首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The purpose of this study was to investigate the hypothesis that reductions in Na+-K+- ATPase activity are associated with neuromuscular fatigue following isometric exercise. In control (Con) and exercised (Ex) legs, force and electromyogram were measured in 14 volunteers [age, 23.4 +/- 0.7 (SE) yr] before and immediately after (PST0), 1 h after (PST1), and 4 h after (PST4) isometric, single-leg extension exercise at ~60% of maximal voluntary contraction for 30 min using a 0.5 duty cycle (5-s contraction, 5-s rest). Tissue was obtained from vastus lateralis muscle before exercise in Con and after exercise in both the Con (PST0) and Ex legs (PST0, PST1, PST4), for the measurements of Na+-K+-ATPase activity, as determined by the 3-O-methylfluorescein phosphatase (3-O-MFPase) assay. Voluntary (maximal voluntary contraction) and elicited (10, 20, 50, 100 Hz) force was reduced 30-55% (P < 0.05) at PST0 and did not recover by PST4. Muscle action potential (M-wave) amplitude and area (measured in the vastus medialis) and 3-O-MFPase activity at PST0-Ex were less than that at PST0-Con (P < 0.05) by 37, 25, and 38%, respectively. M-wave area at PST1-Ex was also less than that at PST1-Con (P < 0.05). Changes in 3-O-MFPase activity correlated to changes in M-wave area across all time points (r = 0.38, P < 0.05, n = 45). These results demonstrate that Na+-K+- ATPase activity is reduced by sustained isometric exercise in humans from that in a matched Con leg and that this reduction in Na+-K+-ATPase activity is associated with loss of excitability as indicated by M-wave alterations.  相似文献   

2.
3.
This study investigated the effects of prolonged exercise performed in normoxia (N) and hypoxia (H) on neuromuscular fatigue, membrane excitability, and Na+-K+ -ATPase activity in working muscle. Ten untrained volunteers [peak oxygen consumption (Vo2peak) = 42.1 +/- 2.8 (SE) ml x kg(-1) x min(-1)] performed 90 min of cycling during N (inspired oxygen fraction = 0.21) and during H (inspired oxygen fraction = 0.14) at approximately 50% of normoxic Vo2peak. During N, 3-O-methylfluorescein phosphatase activity (nmol x mg protein(-1) x h(-1)) in vastus lateralis, used as a measure of Na+-K+-ATPase activity, decreased (P < 0.05) by 21% at 30 min of exercise compared with rest (101 +/- 53 vs. 79.6 +/- 4.3) with no further reductions observed at 90 min (72.8 +/- 8.0). During H, similar reductions (P < 0.05) were observed during the first 30 min (90.8 +/- 5.3 vs. 79.0 +/- 6.3) followed by further reductions (P < 0.05) at 90 min (50.5 +/- 3.9). Exercise in N resulted in reductions (P < 0.05) in both quadriceps maximal voluntary contractile force (MVC; 633 +/- 50 vs. 477 +/- 67 N) and force at low frequencies of stimulation, namely 10 Hz (142 +/- 16 vs. 86.7 +/- 10 N) and 20 Hz (283 +/- 32 vs. 236 +/- 31 N). No changes were observed in the amplitude, duration, and area of the muscle compound action potential (M wave). Exercise in H was without additional effect in altering MVC, low-frequency force, and M-wave properties. It is concluded that, although exercise in H resulted in a greater inactivation of Na+-K+-ATPase activity compared with N, neuromuscular fatigue and membrane excitability are not differentially altered.  相似文献   

4.
Regulation of maximal Na(+)-K(+)-ATPase activity in vastus lateralis muscle was investigated in response to prolonged exercise with (G) and without (NG) oral glucose supplements. Fifteen untrained volunteers (14 males and 1 female) with a peak aerobic power (Vo(2)(peak)) of 44.8 +/- 1.9 ml.kg(-1).min(-1); mean +/- SE cycled at approximately 57% Vo(2)(peak) to fatigue during both NG (artificial sweeteners) and G (6.13 +/- 0.09% glucose) in randomized order. Consumption of beverage began at 30 min and continued every 15 min until fatigue. Time to fatigue was increased (P < 0.05) in G compared with NG (137 +/- 7 vs. 115 +/- 6 min). Maximal Na(+)-K(+)-ATPase activity (V(max)) as measured by the 3-O-methylfluorescein phosphatase assay (nmol.mg(-1).h(-1)) was not different between conditions prior to exercise (85.2 +/- 3.3 or 86.0 +/- 3.9), at 30 min (91.4 +/- 4.7 vs. 91.9 +/- 4.1) and at fatigue (92.8 +/- 4.3 vs. 100 +/- 5.0) but was higher (P < 0.05) in G at 90 min (86.7 +/- 4.2 vs. 109 +/- 4.1). Na(+)-K(+)-ATPase content (beta(max)) measured by the vanadate facilitated [(3)H]ouabain-binding technique (pmol/g wet wt) although elevated (P < 0.05) by exercise (0<30, 90, and fatigue) was not different between NG and G. At 60 and 90 min of exercise, blood glucose was higher (P < 0.05) in G compared with NG. The G condition also resulted in higher (P < 0.05) serum insulin at similar time points to glucose and lower (P < 0.05) plasma epinephrine and norepinephrine at 90 min of exercise and at fatigue. These results suggest that G results in an increase in V(max) by mechanisms that are unclear.  相似文献   

5.
Prolonged exhaustive submaximal exercise in humans induces marked metabolic changes, but little is known about effects on muscle Na+-K+-ATPase activity and sarcoplasmic reticulum Ca2+ regulation. We therefore investigated whether these processes were impaired during cycling exercise at 74.3 +/- 1.2% maximal O2 uptake (mean +/- SE) continued until fatigue in eight healthy subjects (maximal O2 uptake of 3.93 +/- 0.69 l/min). A vastus lateralis muscle biopsy was taken at rest, at 10 and 45 min of exercise, and at fatigue. Muscle was analyzed for in vitro Na+-K+-ATPase activity [maximal K+-stimulated 3-O-methylfluorescein phosphatase (3-O-MFPase) activity], Na+-K+-ATPase content ([3H]ouabain binding sites), sarcoplasmic reticulum Ca2+ release rate induced by 4 chloro-m-cresol, and Ca2+ uptake rate. Cycling time to fatigue was 72.18 +/- 6.46 min. Muscle 3-O-MFPase activity (nmol.min(-1).g protein(-1)) fell from rest by 6.6 +/- 2.1% at 10 min (P <0.05), by 10.7 +/- 2.3% at 45 min (P <0.01), and by 12.6 +/- 1.6% at fatigue (P <0.01), whereas 3[H]ouabain binding site content was unchanged. Ca2+ release (mmol.min(-1).g protein(-1)) declined from rest by 10.0 +/- 3.8% at 45 min (P <0.05) and by 17.9 +/- 4.1% at fatigue (P < 0.01), whereas Ca2+ uptake rate fell from rest by 23.8 +/- 12.2% at fatigue (P=0.05). However, the decline in muscle 3-O-MFPase activity, Ca2+ uptake, and Ca2+ release were variable and not significantly correlated with time to fatigue. Thus prolonged exhaustive exercise impaired each of the maximal in vitro Na+-K+-ATPase activity, Ca2+ release, and Ca2+ uptake rates. This suggests that acutely downregulated muscle Na+, K+, and Ca2+ transport processes may be important factors in fatigue during prolonged exercise in humans.  相似文献   

6.
Hyperinsulinemia increases lactate release by various organs and tissues. Whereas it has been shown that aerobic glycolysis is linked to Na+-K+-ATPase activity, we hypothesized that stimulation by insulin of skeletal muscle Na+-K+-ATPase is responsible for increased muscle lactate production. To test this hypothesis, we assessed muscle lactate release in healthy volunteers from the [13C]lactate concentration in the effluent dialysates of microdialysis probes inserted into the tibialis anterior muscles on both sides and infused with solutions containing 5 mmol/l [U-13C]glucose. On one side, the microdialysis probe was intermittently infused with the same solution additioned with 2.10(-5) M ouabain. In the basal state, [13C]lactate concentration in the dialysate was not affected by ouabain. During a euglycemic-hyperinsulinemic clamp, [13C]lactate concentration increased by 135% in the dialysate without ouabain, and this stimulation was nearly entirely reversed by ouabain (56% inhibition compared with values in the dialysate collected from the contralateral probe). These data indicate that insulin stimulates muscle lactate release by activating Na+-K+-ATPase in healthy humans.  相似文献   

7.
8.
Bacterial sepsis is frequently accompanied by increased blood concentration of lactic acid, which traditionally is attributed to poor tissue perfusion, hypoxia and anaerobic glycolysis. Therapy aimed at improving oxygen delivery to tissues often does not correct the hyperlactatemia, suggesting that high blood lactate in sepsis is not due to hypoxia. Various tissues, including skeletal muscle, demonstrate increased lactate production under well-oxygenated conditions when the activity of the Na+-K+ ATPase is stimulated. Although both muscle Na+-K+ ATPase activity and muscle plasma membrane content of Na+, K+-ATPase subunits are increased in sepsis, no studies in vivo have demonstrated correlation between lactate production and changes in intracellular Na+ and K+ resulting from increased Na+-K+ pump activity in sepsis. Plasma concentrations of lactate and epinephrine, a known stimulator of the Na+-K+ pump, were increased in rats made septic by E. coli injection. Muscle lactate content was significantly increased in septic rats, although muscle ATP and phosphocreatine remained normal, suggesting oxygen delivery remained adequate for mitochondrial energy metabolism. In septic rats, muscle intracellular ratio of Na+:K+ was significantly reduced, indicating increased Na+-K+ pump activity. These data thus demonstrate that increased muscle lactate during sepsis correlates with evidence of elevated muscle Na+-K+ ATPase activity, but not with evidence of impaired oxidative metabolism. This study also further supports a role for epinephrine in this process.  相似文献   

9.
The Na+ -K+ -ATPase enzyme is vital in skeletal muscle function. We investigated the effects of acute high-intensity interval exercise, before and following high-intensity training (HIT), on muscle Na+ -K+ -ATPase maximal activity, content, and isoform mRNA expression and protein abundance. Twelve endurance-trained athletes were tested at baseline, pretrain, and after 3 wk of HIT (posttrain), which comprised seven sessions of 8 x 5-min interval cycling at 80% peak power output. Vastus lateralis muscle was biopsied at rest (baseline) and both at rest and immediately postexercise during the first (pretrain) and seventh (posttrain) training sessions. Muscle was analyzed for Na+ -K+ -ATPase maximal activity (3-O-MFPase), content ([3H]ouabain binding), isoform mRNA expression (RT-PCR), and protein abundance (Western blotting). All baseline-to-pretrain measures were stable. Pretrain, acute exercise decreased 3-O-MFPase activity [12.7% (SD 5.1), P < 0.05], increased alpha1, alpha2, and alpha3 mRNA expression (1.4-, 2.8-, and 3.4-fold, respectively, P < 0.05) with unchanged beta-isoform mRNA or protein abundance of any isoform. In resting muscle, HIT increased (P < 0.05) 3-O-MFPase activity by 5.5% (SD 2.9), and alpha3 and beta3 mRNA expression by 3.0- and 0.5-fold, respectively, with unchanged Na+ -K+ -ATPase content or isoform protein abundance. Posttrain, the acute exercise induced decline in 3-O-MFPase activity and increase in alpha1 and alpha3 mRNA each persisted (P < 0.05); the postexercise 3-O-MFPase activity was also higher after HIT (P < 0.05). Thus HIT augmented Na+ -K+ -ATPase maximal activity despite unchanged total content and isoform protein abundance. Elevated Na+ -K+ -ATPase activity postexercise may contribute to reduced fatigue after training. The Na+ -K+ -ATPase mRNA response to interval exercise of increased alpha- but not beta-mRNA was largely preserved posttrain, suggesting a functional role of alpha mRNA upregulation.  相似文献   

10.
The purpose of this study was to investigate the hypothesis that muscle Na+-K+-ATPase activity is directly related to Na+-K+-ATPase content and the content of the alpha2-catalytic isoform in muscles of different fiber-type composition. To investigate this hypothesis, tissue was sampled from soleus (Sol), red gastrocnemius (RG), white gastrocnemius (WG), and extensor digitorum longus (EDL) muscles at rest from 38 male Wistar rats weighing 413 +/- 6.0 g (mean +/- SE). Na+-K+-ATPase activity was determined in homogenates (Hom) and isolated crude membranes (CM) by the regenerating ouabain-inhibitable hydrolytic activity assay (ATPase) and the 3-O-methylfluorescein K+-stimulated phosphatase (3-O-MFPase) assay in vitro. In addition, Na+-K+-ATPase content (Bmax) and the distribution of alpha1-, alpha2-, beta1-, and beta2-isoforms were determined by [3H]ouabain binding and Western blot, respectively. For the ATPase assay, differences (P < 0.05) in enzyme activity between muscles were observed in Hom (EDL > WG) and in CM (Sol > EDL = WG). For the 3-O-MFPase assay, differences (P < 0.05) were also found for Hom (Sol > RG = EDL > WG) and CM (Sol = WG > RG). For Bmax, differences in the order of RG = EDL > Sol = WG (P < 0.05) were observed. Isoform distribution was similar between Hom and CM and indicated in CM, a greater density (P < 0.05) of alpha1 in Sol than WG and EDL (P < 0.05), but more equal distribution of alpha2 between muscles. The beta1 was greater (P < 0.05) in Sol and RG, and the beta2 was greater in EDL and WG (P < 0.05). Over all muscles, the correlation (r) between Hom 3-O-MFPase and Bmax was 0.45 (P < 0.05) and between Hom alpha2 and Bmax, 0.59 (P < 0.05). The alpha1 distribution correlated to Hom 3-O-MFPase (r = 0.79, P < 0.05) CM ATPase (r = 0.69, P < 0.005) and CM 3-O-MFPase activity (r = 0.32, P < 0.05). The alpha2 distribution was not correlated with any of the Na+-K+-ATPase activity measurements. The results indicate generally poor relationships between activity and total pump content and alpha2 isoform content of the Na+-K+-ATPase. Several factors, including the type of preparation and the type of assay, appear important in this regard.  相似文献   

11.
This study investigated the effects of electrical stimulation on Na+-K+-ATPase isoform mRNA, with the aim to identify factors modulating Na+-K+-ATPase mRNA in isolated rat extensor digitorum longus (EDL) muscle. Interventions designed to mimic exercise-induced increases in intracellular Na+ and Ca2+ contents and membrane depolarization were examined. Muscles were mounted on force transducers and stimulated with 60-Hz 10-s pulse trains producing tetanic contractions three times at 10-min intervals. Ouabain (1.0 mM, 120 min), veratridine (0.1 mM, 30 min), and monensin (0.1 mM, 30 min) were used to increase intracellular Na+ content. High extracellular K+ (13 mM, 60 min) and the Ca2+ ionophore A-23187 (0.02 mM, 30 min) were used to induce membrane depolarization and elevated intracellular Ca2+ content, respectively. Muscles were analyzed for Na+-K+-ATPase alpha1-alpha3 and beta1-beta3 mRNA (real-time RT-PCR). Electrical stimulation had no immediate effect on Na+-K+-ATPase mRNA; however at 3 h after stimulation, it increased alpha1, alpha2, and alpha3 mRNA by 223, 621, and 892%, respectively (P = 0.010), without changing beta mRNA. Ouabain, veratridine, and monensin increased intracellular Na+ content by 769, 724, and 598%, respectively (P = 0.001) but did not increase mRNA of any isoform. High intracellular K+ concentration elevated alpha1 mRNA by 160% (P = 0.021), whereas A-23187 elevated alpha3 mRNA by 123% (P = 0.035) but reduced beta1 mRNA by 76% (P = 0.001). In conclusion, electrical stimulation induced subunit-specific increases in Na+-K+-ATPase mRNA in isolated rat EDL muscle. Furthermore, Na+-K+-ATPase mRNA appears to be regulated by different stimuli, including cellular changes associated with membrane depolarization and increased intracellular Ca2+ content but not increased intracellular Na+ content.  相似文献   

12.
To investigate the effects of training in normoxia vs. training in normobaric hypoxia (fraction of inspired O2 = 20.9 vs. 13.5%, respectively) on the regulation of Na+-K+-ATPase pump concentration in skeletal muscle (vastus lateralis), 9 untrained men, ranging in age from 19 to 25 yr, underwent 8 wk of cycle training. The training consisted of both prolonged and intermittent single leg exercise for both normoxia (N) and hypoxia (H) during a single session (a similar work output for each leg) and was performed 3 times/wk. Na+-K+-ATPase concentration was 326 +/- 17 (SE) pmol/g wet wt before training (Control), increased by 14% with N (371 +/- 18 pmol/g wet wt; P < 0.05), and decreased by 14% with H (282 +/- 20 pmol/g wet wt; P < 0.05). The maximal activity of citrate synthase, selected as a measure of mitochondrial potential, showed greater increases (P < 0.05) with H (1.22 +/- 0.10 mmol x h-1 x g wet wt-1; 70%; P < 0.05) than with N (0.99 +/- 0.10 mmol x h-1 x g wet wt-1; 51%; P < 0.05) compared with pretraining (0.658 +/- 0.09 mmol x h-1 x g wet wt-1). These results demonstrate that normobaric hypoxia induced during exercise training represents a potent stimulus for the upregulation in mitochondrial potential while at the same time promoting a downregulation in Na+-K+-ATPase pump expression. In contrast, normoxic training stimulates increases in both mitochondrial potential and Na+-K+-ATPase concentration.  相似文献   

13.
The present study tested the hypothesis that exercise with a large compared with a small active muscle mass results in a higher contraction-induced increase in Na(+)-K(+)-ATPase mRNA expression due to greater hormonal responses. Furthermore, the relative abundance of Na(+)-K(+)-ATPase subunit alpha(1), alpha(2), alpha(3), alpha(4), beta(1), beta(2), and beta(3) mRNA in human skeletal muscle was investigated. On two occasions, eight subjects performed one-legged knee extension exercise (L) or combined one-legged knee extension and bilateral arm cranking (AL) for 5.00, 4.25, 3.50, 2.75, and 2.00 min separated by 3 min of rest. Leg exercise power output was the same in AL and L, but heart rate at the end of each exercise interval was higher in AL compared with L. One minute after exercise, arm venous blood lactate was higher in AL than in L. A higher level of blood epinephrine and norepinephrine was evident 3 min after exercise in AL compared with L. Nevertheless, none of the exercise-induced increases in alpha(1), alpha(2), beta(1), and beta(3) mRNA expression levels were higher in AL compared with L. The most abundant Na(+)-K(+)-ATPase subunit at the mRNA level was beta(1), which was expressed 3.4 times than alpha(2). Expression of alpha(1), beta(2), and beta(3) was less than 5% of the alpha(2) expression, and no reliable detection of alpha(3) and alpha(4) was possible. In conclusion, activation of additional muscle mass does not result in a higher exercise-induced increase in Na(+)-K(+)-ATPase subunit-specific mRNA.  相似文献   

14.
15.
It is unclear whether muscle activity reduces or increases Na(+)-K(+)-ATPase maximal in vitro activity in rat skeletal muscle, and it is not known whether muscle activity changes the Na(+)-K(+)-ATPase ion affinity. The present study uses quantification of ATP hydrolysis to characterize muscle fiber type-specific changes in Na(+)-K(+)-ATPase activity in sarcolemmal membranes and in total membranes obtained from control rats and after 30 min of treadmill running. ATPase activity was measured at Na(+) concentrations of 0-80 mM and K(+) concentrations of 0-10 mM. K(m) and V(max) values were obtained from a Hill plot. K(m) for Na(+) was higher (lower affinity) in total membranes of glycolytic muscle (extensor digitorum longus and white vastus lateralis), when compared with oxidative muscle (red gastrocnemius and soleus). Treadmill running induced a significant decrease in K(m) for Na(+) in total membranes of glycolytic muscle, which abolished the fiber-type difference in Na(+) affinity. K(m) for K(+) (in the presence of Na(+)) was not influenced by running. Running only increased the maximal in vitro activity (V(max)) in total membranes from soleus, whereas V(max) remained constant in the three other muscles tested. In conclusion, muscle activity induces fiber type-specific changes both in Na(+) affinity and maximal in vitro activity of the Na(+)-K(+)-ATPase. The underlying mechanisms may involve translocation of subunits and increased association between PLM units and the alphabeta complex. The changes in Na(+)-K(+)-ATPase ion affinity are expected to influence muscle ion balance during muscle contraction.  相似文献   

16.
The early plasticity of vastus lateralis Na(+)-K(+)-ATPase to the abrupt onset of prolonged submaximal cycling was studied in 12 untrained participants (Vo(2 peak) 44.8 +/- 2.0 ml x kg(-1) x min(-1), mean +/- SE) using a 6-day protocol (3 days of exercise plus 3 days of recovery). Tissue samples were extracted prior to (Pre) and following exercise (Post) on day 1 (E1) and day 3 (E3) and on each day of recovery (R1, R2, R3) and analyzed for changes in maximal protein (beta(max)) (vanadate-facilitated [(3)H]ouabain binding), alpha- and beta-isoform concentration (quantitative immunoblotting) and maximal Na(+)-K(+)-ATPase activity (V(max)) (3-O-methylfluorescein K(+)-stimulated phosphatase assay). For beta(max) (pmol/g wet wt), an increase (P < 0.05) of 11.8% was observed at R1 compared with E1-Pre (340 +/- 14 vs 304 +/- 17). For the alpha-isoforms alpha(1), alpha(2), and alpha(3), increases (P < 0.05) of 46, 42, and 31% were observed at R1, respectively. For the beta-isoform, beta(1) and beta(2) increased (P < 0.05) by 19 and 28% at R1, whereas beta(3) increased (P < 0.05) by 18% at R2. With the exception of alpha(2) and alpha(3), the increases in the isoforms persisted at R3. Exercise resulted in an average decrease (P < 0.05) in V(max) by 14.3%. No differences were observed in V(max) at E1 - Pre and E3 - Pre or between R1, R2, and R3. It is concluded that 3 days of prolonged exercise is a powerful stimulus for the rapid upregulation of the Na(+)-K(+)-ATPase subunit isoforms. Contrary to our hypothesis, the increase in subunit expression is not accompanied by increases in the maximal catalytic activity.  相似文献   

17.
Phospholemman (PLM) is a recently identified accessory protein of the Na(+)-K(+)-ATPase (NKA), with a high level of expression in skeletal muscle. The objectives of this study are to characterize the PLM in skeletal muscle and to test the hypothesis that, as an accessory protein of NKA, expression of PLM and its association with the alpha-subunits of NKA is regulated during aging and with exercise training. PLM was characterized in skeletal muscle of 6- and 16-mo-old sedentary middle-aged rats (Ms), and the effects of aging and exercise training were studied in Ms, 29-mo-old sedentary senescent, and 29-mo-old treadmill-exercised senescent rats. Expression of PLM was muscle-type dependent, and immunofluorescence study showed that PLM distributed predominantly on the sarcolemmal membrane of the muscle fibers. Anti-PLM antibody reduced activity of NKA, and thus PLM appears to be required for NKA to express its full activity in skeletal muscle. Expression of PLM was not altered with aging but increased after exercise training. Coimmunoprecipitation studies demonstrated that PLM associates with both the alpha(1)- and alpha(2)-subunit isoforms of NKA. Compared with Ms rats, levels of PLM-associated alpha(1)-subunit increased in 29-mo-old sedentary senescent rats, and treadmill exercise has a tendency to partially reverse it. There was no significant change in PLM-associated alpha(2)-subunit with age, and exercise training has a tendency to increase that level. It is concluded that, in skeletal muscle, PLM appears to be a protein integral to the NKA complex and that PLM has the potential to modulate NKA in an isoform-specific and muscle type-dependent manner in aging and after exercise training.  相似文献   

18.
19.
Na(+)-K(+)-ATPase is an integral membrane protein crucial for the maintenance of ion homeostasis and skeletal muscle contractibility. Skeletal muscle Na(+)-K(+)-ATPase content displays remarkable plasticity in response to long-term increase in physiological demand, such as exercise training. However, the adaptations in Na(+)-K(+)-ATPase function in response to a suddenly decreased and/or habitually low level of physical activity, especially after a spinal cord injury (SCI), are incompletely known. We tested the hypothesis that skeletal muscle content of Na(+)-K(+)-ATPase and the associated regulatory proteins from the FXYD family is altered in SCI patients in a manner dependent on the severity of the spinal cord lesion and postinjury level of physical activity. Three different groups were studied: 1) six subjects with chronic complete cervical SCI, 2) seven subjects with acute, complete cervical SCI, and 3) six subjects with acute, incomplete cervical SCI. The individuals in groups 2 and 3 were studied at months 1, 3, and 12 postinjury, whereas individuals with chronic SCI were compared with an able-bodied control group. Chronic complete SCI was associated with a marked decrease in [(3)H]ouabain binding site concentration in skeletal muscle as well as reduced protein content of the α(1)-, α(2)-, and β(1)-subunit of the Na(+)-K(+)-ATPase. In line with this finding, expression of the Na(+)-K(+)-ATPase α(1)- and α(2)-subunits progressively decreased during the first year after complete but not after incomplete SCI. The expression of the regulatory protein phospholemman (PLM or FXYD1) was attenuated after complete, but not incomplete, cervical SCI. In contrast, FXYD5 was substantially upregulated in patients with complete SCI. In conclusion, the severity of the spinal cord lesion and the level of postinjury physical activity in patients with SCI are important factors controlling the expression of Na(+)-K(+)-ATPase and its regulatory proteins PLM and FXYD5.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号