首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
2.
3.
Previous studies in animal populations have shown that stunted neural and thymolymphatic growth early in development may result in permanently impaired neural and immune function, decreased body growth, vertebral wedging, and decreased life-span. In the human adult, small vertebral neural canal (VNC) diameters may reflect early stunted neural and immune development and impaired function that leads to decreased health (inferred by greater vertebral wedging) and life-span in the adult. VNC, which complete their growth by early childhood (age 4), are markers of early development in adults. On the other hand, features following general body growth, such as height, weight (represented here by vertebral body height) continues to grow until young adulthood. They are less reliable, because they readily experience catch-up growth (even in chronically stressed populations) and, unlike VNC, may mask poor early growth. To test associations between early growth and adult health and life-span in humans, we measured 2,060 VNC, vertebral heights, vertebral wedging, nerve-root tunnel lengths, severity of vertebral osteophytosis, and ages at death in 90 adult (aged 15-55 years) prehistoric skeletons (950-1300 A.D.). Tibial lengths were also measured in a subsample (n = 30). Multivariate, bivariate, and nonparametric analyses showed that small VNC are significantly associated with greater vertebral wedging and decreased life-span (P less than 0.05-0.00001). VNC are independent of vertebral body heights and tibial lengths (general body growth). VNC, but not statural components, are useful in predicting adult health, presumably because they reflect neural and immune development and do not readily experience catch-up growth. Thus, longitudinal retrospective measures of early growth and adult health were systematically linked within individuals regardless of confounding factors operating over the 350-year time period. Since this research was completed, this model has repeatedly been independently confirmed in four living urban industrial populations. Longitudinal retrospective analysis was employed together with direct measures of VNC, neural and immune function. Together these results suggested that it may be essential to improve growth prior to early childhood in order to maximize adult health and life-span.  相似文献   

4.
Excess mortality in persons with severe mental disorders (SMD) is a major public health challenge that warrants action. The number and scope of truly tested interventions in this area remain limited, and strategies for implementation and scaling up of programmes with a strong evidence base are scarce. Furthermore, the majority of available interventions focus on a single or an otherwise limited number of risk factors. Here we present a multilevel model highlighting risk factors for excess mortality in persons with SMD at the individual, health system and socio‐environmental levels. Informed by that model, we describe a comprehensive framework that may be useful for designing, implementing and evaluating interventions and programmes to reduce excess mortality in persons with SMD. This framework includes individual‐focused, health system‐focused, and community level and policy‐focused interventions. Incorporating lessons learned from the multilevel model of risk and the comprehensive intervention framework, we identify priorities for clinical practice, policy and research agendas.  相似文献   

5.
Differential centrifugation was applied to adult and foetal liver of monkey. Obtained fractions were: F1 (800 × g); F2 (12 500 × g); F3 (200 000 × g); and cell sap. Analysis of chemical compounds of these fractions shows that: (1) adult and foetal nucleic acids levels are similar; (2) there are more proteins in adult than in foetal hepatocytes; (3) most of the glycogen is located in F3; the foetal level is twenty times higher than the adult level.Plasma membrane enzymes (5′-nucleotidase, adenylate cyclase) show a nucleomicrosomic distribution. The distribution of alkaline phosphatase is not significant.Mitochondrial enzymes (monoamine oxydase, succinate cytochrome c reductase, cytochrome oxydase) are enriched in F2 without any sedimentation in F3 There is more malate dehydrogenase liberated in cell sap during foetal liver fractionation. This indicates the foetal mitochondria are more sensitive to the homogenisation method.Lysosomal enzymes (acid phosphatase, N-acetylglucosaminidase) are enriched in F2. The same observation for N-acetylglucosaminidase as for malate dehydrogenase leads to the same conclusion for foetal lysosomes.Endoplasmic reticulum and Golgi enzymes (glucose-6-phosphatase and related phosphotransferase activity, NADPH-cytochrome c reductase and sialyltransferase) are much enriched in F3. Thus this fraction F3 is pure enough to allow the observation of the modification produced on endoplasmic reticulum and Golgi apparatus during foetal and neonatal development.  相似文献   

6.
The relationship between body weight and natural mortality in juvenile and adult fish was analysed for different aquatic ecosystems: lakes, rivers, the ocean, and pond, cage and tank aquaculture systems. Mortality was modelled as a power function of weight, and the parameters b (exponent) and Mu (mortality at the unit weight of 1 g) estimated for fish in the six ecosystems, as well as within selected populations, species and families. At the ecosystem level, no significant differences in parameters were found between lakes, rivers and the ocean and a joint mortality-weight relationship for all natural ecosystems was estimated with parameters b=?0.288 (90% CL[?0.315, ?0.261]) and Mu=3.00 (90% CL[2.70, 3.30]) year?1. Among the culture systems, mortality-weight relationships in ponds and cages were not significantly different and a joint relationship was estimated. The weight exponents of mortality in ponds/cages and tanks were very similar at about b=?0.43, and significantly more negative than in natural ecosystems. Mortalities at unit weight were significantly lower in tanks (0.91 year?1) than in ponds/cages (2.24 year?1), and both were significantly lower than in natural ecosystems. No systematic differences were found between the mortality-weight relationships determined for individual populations, species or families, and fish in the respective ecosystems. It is hypothesized that aquaculture mortality-weight relationships indicate the allometric scaling of non-predation mortality, which is therefore more strongly size dependent than predation mortality. If non predation mortality in natural ecosystems shows a similar scaling with body weight, then the allometric exponent of predation mortality must be less negative than that observed for total natural mortality. Implications of the established mortality-weight relationships for aquaculture and culture-based fisheries are discussed.  相似文献   

7.
8.
People with severe mental illness (SMI) – schizophrenia, bipolar disorder and major depressive disorder – appear at risk for cardiovascular disease (CVD), but a comprehensive meta‐analysis is lacking. We conducted a large‐scale meta‐analysis assessing the prevalence and incidence of CVD; coronary heart disease; stroke, transient ischemic attack or cerebrovascular disease; congestive heart failure; peripheral vascular disease; and CVD‐related death in SMI patients (N=3,211,768) versus controls (N=113,383,368) (92 studies). The pooled CVD prevalence in SMI patients (mean age 50 years) was 9.9% (95% CI: 7.4‐13.3). Adjusting for a median of seven confounders, patients had significantly higher odds of CVD versus controls in cross‐sectional studies (odds ratio, OR=1.53, 95% CI: 1.27‐1.83; 11 studies), and higher odds of coronary heart disease (OR=1.51, 95% CI: 1.47‐1.55) and cerebrovascular disease (OR=1.42, 95% CI: 1.21‐1.66). People with major depressive disorder were at increased risk for coronary heart disease, while those with schizophrenia were at increased risk for coronary heart disease, cerebrovascular disease and congestive heart failure. Cumulative CVD incidence in SMI patients was 3.6% (95% CI: 2.7‐5.3) during a median follow‐up of 8.4 years (range 1.8‐30.0). Adjusting for a median of six confounders, SMI patients had significantly higher CVD incidence than controls in longitudinal studies (hazard ratio, HR=1.78, 95% CI: 1.60‐1.98; 31 studies). The incidence was also higher for coronary heart disease (HR=1.54, 95% CI: 1.30‐1.82), cerebrovascular disease (HR=1.64, 95% CI: 1.26‐2.14), congestive heart failure (HR=2.10, 95% CI: 1.64‐2.70), and CVD‐related death (HR=1.85, 95% CI: 1.53‐2.24). People with major depressive disorder, bipolar disorder and schizophrenia were all at increased risk of CVD‐related death versus controls. CVD incidence increased with antipsychotic use (p=0.008), higher body mass index (p=0.008) and higher baseline CVD prevalence (p=0.03) in patients vs. controls. Moreover, CVD prevalence (p=0.007), but not CVD incidence (p=0.21), increased in more recently conducted studies. This large‐scale meta‐analysis confirms that SMI patients have significantly increased risk of CVD and CVD‐related mortality, and that elevated body mass index, antipsychotic use, and CVD screening and management require urgent clinical attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号