首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurochondrin/norbin is a cytoplasmic protein involved in dendrite outgrowth. The expression of the gene has been restricted to neural, bone, and chondral tissues. To identify the functions of the gene in vivo, we have generated mice with a disrupted mutation in the neurochondrin/norbin gene. Histological analysis of heterozygous mutant mice indicates the possibility of specific functions of neurochondrin/norbin in chondrocyte differentiation. We defined the expression patterns of neurochondrin/norbin-lacZ fusion protein in the central nervous system. In the developing olfactory bulb, beta-galactosidase activity was detected in the mantle layer at 12.5 dpc and the strongest activity was detected in the presumptive mitral or tufted cell layer at 15.5 dpc. beta-Galactosidase activity was also detected in the lateral choroid plexus. In homozygous (-/-) mutant mice, the disruption of the neurochondrin/norbin gene leads to early embryonic death between 3.5 and 6.5 dpc. This result indicates that neurochondrin/norbin gene function is essential for the early embryogenesis.  相似文献   

2.
Neurite outgrowth (e.g. axonal or dendrite outgrowth) of neurons is necessary for the development and functioning of the central nervous system. It is well accepted that the differentiation of neurons and neurite outgrowth involve alterations in gene expression. Furthermore, mitochondria play a role in different aspects of neurite outgrowth. Here we show that the expression of Ndufb11, a gene encoding the mitochondrial protein NP15.6 is decreased in the course of neuronal differentiation. NP15.6 is homologous to the bovine protein ESSS, a component of the mitochondrial complex 1. The homologous human NDUFB11 gene is localized to Xp11.3-Xp11.23, a region associated with neurogenetic disorders. The down-regulation of NP15.6 correlates with neurite outgrowth of PC12 cells induced by nerve growth factor. Furthermore, we analyzed the expression of Ndufb11 in the embryonic and adult mouse.  相似文献   

3.
4.
Neurite outgrowth and neuronal differentiation play a crucial role in the development of the nervous system. Understanding of neurotrophins induced neurite outgrowth was important to develop therapeutic strategy for axon regeneration in neurodegenerative diseases as well as after various nerve injuries. It has been reported that extension of neurite and differentiation of sympathetic neuron-like phenotype was modulated by nerve growth factor (NGF) in PC12 cells. In this study, NGF mediated neurite outgrowth was investigated in PC12 cells after liquiritin exposure. Liquiritin is a kind of flavonoids that is extracted from Glycyrrhizae radix, which is frequently used to treat injury or swelling for its life-enhancing properties as well as detoxification in traditional Oriental medicine. The result showed that liquiritin significantly promotes the neurite outgrowth stimulated by NGF in PC12 cells in dose dependant manners whereas the liquiritin alone did not induce neurite outgrowth. Oligo microarray and RT-PCR analysis further clarified that the neurotrophic effect of liquiritin was related to the overexpression of neural related genes such as neurogenin 3, neurofibromatosis 1, notch gene homolog 2, neuromedin U receptor 2 and neurotrophin 5. Thus, liquiritin may be a good candidate for treatment of various neurodegenerative diseases such as Alzheimer’s disease or Parkinson’s disease.  相似文献   

5.
Although abundant Go has been found in nervous tissues and it has been implicated in neuronal differentiation, the mechanism of how Go modulates neuronal differentiation has not been defined. Here, we report that the alpha subunit of Go (alphao) modulates neurite outgrowth by interfering with the signaling pathway initiated by cyclic AMP (cAMP). In F11 cells, cAMP induced neurite outgrowth and activated cAMP-responsive element binding protein (CREB). Specific inhibition of cAMP-dependent protein kinase reduced both CREB activity and neurite outgrowth (NOG). Interestingly, cAMP reduced phosphorylation of extracellular signal-regulated kinase (Erk). Neither a dominant negative form nor an active form of Ras altered neurite outgrowth. Expression of alphao (alphao(wt)) decreased the average length of neurites but increased the number of neurites per cell. An active mutant, alphaoQ205L, which lost GTPase activity and thus could not bind to Gbetagamma, gave similar results, suggesting that the effect of alphao is not mediated through Gbetagamma. Expression of ao(wt) or alphaoQ205L also prohibited CREB activation. Thus, activation of Erk may not be essential for neuronal differentiation in F11 cells and alphao may cause changes in NOG by inhibiting CREB activation.  相似文献   

6.
Autism spectrum disorder (ASD) is categorized as a neurodevelopmental disorder according to the Diagnostic and Statistical Manual of Disorders, Fifth Edition and is defined as a congenital impairment of the central nervous system. ASD may be caused by a chromosomal abnormality or gene mutation. However, these etiologies are insufficient to account for the pathogenesis of ASD. Therefore, we propose that the etiology and pathogenesis of ASD are related to the stress of the endoplasmic reticulum (ER). ER stress, induced by valproic acid, increased in ASD mouse model, characterized by an unfolded protein response that is activated by this stress. The inhibition of neurite outgrowth and expression of synaptic factors are observed in ASD. Similarly, ER stress suppresses the neurite outgrowth and expression of synaptic factors. Additionally, hyperplasia of the brain is observed in patients with ASD. ER stress also enhances neuronal differentiation. Synaptic factors, such as cell adhesion molecule and shank, play important roles in the formation of neural circuits. Thus, ER stress is associated with the abnormalities of neuronal differentiation, neurite outgrowth, and synaptic protein expression. ER stress elevates the expression of the ubiquitin-protein ligase HRD1 for the degradation of unfolded proteins. HRD1 expression significantly increased in the middle frontal cortex in the postmortem of patients with ASD. Moreover, HRD1 silencing improved the abnormalities induced by ER stress. Because other ubiquitin ligases are related with neurite outgrowth, ER stress may be related to the pathogenesis of neuronal developmental diseases via abnormalities of neuronal differentiation or maturation.  相似文献   

7.
As a dual‐specificity phosphatase catalyzing the dephosphorylation of phosphatidylinositols and protein substrates, PTEN is critically involved in the nervous system development. However, the regulatory role of PTEN in neurite outgrowth is still controversial, and the downstream signaling events remain elusive. Here, we show that PTEN knockdown promoted the proliferation and survival but not the neurite outgrowth of rat pheochromocytoma PC12 cells when exposed to nerve growth factor (NGF). In contrast, selective PTEN silencing in differentiating PC12 cells that express nestin significantly facilitated neurite elongation. Elevated Akt and Erk1/2 phosphorylation was involved in accelerated NGF‐induced neurite development of PC12 cells following PTEN knockdown. Discriminated roles of the lipid phosphatase and protein phosphatase activities of PTEN in neurite development, as well as the detailed molecular profiles affected by these phosphatase activities, were defined by restored expression of a lipid phosphatase‐deficient PTEN mutant following endogenous PTEN silencing in PC12 cells. Our study suggests an overall inhibitory effect of PTEN in neurite development reconciled by a probably indispensable role of this phosphatase in the initiation of PC12 cell differentiation. J. Cell. Biochem. 111: 1390–1400, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
9.
10.
In this study, we examined the role of specific protein kinase C (PKC) isoforms in the differentiation of PC12 cells in response to nerve growth factor (NGF) and epidermal growth factor (EGF). PC12 cells express PKC-alpha, -beta, -gamma, -delta, -epsilon, -mu, and -zeta. For PKC-delta, -epsilon, and -zeta, NGF and EGF exerted differential effects on translocation. Unlike overexpression of PKC-alpha and -delta, overexpression of PKC-epsilon caused enhanced neurite outgrowth in response to NGF. In the PKC-epsilon-overexpressing cells, EGF also dramatically induced neurite outgrowth, arrested cell proliferation, and induced a sustained phosphorylation of mitogen-activated protein kinase (MAPK), in contrast to its mitogenic effects on control cells or cells overexpressing PKC-alpha and -delta. The induction of neurite outgrowth by EGF was inhibited by the MAPK kinase inhibitor PD95098. In cells overexpressing a PKC-epsilon dominant negative mutant, NGF induced reduced neurite outgrowth and a more transient phosphorylation of MAPK than in controls. Our results suggest an important role for PKC-epsilon in neurite outgrowth in PC12 cells, probably via activation of the MAPK pathway.  相似文献   

11.
《Cellular signalling》2014,26(1):9-18
RACK1 binds proteins in a constitutive or transient manner and supports signal transmission by engaging in diverse and distinct signalling pathways. The emerging theme is that RACK1 functions as a signalling switch, recruiting proteins to form distinct molecular complexes. In focal adhesions, RACK1 is required for the regulation of FAK activity and for integrating a wide array of cellular signalling events including the integration of growth factor and adhesion signalling pathways. FAK is required for cell adhesion and migration and has a well-established role in neurite outgrowth and in the developing nervous system. However, the mechanism by which FAK activity is regulated in neurons remains unknown. Using neuronal cell lines, we determined that differentiation of these cells promotes an interaction between the scaffolding protein RACK1 and FAK. Disruption of the RACK1/FAK interaction leads to decreased neurite outgrowth suggesting a role for the interaction in neurite extension. We hypothesised that RACK1 recruits proteins to FAK, to regulate FAK activity in neuronal cells. To address this, we immunoprecipitated RACK1 from rat hippocampus and searched for interacting proteins by mass spectrometry. We identified AGAP2 as a novel RACK1-interacting protein. Having confirmed the RACK1–AGAP2 interaction biochemically, we show RACK1–AGAP2 to localise together in the growth cone of differentiated cells, and confirm that these proteins are in complex with FAK. This complex is disrupted when RACK1 expression is suppressed using siRNA or when mutants of RACK1 that do not interact with FAK are expressed in cells. Similarly, suppression of AGAP2 using siRNA leads to increased phosphorylation of FAK and increased cell adhesion resulting in decreased neurite outgrowth. Our results suggest that RACK1 scaffolds AGAP2 to FAK to regulate FAK activity and cell adhesion during the differentiation process.  相似文献   

12.
The vitamin A metabolite all-trans retinoic acid (atRA) functions in nervous system development and regulates cell proliferation and differentiation. Neuroblastoma cells (SH-SY5Y and Neuro2a or N2A) exposed to atRA undergo growth inhibition and neuronal differentiation, both of which are preceded by an increase in Clmn mRNA. Treatment of N2A cells with atRA produces a reduction in phosphohistone 3 immunostaining and BrdU incorporation, both indicators of a reduction in cell proliferation. These effects are nearly eliminated in atRA-treated shClmn knockdown cells. Loss of Clmn in the mouse N2A cell line also results in a significant reduction of atRA-mediated neurite outgrowth, a response that can be rescued by reintroduction of the Clmn sequence. In contrast, ectopic overexpression of Clmn produces an increase in the cyclin dependent kinase inhibitor, p21(Cip1), a decrease in cyclin D1 protein and an increase in hypophosphorylated Rb, showing that Clmn participates in G(1)/S arrest. Clmn overexpression alone is sufficient to inhibit N2A cell proliferation, whereas both Clmn and atRA must be present to induce neurite outgrowth. This study shows that the atRA-responsive gene Clmn promotes exit from the cell cycle, a requisite event for neuronal differentiation.  相似文献   

13.
The function of the central nervous system largely depends on growth and differentiation (neurite outgrowth) of neural cells and it is well established that growth factors, especially nerve growth factor NGF stimulate neurite outgrowth. However, additional factors are implicated in this process notably the redox state of the cells. For the first time we could demonstrate that the application of recombinant thioredoxin stimulates neurite outgrowth of PC12 cells to the same extend as NGF. Thioredoxin, a small redox protein is a major player in the cellular protein reduction system. An increased expression and secretion of thioredoxin is achieved by the application of the novel sialic acid precursor N-propionylmannosamine (ManNProp). From earlier studies it is known that this N-acylmannosamine analog stimulates significantly the neurite outgrowth in cell cultures. This finding would give new insights into the mechanism of the nerve-stimulatory action of ManNProp and demonstrates the novel role of thioredoxin during the regulation of nerve growth, encouraging further studies.  相似文献   

14.
MicroRNAs (miRNAs) are small RNAs with diverse regulatory roles. The miR-124 miRNA is expressed in neurons in the developing and adult nervous system. Here we show that overexpression of miR-124 in differentiating mouse P19 cells promotes neurite outgrowth, while blocking miR-124 function delays neurite outgrowth and decreases acetylated α-tubulin. Altered neurite outgrowth also was observed in mouse primary cortical neurons when miR-124 expression was increased, or when miR-124 function was blocked. In uncommitted P19 cells, miR-124 expression led to disruption of actin filaments and stabilization of microtubules. Expression of miR-124 also decreased Cdc42 protein and affected the subcellular localization of Rac1, suggesting that miR-124 may act in part via alterations to members of the Rho GTPase family. Furthermore, constitutively active Cdc42 or Rac1 attenuated neurite outgrowth promoted by miR-124. To obtain a broader perspective, we identified mRNAs downregulated by miR-124 in P19 cells using microarrays. mRNAs for proteins involved in cytoskeletal regulation were enriched among mRNAs downregulated by miR-124. A miR-124 variant with an additional 5′ base failed to promote neurite outgrowth and downregulated substantially different mRNAs. These results indicate that miR-124 contributes to the control of neurite outgrowth during neuronal differentiation, possibly by regulation of the cytoskeleton.  相似文献   

15.
Thy-1 is highly expressed in the mammalian nervous system. Our previous study showed that addition of anti-Thy-1 antibody to cultured dorsal root ganglionic (DRG) neurons promotes neurite outgrowth. In this study, we identified a novel signaling pathway mediating this event. Treatment with function-blocking anti-Thy-1 antibodies enhanced neurite outgrowth of DRG neurons in terms of total neurite length, longest neurite length, and total neurite branching points. To elucidate the possible signal transduction pathway involved, activation of kinases was evaluated by Western blotting. Transient phosphorylation of protein kinase A (PKA) and mitogen-activated kinase kinase (MEK) was induced after 15 min of anti-Thy-1 antibody treatment. Pretreatment with a PKA inhibitor (PKI) or an MEK inhibitor, PD98059, significantly decreased the neurite outgrowth response triggered by anti-Thy-1 antibody, indicating the involvement of both kinases. In addition, anti-Thy-1 antibody treatment also induced transient phosphorylation of cyclic AMP-response element-binding protein (CREB) and this effect was also blocked by a PKI or PD98059. Furthermore, the fact that PKI abolished anti-Thy-1 antibody-induced MEK phosphorylation showed that PKA acts upstream of the MEK-CREB cascade. In summary, the PKA-MEK-CREB pathway is a new pathway involved in the neurite outgrowth-promoting effect of anti-Thy-1 antibody.  相似文献   

16.
We have previously shown that protein kinase Cepsilon (PKCepsilon) induces neurite outgrowth via its regulatory domain and independently of its kinase activity. This study aimed at identifying mechanisms regulating PKCepsilon-mediated neurite induction. We show an increased association of PKCepsilon to the cytoskeleton during neuronal differentiation. Furthermore, neurite induction by overexpression of full-length PKCepsilon is suppressed if serum is removed from the cultures or if an actin-binding site is deleted from the protein. A peptide corresponding to the PKCepsilon actin-binding site suppresses neurite outgrowth during neuronal differentiation and outgrowth elicited by PKCepsilon overexpression. Neither serum removal, deletion of the actin-binding site, nor introduction of the peptide affects neurite induction by the isolated regulatory domain. Membrane targeting by myristoylation renders full-length PKCepsilon independent of both serum and the actin-binding site, and PKCepsilon colocalized with F-actin at the cortical cytoskeleton during neurite outgrowth. These results demonstrate that the actin-binding site is of importance for signals acting on PKCepsilon in a pathway leading to neurite outgrowth. Localization of PKCepsilon to the plasma membrane and/or the cortical cytoskeleton is conceivably important for its effect on neurite outgrowth.  相似文献   

17.
18.
19.
Neuroglycan C (NGC) is a transmembrane-type chondroitin sulfate proteoglycan that is exclusively expressed in the central nervous system. We report that the recombinant ectodomain of NGC core protein enhances neurite outgrowth from rat neocortical neurons in culture. Both protein kinase C (PKC) inhibitors and phosphatidylinositol 3-kinase (PI3K) inhibitors attenuated the NGC-mediated neurite outgrowth in a dose-dependent manner, suggesting that NGC promotes neurite outgrowth via PI3K and PKC pathways. The active sites of NGC for neurite outgrowth existed in the epidermal growth factor (EGF)-like domain and acidic amino acid (AA)-domain of the NGC ectodomain. The EGF-domain caused cells to extend preferentially one neurite from a soma, whereas the AA-domain caused several neurites to develop. The EGF-domain also enhanced neurite outgrowth from GABA-positive neurons, but the AA-domain did not. These results suggest that the EGF-domain and AA-domain have distinct functions in terms of neuritogenesis. From these findings, NGC can be considered to be involved in neuritogenesis in the developing central nervous system.  相似文献   

20.
Glial cell derived neurotrophic factor (GDNF)-dependent receptor tyrosine kinase RET activity is required for proper development of the nervous system and genitourinary tract. Loss-of-function mutations in RET are associated with enteric nervous system abnormalities (Hirschsprung disease) and renal deficits (Potter's syndrome), whereas activating mutations lead to hereditary cancer syndromes (multiple endocrine neoplasia type 2A and type 2B). RET activation is crucial for the proper regulation of a variety of cellular processes including cell migration, proliferation and neurite outgrowth. By analyzing a series of RET mutants we found that Y1062 was critical for stimulating GDNF-mediated proliferation as well as proliferation stimulated by GDNF-independent oncogenic forms of RET. Studies using small interfering RNA driven by lentivirus to knock-down expression of particular adaptor proteins that interact with RET phospho-Y1062, demonstrated that only Src-homology 2 and growth factor receptor binding protein 2 were necessary for RET-mediated proliferation by wild type and oncogenic forms of RET. Interestingly, we discovered that Y1062 was also required for GDNF-stimulated neurite outgrowth. However, small interfering RNAs to either Src-homology 2 or growth factor receptor binding protein 2 or a panel of other adaptor proteins known to interact with RET Y1062 were incapable of blocking GDNF-stimulated neurite formation, indicating that differential use of intracellular adaptors is responsible for regulating alternative RET-stimulated cellular events such as proliferation versus a differentiation response like neurite outgrowth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号