首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Administration of anti-CD25 mAb before an aggressive murine breast tumor inoculation provoked effective antitumor immunity. Compared with CD4(+) T cells purified from anti-CD25 mAb-pretreated mice that did not reject tumor, CD4(+) T cells purified from anti-CD25 mAb-pretreated mice that rejected tumor stimulated by dendritic cells (DCs) produced more IFN-gamma and IL-2, and less IL-17 in vitro, and ignited protective antitumor immunity in vivo in an adoptive transfer model. Tumor Ag-loaded DCs activated naive CD8(+) T cells in the presence of these CD4(+) T cells in vitro. Tumor Ag and adoptively transferred CD4(+) T cells were both required for inducing a long-term tumor-specific IFN-gamma-producing cellular response and potent protective antitumor activity. Although adoptively transferred CD4(+) T cells ignited effective tumor-specific antitumor immunity in wild-type mice, they failed to do so in endogenous NK cell-depleted, Gr-1(+) cell-depleted, CD40(-/-), CD11c(+) DC-depleted, B cell(-/-), CD8(+) T cell-depleted, or IFN-gamma(-/-) mice. Collectively, the data suggest that adoptively transferred CD4(+) T cells orchestrate both endogenous innate and adaptive immunity to generate effective tumor-specific long-term protective antitumor immunity. The data also demonstrate the pivotal role of endogenous DCs in the tumor-specific protection ignited by adoptively transferred CD4(+) T cells. Thus, these findings highlight the importance of adoptively transferred CD4(+) T cells, as well as host immune components, in generating effective tumor-specific long-term antitumor activity.  相似文献   

2.
Protective immunity against primary and secondary infection by the fungus Histoplasma capsulatum (HC) is multifactorial, requiring cells of the innate and adaptive immune response. Effector mechanisms that could mediate intracellular killing of HC include cytokines such as IFN-gamma and TNF-alpha and/or direct cytolytic activity by T and NK cells. In this regard, although previous work has clearly demonstrated a critical role for IFN-gamma and TNF-alpha in limiting fungal growth in primary HC infection, less is known regarding the role of cytolytic mechanisms. The studies reported here first address the role of perforin in mediating immunity to HC. Remarkably, perforin-deficient knockout (PfKO) mice were shown to have accelerated mortality and increased fungal burden following a lethal or sublethal primary challenge. These data established an essential role for perforin in primary immunity systemic HC infection. Interestingly, depletion of CD8(+) T cells in PfKO mice caused a further increase in fungal burden and accelerated mortality, suggesting a perforin-independent role for CD8(+) T cells. Moreover, adoptive transfer of CD8(+) T cells from PfKO mice into IFN-gamma(-/-) mice caused a reduction in fungal burden following infectious challenge compared with control IFN-gamma(-/-) mice. Together, these data suggest that CD8(+) T cells can mediate immunity to HC through both perforin-dependent and -independent mechanisms.  相似文献   

3.
A model of neonatal autoimmune disease has been described recently in which an epitope-specific autoantibody to murine zona pellucida 3 induces severe ovarian disease in neonatal, but not adult, mice (neonatal AOD). The autoantibody forms immune complex with endogenous ovarian zona pellucida 3, and a pathogenic CD4(+) T cell response is triggered. The basis for the predominant neonatal susceptibility has not been clarified. In this study innate immunity, including neonatal NK cells, in neonatal AOD was investigated. Neonatal spleen contained readily detectable NK1.1(+)TCRVbeta(-), but not NK1.1(+)TCRVbeta(+), cells. Ab depletion of NK1.1(+)TCRVbeta(-) cells inhibited neonatal AOD development. Moreover, in adoptive transfer of neonatal AOD, recipient disease was ameliorated when either donor or recipient NK cells were depleted. Thus, NK cells operate in both induction and effector phases of the disease. IFN-gamma was produced by neonatal NK cells in vivo, and it may be important in neonatal AOD. Indeed, ovaries with neonatal AOD expressed high levels of IFN-gamma and TNF-alpha which correlated with disease severity, and the disease was inhibited by IFN-gamma or TNF-alpha Ab. Importantly, disease was enhanced by recombinant IFN-gamma, and treatment of T cell donors with IFN-gamma Ab also significantly reduced adoptive transfer of neonatal AOD. Finally, neonatal AOD was ameliorated in mice deficient in FcgammaRIII and was enhanced in FcgammaRIIB-deficient mice. We conclude that neonatal NK cells promote pathogenic T cell response at multiple stages during neonatal autoimmune disease pathogenesis. Also operative in neonatal AOD are other mediators of the innate system, including proinflammatory cytokines and FcgammaRIII signaling.  相似文献   

4.
This study examines innate immunity to oral Salmonella during primary infection and after secondary challenge of immune mice. Splenic NK and NKT cells plummeted early after primary infection, while neutrophils and macrophages (Mphi) increased 10- and 3-fold, respectively. In contrast, immune animals had only a modest reduction in NK cells, no loss of NKT cells, and a slight increase in phagocytes following secondary challenge. During primary infection, the dominant sources of IFN-gamma were, unexpectedly, neutrophils and Mphi, the former having intracellular stores of IFN-gamma that were released during infection. IFN-gamma-producing phagocytes greatly outnumbered IFN-gamma-producing NK cells, NKT cells, and T cells during the primary response. TNF-alpha production was also dominated by neutrophils and Mphi, which vastly outnumbered NKT cells producing this cytokine. Neither T cells nor NK cells produced TNF-alpha early during primary infection. The TNF-alpha response was reduced in a secondary response, but remained dominated by neutrophils and Mphi. Moreover, no significant IFN-gamma production by Mphi was associated with the secondary response. Indeed, only NK1.1(+) cells and T cells produced IFN-gamma in these mice. These studies provide a coherent view of innate immunity to oral Salmonella infection, reveal novel sources of IFN-gamma, and demonstrate that immune status influences the nature of the innate response.  相似文献   

5.
Previously, we reported that IL-10-producing mononuclear phagocytes increase in lungs of aged mice, causing impaired innate cytokine expression. Since dendritic cells (DCs) contribute to innate NK cell and adaptive T cell immunity, we tested the hypothesis that age-related IL-10 might influence DC function with effects on NK and T cell activation. The results showed that DC recruitment to sites of lung inflammation was normal in aged mice (>20 mo). However, IFN-gamma-producing NK cells in LPS-challenged lungs were decreased in aged as compared with young mice, which was associated with increased IL-10(+)CD11b(+)Gr-1(low)CD11c(-) cells consistent with mononuclear phagocytes. In vivo or in vitro blockade of IL-10 signaling restored IFN-gamma-producing NK cells. This restoration was reversed by IL-12 neutralization, indicating that IL-10 suppressed sources of IL-12 in aged mice. To probe DC function in adaptive immunity, we transferred young naive OVA-specific TCR transgenic T cells to old mice. Following challenge with OVA plus LPS, Ag presentation in the context of MHC-I and MHC-II occurred with similar kinetics and intensity in draining lymph nodes of young and old recipients as measured by proliferation. Despite this, aged hosts displayed impaired induction of IFN-gamma(+)CD4(+), but not IFN-gamma(+)CD8(+), effector T cells. Blockade of IL-10 signaling reversed age-associated defects. These studies indicate that the innate IL-12/IFN-gamma axis is not intrinsically defective in lungs of aged mice, but is rather suppressed by enhanced production of mononuclear phagocyte-derived IL-10. Our data identify a novel mechanism of age-associated immune deficiency.  相似文献   

6.
7.
Interleukin-17A-producing T cells, especially Th17, have been shown to be involved in inflammatory autoimmune diseases and host defense against extracellular infections. However, whether and how IL-17A or IL-17A-producing cells can help protection against intracellular bacteria remains controversial, especially how it regulates the adaptive immunity besides recruitment of neutrophils in the innate immune system. By infecting IL-17A-deficient mice with Listeria monocytogenes, we show in this study that IL-17A is required for the generation of Ag-specific CD8(+) CTL response against primary infection, but not for the generation of memory CD8(+) T cells against secondary challenge. Interestingly, we identify γδT cells, but not conventional CD4(+) Th17 cells, as the main cells for innate IL-17A production during L. monocytogenes infection. Furthermore, γδT cells are found to promote Ag-specific CD8(+) T cell proliferation by enhancing cross-presentation of dendritic cells through IL-17A. Adoptive transfer of Il17a(+/+) γδT cells, but not Il17a(-/-) γδT cells or Il17a(+/+) CD4(+) T cells, were sufficient to recover dendritic cells cross-presentation and defective CD8(+) T cell response in Il17a(-/-) mice. Our findings indicate an important role of infection-inducible IL-17A-producing γδT cells and their derived IL-17A against intracellular bacterial infection, providing a mechanism of IL-17A for regulation of innate and adaptive immunity.  相似文献   

8.
The rules that govern the engagement of antitumor immunity are not yet fully understood. Ags expressed by tumor cells are prone to induce T cell tolerance unless the innate immune system is activated. It is unclear to what extent tumors engage this second signal link by the innate immune system. Apoptotic and necrotic (tumor) cells are readily recognized and phagocytosed by the cells of the innate immune system. It is unknown how this affects the tumor's immunogenicity. Using a murine melanoma (B16m) and lymphoma (L5178Y-R) model, we studied the clonal sizes and cytokine signatures of the T cells induced by these tumors in syngeneic mice when injected as live, apoptotic, and necrotic cells. Both live tumors induced a type 2 CD4 cell response characterized by the prevalent production of IL-2, IL-4, and IL-5 over IFN-gamma. Live, apoptotic, and necrotic cells induced CD4 (but no CD8) T cells of comparable frequencies and cytokine profiles. Therefore, live tumors engaged the second signal link, and apoptotic or necrotic tumor cell death did not change the magnitude or quality of the antitumor response. A subclone of L5178Y-R, L5178Y-S cells, were found to induce a high-frequency type 1 response by CD4 and CD8 cells that conveyed immune protection. The data suggest that the immunogenicity of tumors, and their characteristics to induce type 1 or type 2, CD4 or CD8 cell immunity is not primarily governed by signals associated with apoptotic or necrotic cell death, but is an intrinsic feature of the tumor itself.  相似文献   

9.
The bacterium Burkholderia pseudomallei causes a life-threatening disease called melioidosis. In vivo experiments in mice have identified that a rapid IFN-gamma response is essential for host survival. To identify the cellular sources of IFN-gamma, spleen cells from uninfected mice were stimulated with B. pseudomallei in vitro and assayed by ELISA and flow cytometry. Costaining for intracellular IFN-gamma vs cell surface markers demonstrated that NK cells and, more surprisingly, CD8(+) T cells were the dominant sources of IFN-gamma. IFN-gamma(+) NK cells were detectable after 5 h and IFN-gamma(+) CD8(+) T cells within 15 h after addition of bacteria. IFN-gamma production by both cell populations was inhibited by coincubation with neutralizing mAb to IL-12 or IL-18, while a mAb to TNF had much less effect. Three-color flow cytometry showed that IFN-gamma-producing CD8(+) T cells were of the CD44(high) phenotype. The preferential activation of NK cells and CD8(+) T cells, rather than CD4(+) T cells, was also observed in response to Listeria monocytogenes or a combination of IL-12 and IL-18 both in vitro and in vivo. This rapid mechanism of CD8(+) T cell activation may be an important component of innate immunity to intracellular pathogens.  相似文献   

10.
IL-17A is originally identified as a proinflammatory cytokine that induces neutrophils. Although IL-17A production by CD4(+) Th17 T cells is well documented, it is not clear whether IL-17A is produced and participates in the innate immune response against infections. In the present report, we demonstrate that IL-17A is expressed in the liver of mice infected with Listeria monocytogenes from an early stage of infection. IL-17A is important in protective immunity at an early stage of listerial infection in the liver because IL-17A-deficient mice showed aggravation of the protective response. The major IL-17A-producing cells at the early stage were TCR gammadelta T cells expressing TCR Vgamma4 or Vgamma6. Interestingly, TCR gammadelta T cells expressing both IFN-gamma and IL-17A were hardly detected, indicating that the IL-17A-producing TCR gammadelta T cells are distinct from IFN-gamma-producing gammadelta T cells, similar to the distinction between Th17 and Th1 in CD4(+) T cells. All the results suggest that IL-17A is a newly discovered effector molecule produced by TCR gammadelta T cells, which is important in innate immunity in the liver.  相似文献   

11.
By using a T, B, or NK cell-deficient mouse strain (recombinase-activating gene (RAG)-1(-/-)/common cytokine receptor gamma-chain (gamma(C)R)), and T and B cell and IFN-gamma-deficient (RAG-1(-/-)/IFN-gamma(-/-)) mice, we have studied the generation of immunity against infection by Chlamydia pneumoniae. We found that IFN-gamma secreted by innate-cell populations protect against C. pneumoniae infection. However, NK cells were not needed for such IFN-gamma-dependent innate immune protection. Inoculation of wild type, but not IFN-gamma(-/-) bone marrow-derived macrophages protected RAG-1(-/-)/IFN-gamma(-/-) mice against C. pneumoniae infection. In line, pulmonary macrophages from RAG-1(-/-) C. pneumoniae-infected mice expressed IFN-gamma mRNA. Reconstitution of RAG-1(-/-)/gamma(c)R(-/-) or RAG-1(-/-)/IFN-gamma(-/-) mice with CD4(+) or CD8(+) cells by i.v. transfer of FACS sorted wild type spleen cells (SC) increased resistance to C. pneumoniae infection. On the contrary, no protection was observed upon transfer of IFN-gamma(-/-) CD4(+) or IFN-gamma(-/-) CD8(+) SC. T cell-dependent protection against C. pneumoniae was weaker when IFN-gammaR(-/-) CD4(+) or IFN-gammaR(-/-) CD8(+) SC were inoculated into RAG-1(-/-)/IFN-gamma(-/-) mice. Thus both nonlymphoid and T cell-derived IFN-gamma can play a central and complementary role in protection against C. pneumoniae. IFN-gamma secreted by nonlymphoid cells was not required for T cell-mediated protection against C. pneumoniae; however, IFN-gamma regulated T cell protective functions.  相似文献   

12.
Memory CD8+ T cells provide an early source of IFN-gamma   总被引:7,自引:0,他引:7  
During the non-Ag-specific early phase of infection, IFN-gamma is believed to be primarily provided by NK and NKT cells in response to pathogen-derived inflammatory mediators. To test whether other cell types were involved in early IFN-gamma release, IFN-gamma-producing cells were visualized in spleens and lymph nodes of LPS-injected mice. In addition to NK and NKT cells, IFN-gamma was also detected in a significant fraction of CD8(+) T cells. CD8(+) T cells represented the second major population of IFN-gamma-producing cells in the spleen ( approximately 30%) and the majority of IFN-gamma(+) cells in the lymph nodes ( approximately 70%). LPS-induced IFN-gamma production by CD8(+) T cells was MHC class I independent and was restricted to CD44(high) (memory phenotype) cells. Experiments performed with C3H/HeJ (LPS-nonresponder) mice suggested that CD8(+) T cells responded to LPS indirectly through macrophage/dendritic cell-derived IFN-alpha/beta, IL-12, and IL-18. IFN-gamma was also detected in memory CD8(+) T cells from mice injected with type I IFN or with poly(I:C), a synthetic dsRNA that mimics early activation by RNA viruses. Taken together, these results suggest that in response to bacterial and viral products, memory T cells may contribute to innate immunity by providing an early non-Ag-specific source of IFN-gamma.  相似文献   

13.
14.
NK cells possess both effector and regulatory activities that may be important during the antitumor immune response. In fact, the generation of antitumor immunity by the administration of an agonistic mAb against CD137 is NK cell-dependent. In this study, we report that NK cells could be induced by IL-2 and IL-15 to express CD137 and ligation of CD137-stimulated NK cell proliferation and IFN-gamma secretion, but not their cytolytic activity. Importantly, CD137-stimulated NK cells promoted the expansion of activated T cells in vitro, demonstrating immunoregulatory or "helper" activity for CD8(+)CTL. Furthermore, tumor-specific CTL activity against P815 tumor Ags was abrogated following anti-CD137 treatment in NK-depleted mice. We further demonstrate that CD137-stimulated helper NK cells expressed the high-affinity IL-2R and were hyperresponsive to IL-2. Taken together with previous findings that CD137 is a critical receptor for costimulation of T cells, our findings suggest that CD137 is a stimulatory receptor for NK cells involved in the crosstalk between innate and adaptive immunity.  相似文献   

15.
16.
Cryptococcosis is an opportunistic fungal infectious disease that often occurs in severely immunocompromised patients. Host defence against the causative microorganism is largely mediated by cellular immunity, and Th1 cytokines, such as IFN-gamma, play central roles in the host protective responses. IL-12 and IL-18 activate the synthesis of IFN-gamma by innate immune cells, including NK, NKT and gamma delta T cells and promote the differentiation of Th1-type acquired immune responses. Recently, NKT cells, which are involved in the recognition of glycolipid antigens, have attracted much attention based on their potent immunomodulating activities. Several studies have reported the role of this particular component of innate immune responses in tumor immunity and pathogenesis of autoimmune diseases. In this review, I outline the recent findings on the role of NKT cells in host defence against infectious microorganisms, with a special focus on our data emphasizing the importance of this subset of immunocytes in the development of acquired as well as early host protection against cryptococcal infection.  相似文献   

17.
Immunotherapy using dendritic cells (DCs) has the potential to activate both T cells and NK cells. We previously demonstrated the long-lasting antitumor responses by NK cells following immunization with bone marrow-derived DCs. In the current study, we demonstrate that long-term antitumor NK responses require endogenous DCs and a subset of effector memory CD4(+) T (CD4(+) T(EM)) cells. One month after DC immunization, injection of a tumor into DC-immunized mice leads to an increase in the expression of CXCL10 by endogenous DCs, thus directing NK cells into the white pulp where the endogenous DCs bridged CD4(+) T(EM) cells and NK cells. In this interaction, CD4(+) T(EM) cells express CD40L, which matures the endogenous DCs, and produce cytokines, such as IL-2, which activates NK cells. These findings suggest that DC vaccination can sustain long-term innate NK cell immunity but requires the participation of the adaptive immune system.  相似文献   

18.
19.
NKT cells are thought of as a bridge between innate and adaptive immunity. In this study, we demonstrate that mouse NKT cells are activated in response to Escherichia coli LPS, and produce IFN-gamma, but not IL-4, although activation through their TCR typically induces both IL-4 and IFN-gamma production. IFN-gamma production by NKT cells is dependent on LPS-induced IL-12 and IL-18 from APC. LPS induced IFN-gamma production by NKT cells does not require CD1d-mediated presentation of an endogenous Ag and exposure to a combination of IL-12 and IL-18 is sufficient to activate them. In mice that are deficient for NKT cells, innate immune cells are activated less efficiently in response to LPS, resulting in the reduced production of TNF and IFN-gamma. We propose that in addition to acting as a bridge to adaptive immunity, NKT cells act as an early amplification step in the innate immune response and that the rapid and complete initiation of this innate response depends on the early production of IFN-gamma by NKT cells.  相似文献   

20.
Plasmacytoid dendritic cells (pDC) are capable of producing high levels of type I IFNs upon viral stimulation, and play a central role in modulating innate and adaptive immunity against viral infections. Whereas many studies have assessed myeloid dendritic cells (mDC) in the induction of antitumor immune responses, the role of pDC in antitumor immunity has not been addressed. Moreover, the interaction of pDC with other dendritic cell subsets has not been evaluated. In this study, we analyzed the capacity of pDC in stimulating an Ag-specific T cell response. Immunization of mice with Ag-pulsed, activated pDC significantly augmented Ag-specific CD8(+) CTL responses, and protected mice from a subsequent tumor challenge. Immunization with a mixture of activated pDC plus mDC resulted in increased levels of Ag-specific CD8(+) T cells and an enhanced antitumor response compared with immunization with either dendritic cell subset alone. Synergy between pDC and mDC in their ability to activate T cells was dependent on MHC I expression by mDC, but not pDC, suggesting that pDC enhanced the ability of mDC to present Ag to T cells. Our results demonstrate that pDC and mDC can interact synergistically to induce an Ag-specific antitumor immune response in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号