首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The roles of cell replication and shape change as morphogenetic forces in epithelial invagination were examined in instar II Artemia. The epidermal cells underwent a fixed pattern of cell division during the first 5 hr of instar II. Greater cell replication in the thoracopod bud (ThB) than in the arthrodial membrane (AM) region resulted in a higher density of epidermal cells in the ThB region (differential cell density). The ratio of cell density (AM/ThB) declined from 1.0 to less than 0.80 by Hour 2 of instar II. Invagination of the AM occurred during Hour 4 when the AM/ThB reached 0.75. A 2-hr pulse with 5'-fluorodeoxyuridine (FudR) during instar I delayed completion of the cell replication pattern and development of transverse cell files in the ThB region for a period equal to the length of the exposure. The delay in the cell division program resulted in a cell density ratio of 0.93 at Hour 4, a value normally observed in Hour 2 larvae, and evagination of the epidermis did not occur at apolysis (Hour 4). The FudR treatment did not perturb the cytoskeleton or the initial steps in cell shape change and the larvae formed small segments during instar III. Cell shape change within the AM began during Hour 4 as this region became significantly thinner than the neighboring ThB region (thickness ratio, AM/ThB = 0.77). Before apolysis the AM cells became wedge shaped, a change which occurred when the basal region of the cell enlarged. The microtubules and microfilaments were reorganized from the apical cytoplasm to the lateral border of apposing AM cells. Following apolysis (Late Hour 4) shape change was completed as the cells attained a thin spindle form, with microtubule- and microfilament-rich filopodial extensions which overlapped adjacent AM cells. As contact with ThB cells shifted from lateral to apicolateral, the AM cells formed the innermost edge of the invagination. Microtubules in the differentiating AM cells contained tyrosinated, detyrosinated, and acetylated alpha-tubulin isoforms. Treatment with nocodazole, colchicine, taxol, or cytochalasin B blocked AM cell shape change and inhibited segmentation, but did not affect the mitotic pattern or differential cell density. We conclude that the specific pattern of cell division led to differential cell density which, along with AM cell shape change, established the conditions necessary to achieve epidermal evagination.  相似文献   

2.
3.
A spatiotemporal pattern of cell death occurred in the chick wing and leg bud mesoderm after removal of apical ectodermal ridge at stages 18–20. Cells died in a region extending from the limb bud distal surface to 150–200 μm into the mesoderm. Limb buds from which ridge was removed at later stages in development did not exhibit a spatiotemporal pattern of cell death. In control experiments in which dorsal ectoderm was removed, a pattern of cell death did not occur. Removal of the ridge and part of the 150- to 200-μm zone of prospective cell death resulted in cell death in an area approximately equal to the amount of the zone remaining. After removal of all of the prospective zone of cell death plus the apical ridge, cell death was observed in the remaining limb bud mesoderm. In these limb buds, cell death occurred in a region in which it had not been seen in limb bud with apical ridge alone removed. We conclude that at stages 18–20 the mesodermal cells 150–200 μm beneath the ridge require the apical ridge to survive. More proximal mesodermal cells do not die after ridge removal alone, but apparently require the presence of the more distal mesoderm to survive. Whether this is a requirement for something intrinsic to the distal mesoderm or something it possesses by way of the ridge is unknown. After stage 23, the limb mesoderm cells do not die when the apical ridge is removed. Nevertheless, at the later stages, ridge continues to be required for limb bud proximal-distal elongation and the differentiation of distal limb elements.  相似文献   

4.
The fine structure of the wax gland of Anomoneura nymph and its metamorphic change were investigated. In the nymph, this organ encircles the anus, and consists of two kinds of cells, derived from epidermal cells: (1) very tall, slim wax cells, which produce and secrete the wax, and (2) flat interstitial cells found among the wax cells. The whole gland is covered by a wax-secreting cuticle with a delicate surface sculpture. Each wax cell has a long, wide duct which opens at the cuticle and penetrates the entire cell. Its cytoplasm is rich in mitochondria and smooth endoplasmic reticulum while that of interstitial cells contains rough endoplasmic reticulum. During each nymphal molt, the cluster of primordial wax gland cells — derived from the epidermis — proliferates rapidly and forms the gland of the next instar. The gland of the preceding instar meanwhile degenerates. Interstitial cells play an important role in cuticle formation and shedding at each molt. These cells alone produce and deposit the new cuticle of the next instar; the wax cells, specialized for wax production, cannot produce cuticle. The apical portion of the wax cell is cut off from the main cell body by growth of the surrounding interstitial cells. Thereafter, the wax cells degenerate, resulting in the rapid disappearance of the previous instar's wax gland. Adults lack this gland entirely.  相似文献   

5.
6.
Making leaves     
Leaves are determinate organs that develop from the flanks of the shoot apical meristem through founder cell recruitment, establishment of proximodistal, dorsoventral and mediolateral axes, and subsequent growth, expansion and differentiation along these axes. Maintenance of the shoot apical meristem and production of leaves requires balanced partitioning of cells between pluripotent and differentiation fates. Hormones have a significant role in this balance but it is becoming apparent that additional intrinsic and extrinsic inputs influence hormone signalling to control meristem function and leaf initiation. As leaves develop, temporal and spatial regulation of growth and maturation determines leaf shape and complexity. Remarkably genes involved in leaf development in the context of the shoot apical meristem are also involved in elaboration of the leaf shape to generate subtle marginal serrations, more prominent lobes or a dissected compound leaf. Potentially these common regulatory modules represent a fundamental means of setting up boundaries separating discrete zones of growth. Defining gene networks involved in leaf shape variation and exploring interspecies differences between such networks is enabling exciting insight into changes that contribute to natural variation of leaf form.  相似文献   

7.
The apical surface of polarized epithelial cells receives input from mediators, growth factors, and mechanical stimuli. How these stimuli are coordinated to regulate complex cellular functions such as polarized membrane traffic is not understood. We analyzed the requirement for growth factor signaling and mechanical stimuli in umbrella cells, which line the mucosal surface of the bladder and dynamically insert and remove apical membrane in response to stretch. We observed that stretch-stimulated exocytosis required apical epidermal growth factor (EGF) receptor activation and that activation occurred in an autocrine manner downstream of heparin-binding EGF-like growth factor precursor cleavage. Long-term changes in apical exocytosis depended on protein synthesis, which occurred upon EGF receptor-dependent activation of mitogen-activated protein kinase signaling. Our results indicate a novel physiological role for the EGF receptor that couples upstream mechanical stimuli to downstream apical EGF receptor activation that may regulate apical surface area changes during bladder filling.  相似文献   

8.
The radial symmetry of shoots and roots arises from a center of symmetry within the apical meristem. When a lateral axis forms at a distance from the tip, a new center of radial symmetry must arise. We have studied the biophysics of this kind of transformation in the epidermal layer of the succulent Graptopetalum where a stem “regenerates” from organized leaf tissue. Study of the epidermal cell pattern (with scanning electron microscopy) shows that reorganization involves neither a cellular pre-pattern blocked out by oriented cell divisions nor a callus-like stage where cell files, expansion direction, and primary cell wall cellulose orientation are randomized throughout. Rather, developmental events are a function of initial position. In regions of geometrical compatibility between parent axis and prospective lateral, there is little or no modification of files, expansion, or cellulose. In regions requiring 90° changes in orientation, cellulose orientation (studied with polarized light) conforms to the new symmetry first. This is followed later by changes in the surface growth pattern and in the cell division pattern. The early establishment of a circumferential cellulose pattern in the epidermal layer could account for both the cylindrical shape of the new axis and the subsequent rearrangement of directional growth and cell file pattern.  相似文献   

9.
Echinoid (Ed) is a homophilic immunoglobulin domain-containing cell adhesion molecule (CAM) that localizes to adherens junctions (AJs) and cooperates with Drosophila melanogaster epithelial (DE)-cadherin to mediate cell adhesion. Here we show that Ed takes part in many processes of dorsal closure, a morphogenetic movement driven by coordinated cell shape changes and migration of epidermal cells to cover the underlying amnioserosa. Ed is differentially expressed, appearing in epidermis but not in amnioserosa cells. Ed functions independently from the JNK signaling pathway and is required to regulate cell morphology, and for assembly of actomyosin cable, filopodial protrusion and coordinated cell migration in dorsal-most epidermal cells. The effect of Ed on cell morphology requires the presence of the intracellular domain (Edintra). Interestingly, Ed forms homodimers in vivo and Edintra monomer directly associates with unconventional myosin VI/Jaguar (Jar) motor protein. We further show that ed genetically interacts with jar to control cell morphology. It has previously been shown that myosin VI is monomeric in vitro and that its dimeric form can associate with and travel processively along actin filaments. Thus, we propose that Ed mediates the dimerization of myosin VI/Jar in vivo which in turn regulates the reorganization and/or contraction of actin filaments to control changes in cell shape. Consistent with this, we found that ectopic ed expression in the amnioserosa induces myosin VI/Jar-dependent apical constriction of this tissue.  相似文献   

10.
Plant organ shape and size are established during growth by a predictable, controlled sequence of cell proliferation, differentiation, and elongation. To understand the regulation and coordination of these processes, we studied the temporal behavior of epidermal and cortex cells in Arabidopsis pedicels and used computational modeling to analyze cell behavior in tissues. Pedicels offer multiple advantages for such a study, as their growth is determinate, mostly one dimensional, and epidermis differentiation is uniform along the proximodistal axis. Three developmental stages were distinguished during pedicel growth: a proliferative stage, a stomata differentiation stage, and a cell elongation stage. Throughout the first two stages pedicel growth is exponential, while during the final stage growth becomes linear and depends on flower fertilization. During the first stage, the average cell cycle duration in the cortex and during symmetric divisions of epidermal cells was constant and cells divided at a fairly specific size. We also examined the mutant of ERECTA, a gene with strong influence on pedicel growth. We demonstrate that during the first two stages of pedicel development ERECTA is important for the rate of cell growth along the proximodistal axis and for cell cycle duration in epidermis and cortex. The second function of ERECTA is to prolong the proliferative phase and inhibit premature cell differentiation in the epidermis. Comparison of epidermis development in the wild type and erecta suggests that differentiation is a synchronized event in which the stomata differentiation and the transition of pavement cells from proliferation to expansion are intimately connected.  相似文献   

11.
CD74 is known as the major histocompatibility complex (MHC) class II-associated invariant chain (Ii) that regulates the cell biology and functions of MHC class II molecules. Class II MHC and Ii expression was believed to be restricted to classical antigen-presenting cells (APC); however, during inflammation, other cell types, including mucosal epithelial cells, have also been reported to express class II MHC molecules. Given the importance of Ii in the biology of class II MHC, we sought to examine the expression of Ii by gastric epithelial cells (GEC) to determine whether class II MHC molecules in these nonconventional APC cells were under the control of Ii and to further support the role that these cells may play in local immune and inflammatory responses during Helicobacter pylori infection. Thus we examined the expression of Ii on GEC from human biopsy samples and then confirmed this observation using independent methods on several GEC lines. The mRNA for Ii was detected by RT-PCR, and the various protein isoforms were also detected. Interestingly, these cells have a high level expression of surface Ii, which is polarized to the apical surface. These studies are the first to demonstrate the constitutive expression of Ii by human GEC.  相似文献   

12.
In order to study how adipose conversion affects the extracellular environment, levels of extracellular matrix (ECM) proteins during differentiation were analyzed by 125I-labeled antibody binding to each specific primary antibody. When confluent bovine intramuscular preadipocytes (BIP) were stimulated with adipogenic medium, there was a significant accretion on the cell surface of type I-VI collagens, laminin and fibronectin, compared with undifferentiated cells. The deposition amount of ECM proteins had reached near maximal levels at an early stage of differentiation and lasted throughout the culture. However, the increasing manners were not all the same in these eight proteins. Type V and type VI collagen tended to show a transient decline after the rapid rise at the beginning of stimulation, and fibronectin instead, subsequently decreased. Further analysis by immunocytochemical staining showed that remodeling occurred in type V and VI collagen matrices during this period; extensive fibrillar networks seen at 10 d after stimulation were quite unlike that formed earlier. These specific increases and development of matrix during adipocyte differentiation imply some significance for organizing fat lobules in each ECM proteins, especially type V and VI collagens.  相似文献   

13.
Shaw SL  Dumais J  Long SR 《Plant physiology》2000,124(3):959-970
Fluorescent microspheres were used as material markers to investigate the relative rates of cell surface expansion at the growing tips of Medicago truncatula root hairs. From the analysis of tip shape and microsphere movements, we propose three characteristic zones of expansion in growing root hairs. The center of the apical dome is an area of 1- to 2- microm diameter with relatively constant curvature and high growth rate. Distal to the apex is a more rapidly expanding region 1 to 2 microm in width exhibiting constant surges of off-axis growth. This middle region forms an annulus of maximum growth rate and is visible as an area of accentuated curvature in the tip profile. The remainder of the apical dome is characterized by strong radial expansion anisotropy where the meridional rate of expansion falls below the radial expansion rate. Data also suggest possible meridional contraction at the juncture between the apical dome and the cell body. The cell cylinder distal to the tip expands slightly over time, but only around the circumference. These data for surface expansion in the legume root hair provide new insight into the mechanism of tip growth and the morphogenesis of the root hair.  相似文献   

14.
An extracellular matrix (ECM) is found in the regeneration chamber during leg regeneration in the stick insect Carausius morosus. The material which surrounds the regenerate is organised into fibrils and it includes proteins distributed in a hydrated polysaccharide gel. The compounds which can be demonstrated are chitin unlinked to proteins, glycoproteins and unsulfated glycosaminoglycans such as hyaluronic acid and/or chondroitin. Molecules related to vertebrate fibronectin and collagen IV were observed on the apical surface of the epidermal cells of the regenerate. During leg regeneration, the basal lamina which normally secures the cells to each other is absent. However a condensation of material on the regenerate epidermal cells ensures their cohesion. The extracellular matrix in the regeneration chamber must be secreted by the cells of retracted epidermis and then by the epidermal cells of the regenerate, until these cells are able to secrete the cuticle for the next instar. The analysis of the epidermal cell surface does not seem to show any localization or any changes during the development of the regenerate.  相似文献   

15.
Epidermal differentiation in primary roots of Zea mays was divided into six cell types based on cellular shape and cytoplasmic appearance. These six cell types are: 1) apical protoderm, located at the tip of the root pole and characterized by periclinally flattened cells; 2) cuboidal protoderm, located approximately 230 microns from the root pole and characterized by cuboidal cells; 3) tabular epidermis, located approximately 450 microns from the root pole and characterized by anticlinally flattened cells; 4) cuboidal epidermis, located approximately 900 microns from the root pole and characterized by cuboidal cells having numerous small vacuoles; 5) vacuolate cuboidal epidermis, located approximately 1,500 microns from the root pole and characterized by cuboidal cells containing several large vacuoles; and 6) columnar epidermis, located approximately 2,200 microns from the root pole (i.e., at the beginning of the zone of elongation) and characterized by elongated cells. We also used stereology to quantify the cellular changes associated with epidermal differentiation. The quiescent center and the apical protoderm have significantly different ultrastructures. The relative volume of dictyosomes increases dramatically during the early stages of epidermal differentiation. This increase correlates inversely with the amount of coverage provided by the root cap and mucilage.  相似文献   

16.
When precocene II was fed to last instar larvae of Heliothis zea, it caused significant reductions in the calculated rate of growth, rate of nutrient assimilation, and conversion of ingested and digested food to body mass. No change in the rate of food consumption occurred but respiration was significantly higher. Transport of the nutrient [1-14C] linoleic acid across midgut tissue was hindered when larvae were fed precocence II. There was also a precocene-induced change in the apical (luminal) morphology of midgut cells, including absence of the glycocalyx and loss of the microvillar absorptive surface. The influence of precocene II on the midgut physiology and metabolic processes in last instar larvae of H. zea may account for the observed reduced growth and delayed development. © 1992 wiley-Liss, Inc.  相似文献   

17.
During cellular morphogenesis, changes in cell shape and cell junction topology are fundamental to normal tissue and organ development. Here we show that apoplastic Glycophosphatidylinositol (GPI)-anchored Lipid Transfer Protein (LTPG) is excluded from cell junctions and flat wall regions, and passively accumulates around their borders in the epidermal cells of Arabidopsis thaliana. Beginning with intense accumulation beneath highly curved cell junction borders, this enrichment is gradually lost as cells become more bulbous during their differentiation. In fully mature epidermal cells, YFP-LTPG often shows a fibrous cellulose microfibril-like pattern within the bulging outer faces. Physical contact between a flat glass surface and bulbous cell surface induces rapid and reversible evacuation from contact sites and accumulation to the curved wall regions surrounding the contact borders. Thus, LTPG distribution is dynamic, responding to changes in cell shape and wall curvature during cell growth and differentiation. We hypothesize that this geometry-based mechanism guides wax-carrying LTPG to functional sites, where it may act to “seal” the vulnerable border surrounding cell-cell junctions and assist in cell wall fortification and cuticular wax deposition.  相似文献   

18.
In the article “Predetermined embryonic glial cells form the distinct glial sheaths of the Drosophila peripheral nervous system” we combined our expertise to identify glial cells of the embryonic peripheral nervous system on a single cell resolution with the possibility to genetically label cells using Flybow. We show that all 12 embryonic peripheral glial cells (ePG) per abdominal hemisegment persist into larval (and even adult) stages and differentially contribute to the three distinct glial layers surrounding peripheral nerves. Repetitive labelings of the same cell further revealed that layer affiliation, morphological expansion, and control of proliferation are predetermined and subject to an intrinsic differentiation program. Interestingly, wrapping and subperineurial glia undergo enormous hypertrophy in response to larval growth and elongation of peripheral nerves, while perineurial glia respond to the same environmental changes with hyperplasia. Increase in cell number from embryo (12 cells per hemisegment) to third instar (up to 50 cells per hemisegment) is the result of proliferation of a single ePG that serves as transient progenitor and only contributes to the outermost perineurial glial layer.  相似文献   

19.
The newly discovered laminin alpha(5) chain is a multidomain, extracellular matrix protein implicated in various biological functions such as the development of blood vessels and nerves. The N-terminal globular domain of the laminin alpha chains has an important role for biological activities through interactions with cell surface receptors. In this study, we identified residues that are critical for cell binding within the laminin alpha(5) N-terminal globular domain VI (approximately 270 residues) using site-directed mutagenesis and synthetic peptides. A recombinant protein of domain VI and the first four epidermal growth factor-like repeats of domain V, generated in a mammalian expression system, was highly active for HT-1080 cell binding, while a recombinant protein consisting of only the epidermal growth factor-like repeats showed no cell binding. By competition analysis with synthetic peptides for cell binding, we identified two sequences: S2, (123)GQVFHVAYVLIKF(135) and S6, (225)RDFTKATNIRLRFLR(239), within domain VI that inhibited cell binding to domain VI. Alanine substitution mutagenesis indicated that four residues (Tyr(130), Arg(225), Lys(229), and Arg(239)) within these two sequences are crucial for cell binding. Real-time heparin-binding kinetics of the domain VI mutants analyzed by surface plasmon resonance indicated that Arg(239) of S6 was critical for both heparin and cell binding. In addition, cell binding to domain VI was inhibited by heparin/heparan sulfate, which suggests an overlap of cell and heparin-binding sites. Furthermore, inhibition studies using integrin subunit monoclonal antibodies showed that integrin alpha(3)beta(1) was a major receptor for domain VI binding. Our results provide evidence that two sites spaced about 90 residues apart within the laminin alpha(5) chain N-terminal globular domain VI are critical for cell surface receptor binding.  相似文献   

20.
Cell shape plays a role in cell growth, differentiation, and death. Herein, we used the hepatocyte, a normal, highly differentiated cell characterized by a long G1 phase, to understand the mechanisms that link cell shape to growth. First, evidence was provided that the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) cascade is a key transduction pathway controlling the hepatocyte morphology. MEK2/ERK2 activation in early G1 phase did not lead to cell proliferation but induced cell shape spreading and demonstration was provided that this MAPK-dependent spreading was required for reaching G1/S transition and DNA replication. Moreover, epidermal growth factor (EGF) was found to control this morphogenic signal in addition to its mitogenic effect. Thus, blockade of cell spreading by cytochalasin D or PD98059 treatment resulted in inhibition of EGF-dependent DNA replication. Our data led us to assess the first third of G1, is exclusively devoted to the growth factor-dependent morphogenic events, whereas the mitogenic signal occurred at only approximately mid-G1 phase. Moreover, these two growth factor-related sequential signaling events involved successively activation of MEK2-ERK2 and then MEK1/2-ERK1/2 isoforms. In addition, we demonstrated that inhibition of extracellular matrix receptor, such as integrin beta1 subunit, leads to cell arrest in G1, whereas EGF was found to up-regulated integrin beta1 and fibronectin in a MEK-ERK-dependent manner. This process in relation to cytoskeletal reorganization could induce hepatocyte spreading, making them permissive for DNA replication. Our results provide new insight into the mechanisms by which a growth factor can temporally control dual morphogenic and mitogenic signals during the G1 phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号