首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activation kinetics of the H2-oxidizing activity of the soluble hydrogenase from Alcaligenes eutrophus H16 were investigated. Activation with Na2S2O4 plus 101 kPa H2 resulted in a rapid increase in activity over 1 h and constant activity after 3 h incubation. Less-stable activations were achieved if enzyme was incubated with Na2S2O4 under 1 kPa H2 or 101 kPa N2. The enzyme could also be partly activated either with NADH alone or with H2 alone. The level of activity obtained with both 101 kPa H2 and NADH present was greater than that obtained with either 101 kPa H2 or NADH alone. Activation with H2 plus NADH was virtually independent of NADH concentration but highly dependent on H2 concentration. The effects of various concentrations of H2 and constant concentration of NADH on the level of activation were the same whether H2 oxidation was assayed by H2-dependent Methylene Blue or NAD+ reduction. Diaphorase activity did not require activation and was little affected by the treatments that activated H2-oxidizing activity. The results suggest that H2 plays an important role in regulating the level of H2-oxidizing activity in this soluble hydrogenase.  相似文献   

2.
Bovine heart submitochondrial particles (SMP) were exposed to continuous fluxes of hydroxyl radical (.OH) alone, superoxide anion radical (O2-) alone, or mixtures of .OH and O2-, by gamma radiolysis in the presence of 100% N2O (.OH exposure), 100% O2 + formate (O2- exposure), or 100% O2 alone (.OH + O2- exposure). Hydrogen peroxide effects were studied by addition of pure H2O2. NADH dehydrogenase, NADH oxidase, succinate dehydrogenase, succinate oxidase, and ATPase activities (Vmax) were rapidly inactivated by .OH (10% inactivation at 15-40 nmol of .OH/mg of SMP protein, 50-90% inactivation at 600 nmol of .OH/mg of SMP protein) and by .OH + O2- (10% inactivation at 20-80 nmol of .OH + O2-/mg of SMP protein, 45-75% inactivation at 600 nmol of .OH + O2-/mg of SMP protein). Importantly, O2- was a highly efficient inactivator of NADH dehydrogenase, NADH oxidase, and ATPase (10% inactivation at 20-50 nmol of O2-/mg of SMP protein, 40% inactivation at 600 nmol of O2-/mg of SMP protein), a mildly efficient inactivator of succinate dehydrogenase (10% inactivation at 150 nmol of O2-/mg of SMP protein, 30% inactivation at 600 nmol of O2-/mg of SMP protein), and a poor inactivator of succinate oxidase (less than 10% inactivation at 600 nmol of O2-/mg of SMP protein). H2O2 partially inactivated NADH dehydrogenase, NADH oxidase, and cytochrome oxidase, but even 10% loss of these activities required at least 500-600 nmol of H2O2/mg of SMP protein. Cytochrome oxidase activity (oxygen consumption supported by ascorbate + N,N,N',N'-tetramethyl-p-phenylenediamine) was remarkably resistant to oxidative inactivation, with less than 20% loss of activity evident even at .OH, O2-, OH + O2-, or H2O2 concentrations of 600 nmol/mg of SMP protein. Cytochrome c oxidase activity, however (oxidation of, added, ferrocytochrome c), exhibited more than a 40% inactivation at 600 nmol of .OH/mg of SMP protein. The .OH-dependent inactivations reported above were largely inhibitable by the .OH scavenger mannitol. In contrast, the O2(-)-dependent inactivations were inhibited by active superoxide dismutase, but not by denatured superoxide dismutase or catalase. Membrane lipid peroxidation was evident with .OH exposure but could be prevented by various lipid-soluble antioxidants which did not protect enzymatic activities at all.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase   总被引:10,自引:0,他引:10  
Xanthine oxidase (XO) was shown to catalyze the reduction of nitrite to nitric oxide (NO), under anaerobic conditions, in the presence of either NADH or xanthine as reducing substrate. NO production was directly demonstrated by ozone chemiluminescence and showed stoichiometry of approximately 2:1 versus NADH depletion. With xanthine as reducing substrate, the kinetics of NO production were complicated by enzyme inactivation, resulting from NO-induced conversion of XO to its relatively inactive desulfo-form. Steady-state kinetic parameters were determined spectrophotometrically for urate production and NADH oxidation catalyzed by XO and xanthine dehydrogenase in the presence of nitrite under anaerobic conditions. pH optima for anaerobic NO production catalyzed by XO in the presence of nitrite were 7.0 for NADH and 相似文献   

4.
The soluble hydrogenase (hydrogen: NAD+ oxidoreductase, EC 1.12.1.2) from Alcaligenes eutrophus H 16 was purified 68-fold with a yield of 20% and a final specific activity (NAD reduction) of about 54 mumol H2 oxidized/min per mg protein. The enzyme was shown to be homogenous by polyacrylamide gel electrophoresis. Its molecular weight and isoelectric point were determined to be 205 000 and 4.85 respectively. The oxidized hydrogenase, as purified under aerobic conditions, was of high stability but not reactive. Reductive activation of the enzyme by H2, in the presence of catalytic amounts of NADH, or by reducing agents caused the hydrogenase to become unstable. The purified enzyme, in its active state, was able to reduce NAD, FMN, FAD, menaquinone, ubiquinone, cytochrome c, methylene blue, methyl viologen, benzyl viologen, phenazine methosulfate, janus green, 2,6-dichlorophenoloindophenol, ferricyanide and even oxygen. In addition to hydrogenase activitiy, the enzyme exhibited also diaphorase and NAD(P)H oxidase activity. The reversibility of hydrogenase function (i.e. H2 evolution from NADH, methyl viologen and benzyl viologen) was demonstrated. With respect to H2 as substrate, hydrogenase showed negative cooperativity; the Hill coefficient was n = 0.4. The apparent Km value for H2 was found to be 0.037 mM. The absorption spectrum of hydrogenase was typical for non-heme iron proteins, showing maxima (shoulders) at 380 and 420 nm. A flavin component could be extracted from native hydrogenase characterized by its absorption bands at 375 and 447 nm and a strong fluorescense at 526 nm.  相似文献   

5.
The main catalytic properties of the Hox type hydrogenase isolated from the Gloeocapsa alpicola cells have been studied. The enzyme effectively catalyzes reactions of oxidation and evolution of H2 in the presence of methyl viologen (MV) and benzyl viologen (BV). The rates of these reactions in the interaction with the physiological electron donor/acceptor NADH/NAD+ are only 3-8% of the MV(BV)-dependent values. The enzyme interacts with NADP+ and NADPH, but is more specific to NAD+ and NADH. Purification of the hydrogenase was accompanied by destruction of its multimeric structure and the loss of ability to interact with pyridine nucleotides with retained activity of the hydrogenase component (HoxYH). To show the catalytic activity, the enzyme requires reductive activation, which occurs in the presence of H2, and NADH accelerates this process. The final hydrogenase activity depends on the redox potential of the activation medium (E(h)). At pH 7.0, the enzyme activity in the MV-dependent oxidation of H2 increased with a decrease in E(h) from -350 mV and reached the maximum at E(h) of about -390 mV. However, the rate of H2 oxidation in the presence of NAD+ in the E(h) range under study was virtually constant and equal to 7-8% of the maximal rate of H2 oxidation in the presence of MV.  相似文献   

6.
Superoxide production by inside-out coupled bovine heart submitochondrial particles, respiring with succinate or NADH, was measured. The succinate-supported production was inhibited by rotenone and uncouplers, showing that most part of superoxide produced during succinate oxidation is originated from univalent oxygen reduction by Complex I. The rate of the superoxide (O2*-)) production during respiration at a high concentration of NADH (1 mM) was significantly lower than that with succinate. Moreover, the succinate-supported O2*- production was significantly decreased in the presence of 1 mM NADH. The titration curves, i.e., initial rates of superoxide production versus NADH concentration, were bell-shaped with the maximal rate (at 50 microM NADH) approaching that seen with succinate. Both NAD+ and acetyl-NAD+ inhibited the succinate-supported reaction with apparent Ki's close to their Km's in the Complex I-catalyzed succinate-dependent energy-linked NAD+ reduction (reverse electron transfer) and NADH:acetyl-NAD+ transhydrogenase reaction, respectively. We conclude that: (i) under the artificial experimental conditions the major part of superoxide produced by the respiratory chain is formed by some redox component of Complex I (most likely FMN in its reduced or free radical form); (ii) two different binding sites for NADH (F-site) and NAD+ (R-site) in Complex I provide accessibility of the substrates-nucleotides to the enzyme red-ox component(s); F-site operates as an entry for NADH oxidation, whereas R-site operates in the reverse electron transfer and univalent oxygen reduction; (iii) it is unlikely that under the physiological conditions (high concentrations of NADH and NAD+) Complex I is responsible for the mitochondrial superoxide generation. We propose that the specific NAD(P)H:oxygen superoxide (hydrogen peroxide) producing oxidoreductase(s) poised in equilibrium with NAD(P)H/NAD(P)+ couple should exist in the mitochondrial matrix, if mitochondria are, indeed, participate in ROS-controlled processes under physiologically relevant conditions.  相似文献   

7.
Thermotoga maritima is the most thermophilic eubacterium currently known and grows up to 90 degrees C by a fermentative metabolism in which H2, CO2, and organic acids are end products. It was shown that the production of H2 is catalyzed by a single hydrogenase located in the cytoplasm. The addition of tungsten to the growth medium was found to increase both the cellular concentration of the hydrogenase and its in vitro catalytic activity by up to 10-fold, but the purified enzyme did not contain tungsten. It is a homotetramer of Mr 280,000 and contains approximately 20 atoms of Fe and 18 atoms of acid-labile sulfide/monomer. Other transition metals, including nickel (and also selenium), were present in only trace amounts (less than 0.1 atoms/monomer). The hydrogenase was unstable at both 4 and 23 degrees C, even under anaerobic conditions, but no activity was lost in anaerobic buffer containing glycerol and dithiothreitol. Under these conditions the enzyme was also quite thermostable (t50% approximately 1 h at 90 degrees C) but extremely sensitive to irreversible inactivation by O2 (t50% approximately 10 s in air). The optimum pH ranges for H2 evolution and H2 oxidation were 8.6-9.5 and greater than or equal to 10.4, respectively, and the optimum temperature for catalytic activity was above 95 degrees C. In contrast to mesophilic Fe hydrogenases, the T. maritima enzyme had very low H2 evolution activity, did not use T. maritima ferredoxin as an electron donor for H2 evolution, was inhibited by acetylene but not by nitrite, and exhibited EPR signals typical of [2Fe-2S]1+ clusters. Moreover, the oxidized enzyme did not exhibit the rhombic EPR signal that is characteristic of the catalytic iron-sulfur cluster of mesophilic Fe hydrogenases. These data suggest that T. maritima hydrogenase has a different FeS site and/or mechanism for catalyzing H2 production. The potential role of tungsten in regulating the activity of this enzyme is discussed.  相似文献   

8.
The soluble, cytoplasmic NAD+-reducing [NiFe]-hydrogenase from Ralstonia eutropha is a heterotetrameric enzyme (HoxFUYH) and contains two FMN groups. The purified oxidized enzyme is inactive in the H2-NAD+ reaction, but can be activated by catalytic amounts of NADH. It was discovered that one of the FMN groups (FMN-a) is selectively released upon prolonged reduction of the enzyme with NADH. During this process, the enzyme maintained its tetrameric form, with one FMN group (FMN-b) firmly bound, but it lost its physiological activity--the reduction of NAD+ by H2. This activity could be reconstituted by the addition of excess FMN to the reduced enzyme. The rate of reduction of benzyl viologen by H2 was not dependent on the presence of FMN-a. Enzyme devoid of FMN-a could not be activated by NADH. As NADH-dehydrogenase activity was not dependent on the presence of FMN-a, and because FMN-b did not dissociate from the reduced enzyme, we conclude that FMN-b is functional in the NADH-dehydrogenase activity catalyzed by the HoxFU dimer. The possible function of FMN-a as a hydride acceptor in the hydrogenase reaction catalyzed by the HoxHY dimer is discussed.  相似文献   

9.
Although human cancers are widely treated with anthracycline drugs, these drugs have limited use because they are cardiotoxic. To clarify the cardiotoxic action of the anthracycline drug adriamycin (ADM), the inhibitory effect on succinate dehydrogenase (SDH) by ADM and other anthracyclines was examined by using pig heart submitochondrial particles. ADM rapidly inactivated mitochondrial SDH during its interaction with horseradish peroxidase (HRP) in the presence of H(2)O(2) (HRP-H(2)O(2)). Butylated hydroxytoluene, iron-chelators, superoxide dismutase, mannitol and dimethylsulfoxide did not block the inactivation of SDH, indicating that lipid-derived radicals, iron-oxygen complexes, superoxide and hydroxyl radicals do not participate in SDH inactivation. Reduced glutathione was extremely efficient in blocking the enzyme inactivation, suggesting that the SH group in enzyme is very sensible to ADM activated by HRP-H(2)O(2). Under anaerobic conditions, ADM with HRP-H(2)O(2) caused inactivation of SDH, indicating that oxidized ADM directly attack the enzyme, which loses its activity. Other mitochondrial enzymes, including NADH dehydrogenase, NADH oxidase and cytochrome c oxidase, were little sensitive to ADM with HRP-H(2)O(2). SDH was also sensitive to other anthracycline drugs except for aclarubicin. Mitochondrial creatine kinase (CK), which is attached to the outer face of the inner membrane of muscle mitochondria, was more sensitive to anthracyclines than SDH. SDH and CK were inactivated with loss of red color of anthracycline, indicating that oxidative activation of the B ring of anthracycline has a crucial role in inactivation of enzymes. Presumably, oxidative semiquinone or quinone produced from anthracyclines participates in the enzyme inactivation.  相似文献   

10.
The interaction of heme nonapeptide (a proteolytic product of cytochrome c) with purified NADH:cytochrome b5 (EC 1.6.2.2) and NADPH:cytochrome P-450 (EC 1.6.2.4) reductases was investigated. In the presence of heme nonapeptide, NADH or NADPH were enzymatically oxidized to NAD+ and NADP+, respectively. NAD(P)H consumption was coupled to oxygen uptake in both enzyme reactions. In the presence of carbon monoxide the spectrum of a carboxyheme complex was observed during NAD(P)H oxidation, indicating the existence of a transient ferroheme peptide. NAD(P)H oxidation could be partially inhibited by cyanide, superoxide dismutase and catalase. Superoxide and peroxide ions (generated by enzymic xanthine oxidation) only oxidized NAD(P)H in the presence of heme nonapeptide. Oxidation of NAD(P)H was more rapid with O2- than O2-2. We suggest that a ferroheme-O2 and various heme-oxy radical complexes (mainly ferroheme-O-2 complex) play a crucial role in NAD(P)H oxidation.  相似文献   

11.
A homogeneous Mn-dependent peroxidase (MnP) was purified from the extracellular culture fluid of the lignin-degrading white rot fungus Phlebia radiata by anion exchange chromatography. The enzyme had a molecular weight of 49,000 and pI 3.8. It was a glycoprotein, containing carbohydrate moieties accounting for 10% of the molecular weight. Mn-peroxidase was capable of oxidizing phenolic compounds in the presence of H2O2, whereas the effect on nonphenolic lignin model compounds was insignificant. MnP contained protoporphyrin IX as a prosthetic group. During enzymatic reactions H2O2 converted the native MnP to compound II. Mn2+ was essential in completing the catalytic cycle by returning the enzyme to its native state. The oxidation of ultimate substrates was dependent on superoxide radicals, O2- and probably on Mn3+ generated during the catalytic cycle. MnP exhibited high activity of NADH oxidation without exogenously added H2O2. It was shown to produce H2O2 at the expense of NADH.  相似文献   

12.
The purification and in vitro inactivation of AMP-deaminase from white muscle of carp Cyprinus carpio were conducted in the Fe2+/H2O2 and Fe2+/ascorbate oxidation systems. The enzyme activity decreases by 50% within 30 minutes of incubation in the presence of 100 microM of hydrogen peroxide and 5 microM of ferrous sulfate. Inactivation depended on incubation time and concentrations of FeSO4 and H2O2. In the system Fe2+/ascorbate the enzyme activity decreased by 50% at concentration of ascorbate 1 mM and 5 ferrous sulfate microM. Sodium nitrite did not affect the activity. S(0.5) and n(H) of both native and partially inactivated enzymes were virtually the same, while maximal activity of the inactivated enzyme was 2-3-fold lower than that of the native one.  相似文献   

13.
The activity of acetyl-CoA hydrolase (dimeric form) purified from the supernatant fraction of rat liver was shown to have a half-life (t1/2) of 3 min at 0 degree C, but to stable at 37 degrees C (t1/2 = 34 h) [Isohashi, F., Nakanishi, Y. & Sakamoto, Y. (1983) Biochemistry 22, 584-590]. Incubation of the purified enzyme with L-ascorbic acid (AsA) at 37 degrees C resulted in inactivation of the enzyme (t1/2 = 90 min at 2 mM AsA). The extent of inactivation was greatly enhanced by addition of transition metal ions (Cu2+, Fe2+, and Fe3+). Thiol reducing agents, such as reduced glutathione and DL-dithiothreitol, protected the hydrolase from inactivation by AsA. However, these materials did not restore the catalytic activity of the enzyme inactivated by AsA. When AsA solution containing Cu2+ was preincubated under aerobic conditions at 37 degrees C for various times in the absence of enzyme, and then aliquots were incubated with the enzyme solution for 20 min, remaining activity was found to decrease with increase in the preincubation time, reaching a minimum at 60 min. However, further preincubation reduced the potential for inactivation. Catalase, a hydrogen peroxide (H2O2) scavenger, almost completely prevented inactivation of the enzyme by AsA plus Cu2+. Superoxide dismutase and tiron, which are both superoxide (O2-) scavengers, also prevented inactivation of the enzyme. A high concentration of mannitol, a hydroxyl radical (OH) scavenger, partially protected the enzyme from inactivation. These results suggest that inactivation of the enzyme by AsA in the presence of Cu2+ was due to the effect of active oxygen species (H2O2, O2-, OH) that are known to be autoxidation products of AsA. Valeryl-CoA, a competitive inhibitor of acetyl-CoA hydrolase, greatly protected the enzyme from inactivation by AsA plus Cu2+, but ATP and ADP, which are both effectors of this enzyme, had only slight protective effects. These results suggest that inactivation of this enzyme by addition of AsA plus Cu2+ was mainly due to attack on its active site.  相似文献   

14.
The sensitivity of the membrane-bound hydrogenase of Bradyrhizobium japonicum to inactivation by proteases and membrane-impermeant protein modification reagents was compared under hydrogen versus oxygen. In membrane vesicles, the half-life of enzyme inactivation by trypsin of the H2-reduced enzyme was approximately 10 min, whereas O2-oxidized enzyme was much less sensitive to trypsin inactivation (half-life of over 90 min). Diazobenzene sulfonate (DABS) affected the enzyme activity in a manner similar to proteases. With DABS, the enzyme had a half-life of 2-3 min under H2 versus over 30 min under O2. Experiments in which the gas phase (containing either H2 or O2) available to the membranes was changed prior to the protease or chemical modification treatments indicated that it is the redox state of the enzyme at the time of the treatment which determines the sensitivity of the enzyme to inactivation. The redox-dependent differences in the behavior of the membrane-bound enzyme were attributed to changes in the accessibility of the small (33 kDa) subunit. The kinetics of enzyme inactivation by trypsin, under H2, correlated very well with the degradation of the intact 33-kDa subunit, whereas the large subunit (65 kDa) was rather resistant to proteolytic degradation. DABS treatment was found to decrease the reactivity of the small subunit to its antibody concomitant with enzyme inactivation under H2, but without such an effect on the O2-oxidized enzyme. In contrast to the results with the membrane-bound enzyme, purified dehydrogenase was found to be equally susceptible to inactivation by proteolysis or chemical modification irrespective of whether the treatments were performed under H2 or O2. These results indicate that, in the membrane, hydrogenase undergoes a redox-linked conformational change, whereby the small subunit of the enzyme becomes more accessible to external reagents when the enzyme is in its reduced form.  相似文献   

15.
The Mn-catalase of Lactobacillus plantarum was inactivated when exposed to NH2OH plus H2O2, an effect which was not reversed by dialysis. N-Methylhydroxylamine was approximately 1% as effective as was NH2OH, while O-methylhydroxylamine was not detectably active in this regard. Approximately 40% of the lost activity could be restored by dithionite or by O-2, whereas other reductants such as ethanol, ascorbate, or nitrite were without effect. Oxidants such as persulfate and ferricyanide also failed to reactivate the enzyme. The active enzyme was inactivated, to an apparent limit of 50%, by an enzymic or photochemical flux of O-2 and this was entirely prevented by superoxide dismutase. The catalytic cycle of the enzyme is thought to involve the trivalent and pentavalent forms of the active site Mn; while inactivation by H2O2 + NH2OH appears to be due to conversion to the quadrivalent state. Partial bleaching of the enzyme by H2O2 and the nearly complete bleaching caused by NH2OH + H2O2 are in accord with this interpretation. The enzyme was unaffected by 2.0 mM EDTA, thiourea, o-phenanthroline, alpha, alpha'-dipyridyl, 8-hydroxyquinoline, diethyldithiocarbamate, thiourea, hydrazine, phenylhydrazine, isoniazid, semicarbazide, sulfite, nitrite, or sulfide, all at pH 7.0.  相似文献   

16.
The soluble, NAD+-reducing hydrogenase in intact cells of Alcaligenes eutrophus was inactivated by oxygen when electron donors such as hydrogen or pyruvate were available. The sole presence of either oxygen or oxidizable substrates did not lead to inactivation of the enzyme. Inactivation occurred similarly under autotrophic growth conditions with hydrogen, oxygen and carbon dioxide. The inactivation followed first order reaction kinetics, and the half-life of the enzyme in cells exposed to a gas atmosphere of hydrogen and oxygen (8:2, v/v) at 30° C was 1.5 h. The process of inactivation did not require ATP-synthesis. There was no experimental evidence that the inactivation is a reversible process catalyzed by a regulatory protein. The possibility is discussed that the inactivation is due to superoxide radical anions (O 2 - ) produced by the hydrogenase itself.  相似文献   

17.
Cell suspensions of Chlorella vulgaris were found to possess the hydrogenase activity as was confirmed by their ability to absorb H2 in the presence of benzyl viologen, azocarmine and other hydrogen acceptors as well as to produce H2 from reduced methyl viologen. Incubation of the cells in the dark under anaerobic conditions in the atmosphere of H2, N2 or Ar stimulated the activity of hydrogenase and induced its de novo synthesis. Treatment of the cells adapted to anaerobiosis with dry ice or liquid nitrogen considerably increased their hydrogenase activity. The enzyme of the adapted cells was more resistant to the inactivation by O2 and temperature.  相似文献   

18.
Preincubation of maize leaves crude extracts with NADH resulted in a progressive accumulation of nitrite which mimicked a rapid and lineal activation of nitrate reductase. Nevertheless, in partially purified preparations it was found that preincubation at pH 8.8 with NADH promoted a gradual inactivation of nitrate reductase. At pH 7.5, the enzyme was not inactivated by the presence of NADH alone, but, with the simultaneous presence of a low concentration of cyanide, a fast inactivation took place. The NADH-cyanide-inactivated nitrate reductase remained inactive after removing the excess of NADH and cyanide by filtration through Sephadex G-25. However, it could be readily reactivated by incubation with ferricyanide or by a short exposure to light in the presence of FAD. Prolonged irradiation caused a progressive inactivation of the photoreactivated enzyme.  相似文献   

19.
Pseudomonas Fe-superoxide dismutase (superoxide:superoxide oxidoreductase, EC 1.15.1.1) is inactivated by hydrogen peroxide by a mechanism which exhibits saturation kinetics. The pseudo-first-order rate constant of the inactivation increased with increasing pH, with an inflection point around pH 8.5. Two parameters of the inactivation were measured in the pH range 7.8 to 9.0; the total H2O2 concentration at which the enzyme is half-saturated (K inact) was found to be independent of pH (30 mM) and the maximum rate constant for inactivation (k max) increased progressively with increasing pH, from 3.3 min-1 at pH 7.8 to 21 min-1 at pH 9.0. This evidence suggests the presence of an ionization group (pKa approximately 8.5) which does not participate in the binding of H2O2 but which affects the maximum inactivation rate of the enzyme. The loss of dismutase activity of the Fe-superoxide dismutase is accompanied by a modification of 1.6, 1.1 and 0.9 residues of tryptophan, histidine and cysteine, respectively. Since the amino acid residues of the Cr-substituted enzyme, which has no enzymatic activity, were not modified by H2O2, the active iron of the enzyme is essential for the modification of the amino acid residues.  相似文献   

20.
Iron and copper toxicity has been presumed to involve the formation of hydroxyl radical (*OH) from H2O2 in the Fenton reaction. The aim of this study was to verify that Fe2+-O2 and Cu+-O2 chemistry is capable of generating *OH in the quasi physiological environment of Krebs-Henseleit buffer (KH), and to compare the ability of the Fe2+-O2 system and of the Fenton system (Fe2+ + H2O2) to produce *OH. The addition of Fe2+ and Cu+ (0-20 microM) to KH resulted in a concentration-dependent increase in *OH formation, as measured by the salicylate method. While Fe3+ and Cu2+ (0-20 microM) did not result in *OH formation, these ions mediated significant *OH production in the presence of a number of reducing agents. The *OH yield from the reaction mediated by Fe2+ was increased by exogenous Fe3+ and Cu2+ and was prevented by the deoxygenation of the buffer and reduced by superoxide dismutase, catalase, and desferrioxamine. Addition of 1 microM, 5 microM or 10 microM Fe2+ to a range of H2O2 concentrations (the Fenton system) resulted in a H2O2-concentration-dependent rise in *OH formation. For each Fe2+ concentration tested, the *OH yield doubled when the ratio [H2O2]:[Fe2+] was raised from zero to one. In conclusion: (i) Fe2+-O2 and Cu+-O2 chemistry is capable of promoting *OH generation in the environment of oxygenated KH, in the absence of pre-existing superoxide and/or H2O2, and possibly through a mechanism initiated by the metal autoxidation; (ii) The process is enhanced by contaminating Fe3+ and Cu2+; (iii) In the presence of reducing agents also Fe3+ and Cu2+ promote the *OH formation; (iv) Depending on the actual [H2O2]:[Fe2+] ratio, the efficiency of the Fe2+-O2 chemistry to generate *OH is greater than or, at best, equal to that of the Fe2+-driven Fenton reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号