbon and nitrogen. ONP was converted by a nitrophenol oxygenase to nitrite and catechol. Catechol was then attacked by a catechol 1,2-dioxygenase and further degraded through an ortho-cleavage pathway. ONP derivatives which were para-substituted with a methyl-, chloro-, carboxy-, formyl- or nitro-group failed to support growth of strain B2. Relevant catabolic enzymes were characterized to analyze why these derivatives were not mineralized. Nitrophenol oxygenase of strain B2 is a soluble, NADPH-dependent enzyme that is stimulated by magnesium, manganese, and calcium ions. It is active toward ONP, 4-methyl-, 4-chloro-, and to a lesser extent, 4-formyl-ONP but not toward 4-carboxy- or 4-nitro-ONP. In addition, 4-formyl-, 4-carboxy-, and 4-nitro-ONP failed to induce the formation of nitrophenol oxygenase. Catechol 1,2-dioxygenase of strain B2 is active toward catechol and 4-methyl-catechol but only poorly active toward chlorinated catechols. 4-Methyl-catechol is likely to be degraded to methyl-lactones, which are often dead-end metabolites in bacteria. Thus, of the compounds tested, only unsubstituted ONP acts as an inducer and substrate for all of the enzymes of a productive catabolic pathway.  相似文献   

6.
When grown on 3,4,5-trimethoxycinnamic acid, a strain of Pseudomonas putida oxidized this compound and also 3,4,5-trimethoxybenzoic, 3,5-dimethoxy-4-hydroxybenzoic (syringic), and 3,4-dihydroxy-5-methoxybenzoic (3-O-methylgallic) acids, but 3,5-dimethoxy-4-hydroxycinnamic and other acids bearing structural resemblances to the growth substrate were oxidized only slowly. These results indicate that two carbon atoms of the side chain of 3,4,5-trimethoxycinnamate were released before oxidative demethylation occurred to give the ring-fission substrate, 3-O-methylgallate. Oxidation of 3,4,5-trimethoxycinnamate by intact cells gave equimolar amounts of methanol, which was derived from the methoxyl group of 3-O-methylgallate. The tricarboxylic acids, 4-carboxy-2-keto-3-hexenedioic and 4-carboxy-4-hydroxy-2-ketoadipic acids, were shown to be formed by the action of a cell extract upon 3-O-methylgallate; therefore, methanol was released either during or immediately after fission of the benzene nucleus. Cell extracts, prepared from several independent soil isolates after growth on 3,4,5-trimethoxy derivatives of benzoic, cinnamic, and beta-phenylpropionic acids, rapidly oxidized 3-O-methylgallate without added cofactors. It is concluded that the reactions investigated serve generally as a source of methanol in nature.  相似文献   

7.
The following hydrazono derivatives (I-XIX) of type (A) (sequence in text) where Rn = (sequence in text ) (I-XVII); (sequence in text) (XVIII); -CCl3 (XIX); and Xn = H (I); 2-Cl (II); 3-Cl (III); 4-Cl (IV); 2-NO2 (V); 3-NO2 (VI); 4-NO2 (VII); 2-OH (VIII); 3-OH (IX); 4-OH (X); 4-F (XI); 3,4-OCH3,OH (XII); 3,4,5-OCH3,OH,J (XIII); 3,4-OCH3,OCH3 (XIV); 2,4-Cl2 (XV); 3,4-Cl2 (XVI); 2,6-Cl2 (XVII); were prepared and characterized in an attempt to make available for testing a representative selection of hitherto unreported 4-hydroxyisophthalic acid derivatives. The new compounds in question were obtained in satisfactory yield by condensation of 4-hydroxyisophthalic acid hydrazide with the appropriate aldehydes. The prepared compounds were tested for their possible activity against Gram-positive (S. epidermidis, B. subtilis, B. anthracis) and Gram-negative bacteria (P. aeruginosa, B. melitensis, S. typhi O, S. typhi H, S. infantis, S. paratyphi B, E. coli Bb, E. coli 7075), and fungi (C. albicans, A. niger, S. cerevisiae). The "in vitro" antimicrobial assays were carried out using the paper disk technique (Kirby-Bauer modified). The influence of certain structural modifications on the antimicrobial activity was evaluated.  相似文献   

8.
Pseudomonas putida B2 is able to grow on o-nitrophenol (ONP) as the sole source of carbon and nitrogen. ONP was converted by a nitrophenol oxygenase to nitrite and catechol. Catechol was then attacked by a catechol 1,2-dioxygenase and further degraded through an ortho-cleavage pathway. ONP derivatives which were para-substituted with a methyl-, chloro-, carboxy-, formyl- or nitro-group failed to support growth of strain B2. Relevant catabolic enzymes were characterized to analyze why these derivatives were not mineralized. Nitrophenol oxygenase of strain B2 is a soluble, NADPH-dependent enzyme that is stimulated by magnesium, manganese, and calcium ions. It is active toward ONP, 4-methyl-, 4-chloro-, and to a lesser extent, 4-formyl-ONP but not toward 4-carboxy- or 4-nitro-ONP. In addition, 4-formyl-, 4-carboxy-, and 4-nitro-ONP failed to induce the formation of nitrophenol oxygenase. Catechol 1,2-dioxygenase of strain B2 is active toward catechol and 4-methyl-catechol but only poorly active toward chlorinated catechols. 4-Methyl-catechol is likely to be degraded to methyl-lactones, which are often dead-end metabolites in bacteria. Thus, of the compounds tested, only unsubstituted ONP acts as an inducer and substrate for all of the enzymes of a productive catabolic pathway.  相似文献   

9.
J Turnbull  W W Cleland  J F Morrison 《Biochemistry》1990,29(44):10245-10254
The bifunctional enzyme involved in tyrosine biosynthesis, chorismate mutase-prephenate dehydrogenase, has been isolated from extracts of a plasmid-containing strain of Escherichia coli K12 and purified to homogeneity by a modified procedure that involves chromatography on both Matrex Blue A and Sepharose-AMP. Detailed studies of the dehydrogenase reaction have been undertaken with analogues of prephenate that act as substrates. The analogues, which included two of the four possible diastereoisomers of 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate (deoxodihydroprephenate) as well as D- and L-arogenate, were synthesized chemically. As judged by their V/K values, all analogues were poorer substrates than prephenate. The order of their effectiveness as substrates is prephenate greater than one isomer of 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate greater than L-arogenate greater than other isomer of 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate greater than D-arogenate. Thus the dehydrogenase activity is dependent on the degree and position of unsaturation in the ring structure of prephenate as well as on the type of substitution on the pyruvyl side chain. With prephenate as a substrate, the reaction is irreversible because it involves oxidative decarboxylation. By contrast, 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate undergoes only a simple oxidation, and thus, with this substrate, the reaction is reversible. Steady-state velocity data, obtained by varying substrates over a range of higher concentrations, suggest that the dehydrogenase reaction conforms to a rapid equilibrium, random mechanism with 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate as a substrate in the forward reaction or with the corresponding ketone derivative as a substrate in the reverse direction. The initial velocity patterns obtained by varying prephenate or 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate over a range of lower concentrations, at different fixed concentrations of NAD, were nonlinear and consistent with a unique model that is described by a velocity equation which is the ratio of quadratic polynomials. An equilibrium constant of 1.4 x 10(-7) M for the reaction in the presence of 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate indicates that the equilibrium lies very much in favor of ketone production.  相似文献   

10.
Acinetobacter sp. strain 4CB1 was isolated from a polychlorobiphenyl-contaminated soil sample by using 4-chlorobenzoate as a sole source of carbon and energy. Resting cells of Acinetobacter sp. strain 4CB1 hydrolytically dehalogenated 4-chlorobenzoate under aerobic and anaerobic conditions, but 4-hydroxybenzoate accumulated only under anaerobic conditions. Cell extracts of Acinetobacter sp. strain 4CB1 oxidized 4-hydroxybenzoate by an NADH-dependent monooxygenase to form protocatechuate, which was subsequently oxidized by both ortho- and meta-protocatechuate dioxygenase reactions. When grown on biphenyl, Acinetobacter sp. strain P6 cometabolized 4,4'-dichlorobiphenyl primarily to 4-chlorobenzoate; however, when this strain was grown in a coculture with Acinetobacter sp. strain 4CB1, 4-chlorobenzoate did not accumulate but was converted to inorganic chloride. When resting cells of Acinetobacter sp. strain 4CB1 were incubated anaerobically with 3,4-dichlorobenzoate, they accumulated 4-carboxy-1,2-benzoquinone as a final product. Since 3,4-dichlorobenzoate is a product that is formed from the cometabolism of 3,4-dichloro-substituted tetrachlorobiphenyls by Acinetobacter sp. strain P6, the coculture has a potential application for dehalogenation and mineralization of specific polychlorobiphenyl congeners.  相似文献   

11.
The stereochemical course of the vitamin K dependent carboxylation has been elucidated using a (4S)-4-fluoroglutamyl-containing pentapeptide as a substrate. The absolute configuration of the [13C]-4-carboxy-4-fluoroglutamate obtained when the carboxylation was carried out with 13C-labeled sodium bicarbonate, was determined after reduction of the [13C]-4-carboxy-4-fluoroglutamyl residue into 4-fluoro-5,5'-dihydroxyleucine, hydrolysis, lactonization, and peracetylation. The absolute configuration at C-4 was determined to be S by locating the 13C label in the lactone ring of the trans isomeric lactone and in the hydroxymethyl group of the cis isomer following HPLC separation of both isomers and analysis by GC/MS/MS techniques. It follows that the vitamin K dependent carboxylation occurs with inversion of configuration.  相似文献   

12.
Bacterial degradation of biphenyl and polychlorinated biphenyls proceeds by a well-studied pathway which produces benzoate and 2-hydroxypent-2,4-dienoate (or, in the case of polychlorinated biphenyls, the chlorinated derivatives of these compounds). Pseudomonas cepacia P166 utilizes 4-chlorobiphenyl for growth and produces 4-chlorobenzoate as a central intermediate. In this study we found that strain P166 further transforms 4-chlorobenzoate to 4-chlorocatechol, which is mineralized by a meta cleavage pathway. Key metabolites which we identified include the meta cleavage product (5-chloro-2-hydroxymuconic semialdehyde), 5-chloro-2-hydroxymuconate, 5-chloro-2-oxopent-4-enoate, 5-chloro-4-hydroxy-2-oxopentanoate, and chloroacetate. Chloroacetate accumulated transiently, and slow but stoichiometric dehalogenation was observed.  相似文献   

13.
P Marcotte  C Walsh 《Biochemistry》1978,17(26):5613-5619
The nonenzymatic reactions which follow enzymatic oxidation of the gamma-delta acetylenic amino acid propargylglycine (2-amino-4-pentynoate) have been studied. The product which accumulates in solution has been identified as 2-amino-4-hydroxy-2,4-pentadienoate gamma-lactone, formed by intramolecular attack of the carboxylate anion on the electrophilic fourth carbon of 2-iminium-3,4-pentadienoate. This previously unknown substance was characterized by its reactions in acid and base and by its nuclear magnetic resonance spectrum. The lactone is preceded in the pathway by 2-amino-2-penten-4-ynoate, a transient electron-rich species which binds tightly to D-amino-acid oxidase and induces a charge-transfer complex with the electron-deficient bound flavin coenzyme. The aminediene lactone is converted by base treatment to 2-amino-4-keto-2-pentenoate, which is also a strong inhibitor of D-amino-acid oxidase and induces a charge-transfer complex.  相似文献   

14.
A series of 1,3-bis-anilides of 4-hydroxyisophthalic acid was prepared and investigated for antibacterial and antifungal activities. The prepared compounds (I-XIV), of the general formula (A), where Xn = 2-NO2 (I); 2,4-(NO2)2 (II); 2,4-NO2, Cl (III); 2,4-NO2,CF3 (IV); 3,4-NO2,Cl (V); 2,4-Cl,NO2 (VI); 2,5-Cl,NO2 (VII); 2,4,6-Cl,NO2,Cl (VIII); 2,4-Br, NO2 (IX); 2-CF3 (X); 3-CF3 (XI); 2,5-Cl,CF3 (XII); 2,5-CH3,Cl (XIII); 3,4-Cl,CH3 (XIV), were obtained in satisfactory yield by reacting 4-hydroxyisophthalic acid with the appropriate substituted aniline. (Formula: see text). The prepared compounds were tested for antimicrobial activity by a disk-diffusion assay (Kirby-Bauer modified). The organisms used were the following: S. aureus, B. subtilis, B. anthracis, M. paratuberculosis 607, E. coli Bb, S. typhi, S. typhimurium, S. paratyphi B, Pr. vulgaris, K1. pneumoniae, Ps. aeruginosa, C. albicans, and A. niger. The results of the antimicrobial screening showed that a number of substituted anilides exhibited varying degrees of activity against Gram-positive and Gram-negative bacteria, and fungi, nitro-halogen-derivatives being the most interesting members of the series.  相似文献   

15.
Chemical investigations of the tropical marine sponge Hyrtios sp. have resulted in the isolation of a new alkaloid, 1-carboxy-6-hydroxy-3,4-dihydro-β-carboline (1) together with the known metabolites, 6-hydroxy-3,4-dihydro-1-oxo-β-carboline (2), 5-hydroxy-1H-indole-3-carboxylic acid methyl ester (3), serotonin (4), hyrtiosin A (5), 5-hydroxyindole-3-carbaldehyde (6), and hyrtiosin B (7). Their structures were elucidated on the basis of mass spectrometry and detailed 2D NMR spectroscopic data. Hyrtiosin B (7) displayed a potent inhibitory activity against isocitrate lyase (ICL) of Candida albicans with an IC50 value of 89.0 μM.  相似文献   

16.
Pseudomonas sp. strain PP2 isolated in our laboratory efficiently metabolizes phenanthrene at 0.3% concentration as the sole source of carbon and energy. The metabolic pathways for the degradation of phenanthrene, benzoate and p-hydroxybenzoate were elucidated by identifying metabolites, biotransformation studies, oxygen uptake by whole cells on probable metabolic intermediates, and monitoring enzyme activities in cell-free extracts. The results obtained suggest that phenanthrene degradation is initiated by double hydroxylation resulting in the formation of 3,4-dihydroxyphenanthrene. The diol was finally oxidized to 2-hydroxymuconic semialdehyde. Detection of 1-hydroxy-2-naphthoic acid, alpha-naphthol, 1,2-dihydroxy naphthalene, and salicylate in the spent medium by thin layer chromatography; the presence of 1,2-dihydroxynaphthalene dioxygenase, salicylaldehyde dehydrogenase and catechol-2,3-dioxygenase activity in the extract; O(2) uptake by cells on alpha-naphthol, 1,2-dihydroxynaphthalene, salicylaldehyde, salicylate and catechol; and no O(2) uptake on o-phthalate and 3,4-dihydroxybenzoate supports the novel route of metabolism of phenanthrene via 1-hydroxy-2-naphthoic acid --> [alpha-naphthol] --> 1,2-dihydroxy naphthalene --> salicylate --> catechol. The strain degrades benzoate via catechol and cis,cis-muconic acid, and p-hydroxybenzoate via 3,4-dihydroxybenzoate and 3-carboxy- cis,cis-muconic acid. Interestingly, the culture failed to grow on naphthalene. When grown on either hydrocarbon or dextrose, the culture showed good extracellular biosurfactant production. Growth-dependent changes in the cell surface hydrophobicity, and emulsification activity experiments suggest that: (1) production of biosurfactant was constitutive and growth-associated, (2) production was higher when cells were grown on phenanthrene as compared to dextrose and benzoate, (3) hydrocarbon-grown cells were more hydrophobic and showed higher affinity towards both aromatic and aliphatic hydrocarbons compared to dextrose-grown cells, and (4) mid-log-phase cells were significantly (2-fold) more hydrophobic than stationary phase cells. Based on these results, we hypothesize that growth-associated extracellular biosurfactant production and modulation of cell surface hydrophobicity plays an important role in hydrocarbon assimilation/uptake in Pseudomonas sp. strain PP2.  相似文献   

17.
T T Hoang  Y Ma  R J Stern  M R McNeil  H P Schweizer 《Gene》1999,237(2):361-371
Purification of proteins from Escherichia coli under native conditions is often hampered by inclusion-body formation after overexpression from T7 promoter-based expression vectors. This is probably due to the relatively high copy number of the ColE1-based expression vectors. To circumvent these problems, the low-copy-number pViet and pNam expression vectors were constructed. These vectors contain the pSC101 origin of replication and allow the expression of oligohistidine and intein chitin-binding domain fusion proteins, respectively. Since pViet and pNam do not replicate in E. coli B strains, an E. coli K-12 host strain [SA1503(DE3)] was constructed. This strain is defective in the Lon and OmpT proteases and allows IPTG-inducible expression of recombinant proteins from the T7 promoter. The new vectors were successfully tested by purification of three very insoluble proteins (RmlD, LasI and RhlI) under non-denaturing conditions, and all three proteins retained enzymatic activity. The purified hexahistidine (His6)-tagged Pseudomonas aeruginosa RhlI protein was subjected to more detailed analyses, which indicated that (1) only butyryl-acyl carrier protein (ACP) and S-adenosylmethionine (SAM) were required for synthesis of N-butyryl-L-homoserine lactone; (2) when present at physiological concentrations, butyryl-coenzyme A and NADPH were not substrates for RhlI; (3) RhlI was able to synthesize N-hexanoyl-L-homoserine lactone from hexanoyl-ACP and SAM; (4) RhlI was able to direct synthesis of N-butyryl-L-homoserine lactone from crotonyl-ACP in a reaction coupled to purified P. aeruginosa FabI (enoyl-ACP reductase).  相似文献   

18.
The role of pH in the melanin biosynthesis pathway   总被引:2,自引:0,他引:2  
Having oxidized 3,4-dihydroxyphenylalanine (dopa) with sodium periodate or mushroom tyrosinase in a pH range from 3.5 to 6.0, it has been possible to detect spectrophotometrically 4-(2-carboxy-2-aminoethyl)-1,2-benzoquinone with the amino group protonated (o-dopaquinone-H+), a postulated intermediate in the melanogenesis pathway. When the pH value was greater than 4, the final product obtained was 2-carboxy-2,3-dihydroindole-5,6-quinone (dopachrome); however, for pH values lower than 4, two different products were identified by means of cyclic voltammetry: 5-(2-carboxy-2-aminoethyl)-2-hydroxy-1,4-benzoquinone and dopachrome. These products appeared when oxidation was achieved with the enzyme as well as with periodate. This suggests that two chemical pathways can arise from alpha-dopaquinone-H+, whose relative importance is determined by the pH. The steps of these pathways would be dopa leads to o-dopaquinone-H+ leads to o-dopaquinone leads to leukodopachrome leads to dopachrome, for the first one, and dopa leads to o-dopaquinone-H+ leads to 2,4,5-trihydroxyphenylalanine leads to 5-(2-carboxy-2-aminoethyl)-2-hydroxy-1,4-benzoquinone very slowly leads to intermediate compound leads to dopachrome, for the second one. The stoichiometry for the conversion of dopaquinone-H+ into dopachrome for pH values greater than 4 followed equation of 2 o-dopaquinone-H+ leads to dopa + dopachrome. No participation of oxygen was detected in the conversion of leukodopachrome (2,3-dihydro-5,6-dihydroxyindole-2-carboxylate) into dopachrome.  相似文献   

19.
Pseudomonas stutzeri OX1 meta pathway genes for toluene and o-xylene catabolism were analyzed, and loci encoding phenol hydroxylase, catechol 2,3-dioxygenase, 2-hydroxymuconate semialdehyde dehydrogenase, and 2-hydroxymuconate semialdehyde hydrolase were mapped. Phenol hydroxylase converted a broad range of substrates, as it was also able to transform the nongrowth substrates 2,4-dimethylphenol and 2,5-dimethylphenol into 3,5-dimethylcatechol and 3,6-dimethylcatechol, respectively, which, however, were not cleaved by catechol 2,3-dioxygenase. The identified gene cluster displayed a gene order similar to that of the Pseudomonas sp. strain CF600 dmp operon for phenol catabolism and was found to be coregulated by the tou operon activator TouR. A hypothesis about the evolution of the toluene and o-xylene catabolic pathway in P. stutzeri OX1 is discussed.  相似文献   

20.
Dienelactone hydrolase from Pseudomonas sp. strain B13.   总被引:6,自引:5,他引:1       下载免费PDF全文
Dienelactone hydrolase (EC 3.1.1.45) catalyzes the conversion of cis- or trans-4-carboxymethylenebut-2-en-4-olide (dienelactone) to maleylacetate. An approximately 24-fold purification from extracts of 3-chlorobenzoate-grown Pseudomonas sp. strain B13 yielded a homogeneous preparation of the enzyme. The purified enzyme crystallized readily and proved to be a monomer with a molecular weight of about 30,000. Each dienelactone hydrolase molecule contains two cysteinyl side chains. One of these was readily titrated by stoichiometric amounts of p-chloromercuribenzoate, resulting in inactivation of the enzyme; the inactivation could be reversed by the addition of dithiothreitol. The other cysteinyl side chain appeared to be protected in the native protein against chemical reaction with p-chloromercuribenzoate. The properties of sulfhydryl side chains in dienelactone hydrolase resembled those that have been characterized for bacterial 4-carboxymethylbut-3-en-4-olide (enol-lactone) hydrolases (EC 3.1.1.24), which also are monomers with molecular weights of about 30,000. The amino acid composition of the dienelactone hydrolase resembled the amino acid composition of enol-lactone hydrolase from Pseudomonas putida, and alignment of the NH2-terminal amino acid sequence of the dienelactone hydrolase with the corresponding sequence of an Acinetobacter calcoaceticus enol-lactone hydrolase revealed sequence identity at 8 of the 28 positions. These observations foster the hypothesis that the lactone hydrolases share a common ancestor. The lactone hydrolases differed in one significant property: the kcat of dienelactone hydrolase was 1,800 min-1, an order of magnitude below the kcat observed with enol-lactone hydrolases. The relatively low catalytic activity of dienelactone hydrolase may demand its production at the high levels observed for induced cultures of Pseudomonas sp. strain B13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号