首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tobias Uller  Mats Olsson 《Oikos》2003,101(2):317-322
The relative importance of genetic and environmental factors for explaining differences in trait distributions between populations is one of the major issues in evolutionary biology. In ectotherms, temperature can have a major impact on morphology, physiology, and life history strategies, and has often been inferred to explain differences between populations. In species with active thermoregulation, however, the ambient temperature may not be as important as the opportunity for thermoregulation. We studied growth in juvenile common lizards ( Lacerta vivipara ) originating from two environments differing in such thermal opportunity (i.e. day length). The populations differed significantly in their norms of reaction, with lizards experiencing long days in the wild showing a steeper increase in growth rate with increasing thermal opportunity. The environment with longer days also has a lower mean temperature in the wild, and in accordance with evolutionary predictions, lizards from this population had higher endurance at low temperatures. Both populations showed genetic variation in degree of phenotypic plasticity in growth rate as evident from the extensive crossing in norms of reaction.  相似文献   

2.
Life histories show genetic population-level variation due to spatial variation in selection pressures. Phenotypic plasticity in life histories is also common, facilitating fine-tuning of the phenotype in relation to the prevailing selection regime. In multivoltine (≥ 2 generations per year) insects, individuals following alternative developmental pathways (diapause/direct development) experience different selection regimes. We studied the genetic and phenotypic components of juvenile development in Cabera exanthemata (Lepidoptera: Geometridae) in a factorial split-brood experiment. F(2) offspring of individuals originating from populations in northern and central Finland were divided among manipulations defined by temperature (14°C/20°C) and day length (24 h/15 h). Short day length invariably induced diapause, whereas continuous light almost invariably induced direct development in both regions, although northern populations are strictly univoltine in the wild. Individuals from northern Finland had higher growth rates, shorter development times and higher pupal masses than individuals from central Finland across the conditions, indicating genetic differences between regions. Individuals that developed directly into adults tended to have higher growth rates, shorter development times and higher pupal masses than those entering diapause, indicating phenotypic plasticity. Temperature-induced plasticity was substantial; growth rate was much higher, development time much shorter and pupal mass higher at 20°C than at 14°C. The degree of plasticity in relation to developmental pathway was pronounced at 20°C in growth rate and development time and at 14°C in pupal mass, emphasizing multidimensionality of reaction norms. The observed genetic variation and developmental plasticity seem adaptive in relation to time-stress due to seasonality.  相似文献   

3.
Patterns of reproductive uncertainty can have an important influence on population dynamics. There is a crucial distinction between what we describe here as aggregate uncertainty (in which reproductive output in each generation is correlated among the individuals in a population) and idiosyncratic risk (in which reproductive output is independent across individuals). All else being equal, populations experiencing idiosyncratic risk enjoy a higher asymptotic growth rate than do those experiencing aggregate uncertainty. Therefore individuals in populations of the former type will have a competitive advantage over individuals in populations of the latter type. Applying this distinction to models of randomly fluctuating environments, we point out that genetic variation among offspring can serve to reduce aggregate uncertainty, transforming it into a more idiosyncratic form of risk. We show that this transformation underlies the dynamics observed in several previous models of the role of outcrossing in the evolution of sex.  相似文献   

4.
Selected lipid properties were compared between populations of Carex aquatilis occupying adjacent hot spring and permafrost-dominated sites in interior Alaska. Analyses were carried out on a variety of plant parts and results correlated with prevailing ambient temperature. Phospholipid concentrations were higher in plants from permafrost than from hot spring areas, even though there was no consistent interpopulation difference in total lipid content. The population differences in phospholipid content were greatest in those plant parts that experienced the greatest interpopulation temperature difference. Despite lower soil phosphorus availability, permafrost plants had higher total phosphorus concentrations, and a larger proportion of their phosphorus was contained in phospholipid than in hot spring plants. There was no consistent relationship between the proportion of various classes of phospholipids present and prevailing ambient temperature. Fatty acid chain length and degree of unsaturation of the phospholipid fraction were inversely correlated with temperature both between populations and among plant parts. No such relationship was found in the fraction containing neutral lipids. We suggest that the high tissue phosphorus content that characterizes northern plants may be necessary in part to maintain large quantities of phospholipid-containing membrane. Increased amounts of membrane in turn may be a prerequisite for the high rates of membrane-associated processes characteristic of plants in the cold subarctic environment.  相似文献   

5.
Sinervo B 《Oecologia》1990,83(2):228-237
Summary Hatchling Sceloporus occidentalis from northern populations (central Oregon) grow more slowly than hatchlings from southern populations (southern California) in nature. In this study, I determine whether this difference in growth rate results from differences in thermal environment and/or in thermoregulatory behavior. To determine the degree to which the thermal environment affects growth rate among populations, I reared hatchings from the northern and southern populations in a cycling thermal regime in one of three experimental treatments differing in access to radiant heat (6, 9, or 12 h radiant heat; remainder of 24 h at 15°C). I also measured the body temperature that each individual voluntarily selected over the course of the daily activity cycle. Growth rate varied positively with duration of access to radiant heat. Within the three treatments, individual growth rate was positively correlated with body temperature. Moreover, the difference in growth rate between the northern and southern populations was due in part to differences in behavior — individuals from northern populations selected lower body temperatures. I found that significant variation in body temperature was associated with family membership, suggesting that thermal physiology has a genetic basis. Moreover, growth rate was correlated with body temperature among families in each population suggesting a genetic correlation underlies the phenotypic correlations. Thus, genetically based variation in thermal physiology contributes to differences in growth rate among individuals within a population as well as to differences among populations.  相似文献   

6.
Animal body size often varies systematically along latitudinal gradients, where individuals are either larger or smaller with varying season length. This study examines ecotypic responses by the generalist grasshopper Melanoplus femurrubrum (Orthoptera: Acrididae) in body size and covarying, physiologically based life history traits along a latitudinal gradient with respect to seasonality and energetics. The latitudinal compensation hypothesis predicts that smaller body size occurs in colder sites when populations must compensate for time constraints due to short seasons. Shorter season length requires faster developmental and growth rates to complete life cycles in one season. Using a common garden experimental design under laboratory conditions, we examined how grasshopper body size, consumption, developmental time, growth rate and metabolism varied among populations collected along an extended latitudinal gradient. When reared at the same temperature in the lab, individuals from northern populations were smaller, developed more rapidly, and showed higher growth rates, as expected for adaptations to shorter and generally cooler growing seasons. Temperature-dependent, whole organism metabolic rate scaled positively with body size and was lower at northern sites, but mass-specific standard metabolic rate did not differ among sites. Total food consumption varied positively with body size, but northern populations exhibited a higher mass-specific consumption rate. Overall, compensatory life history responses corresponded with key predictions of the latitudinal compensation hypothesis in response to season length.  相似文献   

7.
Size-asymmetric competition among plants is usually defined as resource pre-emption by larger individuals, but it is usually observed and measured as a disproportionate size advantage in the growth of larger individuals in crowded populations (“size-asymmetric growth”). We investigated the relationship between size-asymmetric competition and size-asymmetric growth in a spatially explicit, individual-based plant competition model based on overlapping zones of influence (ZOI). The ZOI of each plant is modeled as a circle, growing in two dimensions. The size asymmetry of competition is reflected in the rules for dividing up the overlapping areas. We grew simulated populations with different degrees of size-asymmetric competition and at different densities and analyzed the size dependency of individual growth by fitting coupled growth functions to individuals. The relationship between size and growth within the populations was summarized with a parameter that measures the size asymmetry of growth. Complete competitive symmetry (equal division of contested resources) at the local level results in a very slight size asymmetry in growth. This slight size asymmetry of growth did not increase with increasing density. Increased density resulted in increased growth asymmetry when resource competition at the local level was size asymmetric to any degree. Size-asymmetric growth can be strong evidence that competitive mechanisms are at least partially size asymmetric, but the degree of size-asymmetric growth is influenced by the intensity as well as the mode of competition. Intuitive concepts of size-asymmetric competition among individuals in spatial and nonspatial contexts are very different.  相似文献   

8.
? It has long been hypothesized that species are limited to the north by minimum temperature and to the south by competition, resulting in a trade-off between freezing tolerance and growth rate. We investigated the extent to which the climatic origins of populations from four live oak species (Quercus series Virentes) were associated with freezing tolerance and growth rate, and whether species fitted a model of locally adapted populations, each with narrow climatic tolerances, or of broadly adapted populations with wide climatic tolerances. ? Acorns from populations of four species across a tropical-temperate gradient were grown under common tropical and temperate conditions. Growth rate, seed mass, and leaf and stem freezing traits were compared with source minimum temperatures. ? Maximum growth rates under tropical conditions were negatively correlated with freezing tolerance under temperate conditions. The minimum source temperature predicted the freezing tolerance of populations under temperate conditions. The tropical species Q. oleoides was differentiated from the three temperate species, and variation among species was greater than among populations. ? The trade-off between freezing tolerance and growth rate supports the range limit hypothesis. Limited variation within species indicates that the distributions of species may be driven more strongly by broad climatic factors than by highly local conditions.  相似文献   

9.
In a natural population of two-year-old mussels, shell length was correlated with degree of heterozygosity. There was no correlation between an individual's glycogen level and its degree of heterozygosity, but when individuals were grouped in heterozygosity classes a near-significant correlation was observed between degree of heterozygosity and mean glycogen level corrected for the effects of sex and stage of gonad development. There was no correlation between degree of heterozygosity and index of gonad development. Such a correlation would have provided support for the hypothesis (Zouros and Foltz, 1984) that dependence of time of spawning on heterozygosity may explain the observed heterozygote-deficiency. The causes of heterozygote-deficiency, a common phenomenon in populations of marine bivalves, remain obscure. The observed heterozygosity-growth correlation is examined in the light of the controversy of whether allozymes act as markers in linkage association with genetic conditions that are responsible for the differences in growth among individuals or are themselves the agents of the correlation. The observations that 1) the contributions of individual loci to the correlation vary among populations, 2) the correlation is observed in samples from natural populations but not among progeny from pair matings, and 3) the correlation is nearly always accompanied with heterozygote-deficiency in the population are more compatible with the first explanation and suggest that the growth-heterozygosity correlation results mostly from associative overdominance and to a lesser extent from the direct contributions of scored loci to growth.  相似文献   

10.
Håkan Sand 《Oecologia》1996,106(2):212-220
I examined the relationship between age, body size and fecundity in 833 female moose (Alces alces) from 14 populations in Sweden sampled during 1989–1992. Data on population density, food availability and climatic conditions were also collected for each population. Age and body mass were both significantly positively related to fecundity, measured as ovulation rate, among female moose. The relationship between the probability of ovulation and body mass was dependent on age with (1) a higher body mass needed in younger females for attaining a given fecundity, and (2) body mass having a stronger effect on fecundity in yearling (1.5 year) than in older (2.5 year) females. Thus, a 40 kg increase in yearling body mass resulted in a 42% increase in the probability of ovulation as compared to a 6% increase in older females. The lower reproductive effort per unit body mass, and the relatively stronger association between fecundity and body mass in young female moose compared to older ones, is likely to primarily represent a mechanism that trades off early maturation against further growth, indicating a higher cost of reproduction in young animals. In addition to age and body mass, population identity explained a significant amount of the individual variation in fecundity, showing that the relationship between body mass and fecundity was variable among populations. This variation was in turn related to the environment, in terms of climatic conditions forcing female moose living in relatively harsh/more seasonal climatic conditions to attain a 22% higher body mass to achive the same probability of multiple ovulation (twinning) as females living in climatically milder/less seasonal environments. The results suggests that the lower fecundity per unit body mass in female moose living in climatically harsh/more seasonal environments may be an adaptive response to lower rates of juvenile survival, compared to females experiencing relatively milder/less seasonal climatic conditions.  相似文献   

11.
The evolution of adaptive growth rate and its influence on how other life history traits evolve is a neglected topic in biology. Growth rate influences life history because size strongly influences age-specific survival and fecundity, and because growth rate defines the relationship between age and size. Improved predictions about the evolution of life history traits may be possible with a greater understanding of the factors that influence the evolution of growth rate. We experimentally tested the hypothesis that a trade off may exist between growth rate and developmental stability in freshwater threespine sticklebacks, Gasterosteus aculeatus. We compared the degree of developmental instability (measured as fluctuating asymmetry = FA) in four lateral plate and two fin traits of fish reared under a high vs. low growth regime in response to food ration and temperature. We found evidence that symmetry was reduced (FA increased) in fast growing compared to slow growing fish, suggesting that a trade off between developmental stability and growth is possible. FA plausibly reflected developmental instability because of significant associations between rank FA levels across traits in individuals. These results are preliminary because of the possible confounding effects of temperature and food ration on asymmetry, and because we do not know if this trade off has fitness or other life history consequences. Our results also do not support the hypothesis of honest signaling sometimes invoked in studies of sexual selection because greater symmetry was found under poorer rather than better resource levels.  相似文献   

12.
The aim of this study is to investigate whether the variation in breadth of the cranial base among modern human populations that inhabit different regions of the world is linked with climatic adaptation. This work provides an examination of two hypotheses. The first hypothesis is that the correlation between basicranial breadth and ambient temperature is stronger than the correlation between temperature and other neurocranial variables, such as maximum cranial breadth, maximum neurocranial length, and the endocranial volume. The second hypothesis is that the correlation between the breadth of the cranial base and the ambient temperature is significant even when other neurocranial features used in this study (including the size of the neurocranium) are constant. For the sake of this research, the necessary neurocranial variables for fourteen human populations living in diverse environments were obtained from Howells' data (except for endocranial volume which was obtained by means of estimation). The ambient temperature (more precisely, the mean yearly temperature) of the environments inhabited by these populations was used as a major climatic factor. Data were analysed using Pearson correlation coefficients, linear regression and partial correlation analyses. The results supported the two hypotheses, thus suggesting that ambient temperature may contribute to the observed differences in the breadth of the cranial base in the studied modern humans.  相似文献   

13.
1. Variation in life-history strategies among conspecific populations indicates the action of local selective pressures; recently, parasitism has been suggested as one of these local forces. 2. Effects of trematode infections on reproductive effort, juvenile growth, size at maturity and susceptibility were investigated among different natural populations of the marine gastropod Zeacumantus subcarinatus, Sowerby 1855. 3. Reproductive effort was not higher in uninfected snails from populations experiencing a high trematode prevalence, but females from high prevalence populations produced significantly larger offspring compared with their conspecifics from other populations. 4. Juvenile growth rate was significantly higher in laboratory-raised snails originating from females in a high prevalence population compared with other populations. 5. Size at maturity, determined by the appearance of functional gonads, was significantly and negatively related to trematode prevalence, and positively related to mean snail size, across 10 populations in the study area. 6. There was no evidence of different host resistance against trematodes in sentinel snails from high and low prevalence populations exposed to the same infection pressure in the field. 7. Our results strongly indicate that Z. subcarinatus adapt to trematodes by reaching maturity early, thereby maximizing their chance of reproducing in populations experiencing a high prevalence of infection by castrating trematodes.  相似文献   

14.
The relationships among species'' physiological capacities and the geographical variation of ambient climate are of key importance to understanding the distribution of life on the Earth. Furthermore, predictions of how species will respond to climate change will profit from the explicit consideration of their physiological tolerances. The climatic variability hypothesis, which predicts that climatic tolerances are broader in more variable climates, provides an analytical framework for studying these relationships between physiology and biogeography. However, direct empirical support for the hypothesis is mostly lacking for endotherms, and few studies have tried to integrate physiological data into assessments of species'' climatic vulnerability at the global scale. Here, we test the climatic variability hypothesis for endotherms, with a comprehensive dataset on thermal tolerances derived from physiological experiments, and use these data to assess the vulnerability of species to projected climate change. We find the expected relationship between thermal tolerance and ambient climatic variability in birds, but not in mammals—a contrast possibly resulting from different adaptation strategies to ambient climate via behaviour, morphology or physiology. We show that currently most of the species are experiencing ambient temperatures well within their tolerance limits and that in the future many species may be able to tolerate projected temperature increases across significant proportions of their distributions. However, our findings also underline the high vulnerability of tropical regions to changes in temperature and other threats of anthropogenic global changes. Our study demonstrates that a better understanding of the interplay among species'' physiology and the geography of climate change will advance assessments of species'' vulnerability to climate change.  相似文献   

15.
16.
Synergism among mutations can lead to an advantage to sexual reproduction, provided mutation rates are high enough (the mutational deterministic hypothesis). Here we tested the idea that competition for food can increase the advantage to sexual reproduction, perhaps by increasing the synergism among mutations in asexual individuals. We compared the survivorship of sexual and asexual snails (Potamopyrgus antipodarum) under two treatments: starved and fed. We predicted higher mortality for asexual snails when starved, but found that sexual and asexual individuals survived at the same rate, independent of treatment. These results suggest that the distribution of sex in this snail may not be explained by variation in competition among populations.  相似文献   

17.
Most studies of phenotypic plasticity investigate the effects of an individual environmental factor on organism phenotypes. However, organisms exist in an ecologically complex world where multiple environmental factors can interact to affect growth, development and life histories. Here, using a multifactorial experimental design, we examine the separate and interactive effects of two environmental factors, rearing host species (Vigna radiata, Vigna angularis and Vigna unguiculata) and temperature (20, 25, 30 and 35°C), on growth and life history traits in two populations [Burkina Faso (BF) and South India (SI)] of the seed beetle, Callosobruchus maculatus. The two study populations of beetles responded differently to both rearing host and temperature. We also found a significant interaction between rearing host and temperature for body size, growth rate and female lifetime fecundity but not larval development time or larval survivorship. The interaction was most apparent for growth rate; the variance in growth rate among hosts increased with increasing temperature. However, the details of host differences differed between our two study populations; the degree to which V. unguiculata was a better host than V. angularis or V. radiata increased at higher temperatures for BF beetles, whereas the degree to which V. unguiculata was the worst host increased at higher temperatures for SI beetles. We also found that the heritabilities of body mass, growth rate and fecundity were similar among rearing hosts and temperatures, and that the cross-temperature genetic correlation was not affected by rearing host, suggesting that genetic architecture is generally stable across rearing conditions. The most important finding of our study is that multiple environmental factors can interact to affect organism growth, but the degree of interaction, and thus the degree of complexity of phenotypic plasticity, varies among traits and between populations.  相似文献   

18.
The basic and simplest system that one can consider in ecology is a group of individuals of equal age and representing one species, that is, a cohort. This paper is an attempt to show that analysis of such a system may be of great importance to understanding basic ecological problems, such as, intraspecific competition and the dynamics of a single population. It is easy to observe that in even-aged populations individuals differ in weights. A close look can show that weight distributions in even-aged populations may have different skewness. Most common are distributions with coefficients of skewness greater than zero. Sometimes weight distributions are symmetrical or with skewness coefficients less than zero. In a cohort of growing individuals the coefficient of skewness changes with time: most often starting from zero (symmetrical distribution), it increases in time; sometimes after an initial increase it can decrease in the final stage of growth, which is related to an increased mortality of individuals. The rate of change in skewness, and the skewness itself depend on the density of individuals in a cohort and on food conditions. They are greater at higher densities and increase with deteriorating food conditions. Weight distributions are symmetrical at low densities and optimal food conditions. The differences in individual weights measured by variance of weight distributions or coefficient of variation follow the same pattern, but observed changes with time, density and food conditions are not so clear. These conclusions rest upon the review of numerous papers concerning both plants and animals, which is presented in this paper. In the past, the properties of weight distributions in even-aged populations were explained not by interactions between individuals, but rather as a natural outcome of the growth process of non-interacting individuals. The exponential equation of growth, with relative growth rate having a normal distribution in populations, was used to support this hypothesis. Obtained weight distributions were of positive skewness; however, this model, which in fact is able to describe the growth process only in its initial stage, cannot explain the changes of skewness of weight distributions with density and food conditions. A model has been developed which includes competitive interactions among members of even-aged populations to explain observed properties of weight distributions in them. The basic assumption is that intraspecific competition leads to uneven partitioning of resources, which are the object of competition. Functions describing resource partitioning among individuals are included into the model.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Life‐history traits from four geographical populations (tropical Ledong population [LD], subtropical Guangzhou [GZ] and Yongxiu populations, and temperate Langfang population [LF]) of the Asian corn borer, Ostrinia furnacalis were investigated at a wide range of temperatures (20–32°C). The larval and pupal times were significantly decreased with increasing rearing temperature, and growth rate was positively correlated with temperature. The relationship between body weight and rearing temperature in O. furnacalis did not follow the temperature–size rule (TSR); all populations exhibited the highest pupal and adult weights at high temperatures or intermediate temperatures. However, development time, growth rate, and body weight did not show a constant latitudinal gradient. Across all populations at each temperature, female were significantly bigger than males, showing a female‐biased sexual size dimorphism (SSD). Contrary to Rensch's rule, the SSD tended to increase with rising temperature. The subtropical GZ population exhibited the largest degree of dimorphism while the temperate LF exhibited the smallest. Male pupae lose significantly more weight at metamorphosis compared to females. The proportionate weight losses of different populations were significantly different. Adult longevity was significantly decreased with increasing temperature. Between sexes, all populations exhibit a rather female‐biased adult longevity. Finally, we discuss the adaptive significance of higher temperature‐inducing high body weight in the moth's life history and why the moth exhibits the reverse TSR.  相似文献   

20.
Both habitat heterogeneity and species’ life-history traits play important roles in driving population dynamics, yet there is little scientific consensus around the combined effect of these two factors on populations in complex landscapes. Using a spatially explicit agent-based model, we explored how interactions between habitat spatial structure (defined here as the scale of spatial autocorrelation in habitat quality) and species life-history strategies (defined here by species environmental tolerance and movement capacity) affect population dynamics in spatially heterogeneous landscapes. We compared the responses of four hypothetical species with different life-history traits to four landscape scenarios differing in the scale of spatial autocorrelation in habitat quality. The results showed that the population size of all hypothetical species exhibited a substantial increase as the scale of spatial autocorrelation in habitat quality increased, yet the pattern of population increase was shaped by species’ movement capacity. The increasing scale of spatial autocorrelation in habitat quality promoted the resource share of individuals, but had little effect on the mean mortality rate of individuals. Species’ movement capacity also determined the proportion of individuals in high-quality cells as well as the proportion of individuals experiencing competition in response to increased spatial autocorrelation in habitat quality. Positive correlations between the resource share of individuals and the proportion of individuals experiencing competition indicate that large-scale spatial autocorrelation in habitat quality may mask the density-dependent effect on populations through increasing the resource share of individuals, especially for species with low mobility. These findings suggest that low-mobility species may be more sensitive to habitat spatial heterogeneity in spatially structured landscapes. In addition, localized movement in combination with spatial autocorrelation may increase the population size, despite increased density effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号