首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human embryonic stem (hES) cells provide a potentially unlimited cell source for regenerative medicine. Recently, differentiation strategies were developed to direct hES cells towards neural fates in vitro. However, the interaction of hES cell progeny with the adult brain environment remains unexplored. Here we report that hES cell-derived neural precursors differentiate into neurons, astrocytes and oligodendrocytes in the normal and lesioned brain of young adult rats and migrate extensively along white matter tracts. The differentiation and migration behavior of hES cell progeny was region specific. The hES cell-derived neural precursors integrated into the endogenous precursor pool in the subventricular zone, a site of persistent neurogenesis. Like adult neural stem cells, hES cell-derived precursors traveled along the rostral migratory stream to the olfactory bulb, where they contributed to neurogenesis. We found no evidence of cell fusion, suggesting that hES cell progeny are capable of responding appropriately to host cues in the subventricular zone.  相似文献   

2.
Of paramount importance for the development of cell therapies to treat diabetes is the production of sufficient numbers of pancreatic endocrine cells that function similarly to primary islets. We have developed a differentiation process that converts human embryonic stem (hES) cells to endocrine cells capable of synthesizing the pancreatic hormones insulin, glucagon, somatostatin, pancreatic polypeptide and ghrelin. This process mimics in vivo pancreatic organogenesis by directing cells through stages resembling definitive endoderm, gut-tube endoderm, pancreatic endoderm and endocrine precursor--en route to cells that express endocrine hormones. The hES cell-derived insulin-expressing cells have an insulin content approaching that of adult islets. Similar to fetal beta-cells, they release C-peptide in response to multiple secretory stimuli, but only minimally to glucose. Production of these hES cell-derived endocrine cells may represent a critical step in the development of a renewable source of cells for diabetes cell therapy.  相似文献   

3.
4.
Cardiomyocytes derived from human embryonic stem (hES) cells potentially offer large numbers of cells to facilitate repair of the infarcted heart. However, this approach has been limited by inefficient differentiation of hES cells into cardiomyocytes, insufficient purity of cardiomyocyte preparations and poor survival of hES cell-derived myocytes after transplantation. Seeking to overcome these challenges, we generated highly purified human cardiomyocytes using a readily scalable system for directed differentiation that relies on activin A and BMP4. We then identified a cocktail of pro-survival factors that limits cardiomyocyte death after transplantation. These techniques enabled consistent formation of myocardial grafts in the infarcted rat heart. The engrafted human myocardium attenuated ventricular dilation and preserved regional and global contractile function after myocardial infarction compared with controls receiving noncardiac hES cell derivatives or vehicle. The ability of hES cell-derived cardiomyocytes to partially remuscularize myocardial infarcts and attenuate heart failure encourages their study under conditions that closely match human disease.  相似文献   

5.
The application of human embryonic stem (hES) cells in regenerative medicine will require rigorous quality control measures to ensure the safety of hES cell-derived grafts. During propagation in vitro, hES cells can acquire cytogenetic abnormalities as well as submicroscopic genetic lesions, such as small amplifications or deletions. Many of the genetic abnormalities that arise in hES cell cultures are also implicated in human cancer development. The causes of genetic instability of hES cells in culture are poorly understood, and commonly used cytogenetic methods for detection of abnormal cells are capable only of low-throughput analysis on small numbers of cells. The identification of biomarkers of genetic instability in hES cells would greatly facilitate the development of culture methods that preserve genomic integrity. Here we show that CD30, a member of the tumor necrosis factor receptor superfamily, is expressed on transformed but not normal hES cells, and that CD30 expression protects hES cells against apoptosis.  相似文献   

6.
7.
Since the differentiation of embryonic stem cells mimics early development, these cells could potentially permit the detection of embryotoxicants which interfere with this process. Although reliable tests based on murine embryonic stem cells exist, no such methods are available for human embryonic stem (hES) cells. Nonetheless, to avoid the false classification of substances due to inter-species differences, human-relevant toxicity tests are needed. We therefore developed an assay based on three human cell types, representing different degrees of developmental maturation, namely, human foreskin fibroblasts, hES cell-derived progenitor cells, and pluripotent hES cells. A set of embryotoxicants for which existing in vivo data were available, namely, all-trans retinoic acid (ATRA), 13-cis retinoic acid (13CRA), valproic acid (VPA) and dimethyl sulphoxide (DMSO), were tested. 5-fluorouracil (5-FU) was used as a positive control, and saccharin as a negative control. Two methods were compared for the assessment of cell viability -- the determination of intracellular ATP content and of resazurin reduction. In addition, the protective capacity of basic fibroblast growth factor (bFGF) against retinoid-induced toxicity was investigated. This novel assay system reliably detected the embryotoxic potentials of the test substances, 5-FU, ATRA, 13-CRA (a substance that displays inter-species differences in its effects) and VPA. This was possible due to the apparent differences in the sensitivities of the human cell types used in the assay system. Thus, our results clearly indicate the advantages and relevance of using hES cells in in vitro developmental toxicity testing.  相似文献   

8.
BACKGROUND: Embryonic stem cells provide the most promising tool for cell replacement therapy including transplantation of human embryonic stem (hES) cell- derived cardiomyocytes in the infarcted area of the heart. Here we provide data for differentiation of cardiomyocytes from hES cells and firstly describe their hormonal modulation. METHODS: Using Micro-Electrode Arrays as a novel electrical mapping technique of beating cardiomyocyte clusters within whole hES cell aggregates, we were able to measure the field potential generation and morphology changes during hormonal modulation. RESULTS: We found that isoproterenol provokes, similar to the mouse ES cell system, a strong positive chronotropic effect with an EC50 of around 10(-8) M. Moreover, isoproterenol stimulated with a higher EC50 value the slow field potential amplitude, FP(slow), indicating a stimulation of Ca2+ channels in ventricular-like ES cell-derived cardiomyocytes which is shown to be clearly independent from frequency modulation. In contrast, carbachol (10 microM) produced a transient negative chronotropic effect but had no effect on FP(slow). CONCLUSION: The Micro-Electrode system allows measurement of ionic channel modulation and chronotropic responsiveness in a pharmacological screening setup. Moreover, all our data indicate that cardiomyocytes derived from human embryonic stem cells exhibit a physiological response to the major hormones of the vegetative nervous system and might therefore serve as an ideal candidate for the use in cell replacement strategies.  相似文献   

9.
10.
Cai L  Ye Z  Zhou BY  Mali P  Zhou C  Cheng L 《Cell research》2007,17(1):62-72
We previously showed that Wnt3a could stimulate human embryonic stem (hES) cell proliferation and affect cell fate determination. In the absence of feeder cell--derived factors, hES cells cultured under a feeder-free condition survived and proliferated poorly. Adding recombinant Wnt3a in the absence of feeder cell derived-factors stimulated hES cell proliferation but also differentiation. In the present study, we further extended our analysis to other Wnt ligands such as Wntl and Wnt5a. While Wntl displayed a similar effect on hES cells as Wnt3a, Wnt5a had little effect in this system. Wnt3a and Wntl enhanced proliferation of undifferentiated hES cells when feeder-derived self-renewal factors and bFGF are also present. To explore the possibility to promote the proliferation of undifferentiated hES cells by activating the Wnt signaling, we overexpressed Wnt3a or Wntl gene in immortalized human adult fibroblast (HAFi) cells that are superior in supporting long-term growth of undifferentiated hES cells than primary mouse embryonic fibroblasts. HAFi cells with or without a Wnt tmnsgene can be propagated indefinitely. Over-expression of the Wnt3a gene significantly enhanced the ability of HAFi feeder cells to support the undifferentiated growth of 3 different hES cell lines we tested. Co-expression of three commonly-used drug selection genes in Wnt3a-overpressing HAFi cells further enabled us to select rare hES clones after stable transfection or transduction. These immortalized engineered feeder cells (W3R) that co-express growth-promoting genes such as Wnt3a and three drug selection genes should empower us to efficiently make genetic modified hES cell lines for basic and translational research.  相似文献   

11.
We have established a system for directed differentiation of human embryonic stem (hES) cells into myeloid dendritic cells (DCs). As a first step, we induced hemopoietic differentiation by coculture of hES cells with OP9 stromal cells, and then, expanded myeloid cells with GM-CSF using a feeder-free culture system. Myeloid cells had a CD4+CD11b+CD11c+CD16+CD123(low)HLA-DR- phenotype, expressed myeloperoxidase, and included a population of M-CSFR+ monocyte-lineage committed cells. Further culture of myeloid cells in serum-free medium with GM-CSF and IL-4 generated cells that had typical dendritic morphology; expressed high levels of MHC class I and II molecules, CD1a, CD11c, CD80, CD86, DC-SIGN, and CD40; and were capable of Ag processing, triggering naive T cells in MLR, and presenting Ags to specific T cell clones through the MHC class I pathway. Incubation of DCs with A23187 calcium ionophore for 48 h induced an expression of mature DC markers CD83 and fascin. The combination of GM-CSF with IL-4 provided the best conditions for DC differentiation. DCs obtained with GM-CSF and TNF-alpha coexpressed a high level of CD14, and had low stimulatory capacity in MLR. These data clearly demonstrate that hES cells can be used as a novel and unique source of hemopoietic and DC precursors as well as DCs at different stages of maturation to address essential questions of DC development and biology. In addition, because ES cells can be expanded without limit, they can be seen as a potential scalable source of cells for DC vaccines or DC-mediated induction of immune tolerance.  相似文献   

12.
Tissue engineering and cell therapy require large-scale production of homogeneous populations of lineage-restricted progenitor cells that easily can be induced to differentiate into a specific tissue. We have developed straightforward protocols for the establishment of human embryonic stem (hES) cell-derived mesenchymal progenitor (hES-MP) cell lines. The reproducibility was proven by derivation of multiple hES-MP cell lines from 10 different hES cell lines. To illustrate clinical applicability, a xeno-free hES-MP cell line was also derived. None of the markers characteristic for undifferentiated hES cells were detected in the hES-MP cells. Instead, these cells were highly similar to mesenchymal stem cells with regard to morphology and expression of markers. The safety of hES-MP cells following transplantation was studied in severely combined immunodeficient (SCID) mice. The implanted hES-MP cells gave rise to homogeneous, well-differentiated tissues exclusively of mesenchymal origin and no teratoma formation was observed. These cells further have the potential to differentiate toward the osteogenic, adipogenic, and chondrogenic lineages in vitro. The possibility of easily and reproducibly generating highly expandable hES-MP cell lines from well-characterized hES cell lines with differentiation potential into several mesodermal tissues entails an enormous potential for the field of regenerative medicine.  相似文献   

13.
The role of individual supplements necessary for the self-renewal of human embryonic stem (hES) cells is poorly characterized, and furthermore we have found that previously reported feeder cell- and serum-free culture systems used for individual hES cell lines are unable to maintain HUES7 cells for more than one passage. We have therefore derived a feeder/serum-free culture system that can support the long-term (at least 10 passages) self-renewal of several euploid hES cell lines including MAN1, HUES7, and HUES1 with minimal spontaneous differentiation and without the need for manual propagation. This system contains fibroblast growth factor 2, activin A, neurotrophin 4, and the N2, B27 supplements together with a human fibronectin substrate. We demonstrate that these components exert distinct functions: both FGF2 and activin A were necessary to prevent differentiation of hES cells while NT4 promoted cell survival, FGF2 could not be substituted by IGFII, and the fibronectin substrate supported a rapid rate of hES culture expansion. Inhibition studies showed that β1 integrin-dependent attachment of hES cells to fibronectin was at least partially via the α5 subunit but independent of integrin αV.  相似文献   

14.
The biomedical application of human embryonic stem (hES) cells will increasingly depend on the availability of technologies for highly controlled genetic modification. In mouse genetics, conditional mutagenesis using site-specific recombinases has become an invaluable tool for gain- and loss-of-function studies. Here we report highly efficient Cre-mediated recombination of a chromosomally integrated loxP-modified allele in hES cells and hES cell-derived neural precursors by protein transduction. Recombinant modified Cre recombinase protein translocates into the cytoplasm and nucleus of hES cells and subsequently induces recombination in virtually 100% of the cells. Cre-transduced hES cells maintain the expression of pluripotency markers as well as the capability of differentiating into derivatives of all three germ layers in vitro and in vivo. We expect this technology to provide an important technical basis for analyzing complex genetic networks underlying human development as well as generating highly purified, transplantable hES cell-derived cells for regenerative medicine.  相似文献   

15.
Transduction of human embryonic stem cells by ecotropic retroviral vectors   总被引:2,自引:0,他引:2  
The steadily increasing availability of human embryonic stem (hES) cell lines has created strong interest in applying available tools for gene transfer in murine cells to human systems. Here we present a method for the transduction of hES cells with ecotropic retroviral vectors. hES cells were transiently transfected with a construct carrying the murine retrovirus receptor mCAT1. Subsequently, the cells were exposed to replication-deficient Moloney murine leukemia virus (MoMuLV) derivatives or pseudotyped lentiviral vectors. With oncoretroviral vectors, this procedure yields overall transduction efficiencies of up to 20% and permits selection of permanently transduced clones with high frequency. Selected clones maintained expression of pluripotency-associated markers and exhibited multi-germ layer differentiation both in vitro and in vivo. HES cell-derived somatic cells including neural progeny maintained high levels of transgene expression. Lentiviral vectors pseudotyped with the MoMuLV envelope could be introduced in the same manner with efficiencies of up to 33%. Transgene expression of lentivirally transduced hES cells remained permanent after differentiation even without selection pressure. Bypassing the regulatory issues associated with the use of amphotropic retroviral systems and exploiting the large pool of existing murine vectors, this method provides a safe and versatile tool for gene transfer and lineage analysis in hES cells and their progeny.  相似文献   

16.
Summary Human embryonic stem (hES) cells require cooperative interactions with each other for their survival. Previously, the size of hES cell clumps has been reported to be an important factor in determining their viability during routine serial passage. However, the effects of seeding density of the hES cell clumps per se have not yet been investigated. Therefore, this study attempted to compare the level of spontaneous differentiation of hES colonies passaged at two different split ratios (1∶3 and 1∶8) of a single confluent well of a six-well dish. After 7 d of in vitro culture following serial passage, hES colonies were assigned into three grades according to their degree of spontaneous differentiation: (1) Grade A, which was completely or mostly undifferentiated; (2) grade B, which was partially differentiated; and (3) grade C, which was mostly differentiated. Assessment of the degree of spontaneous differentiation was based on morphological observations under bright-field and phase-contrast microscopy, as well as on immunocytochemical staining for the pluripotency markers SSEA-3 and TRA-1-81. We observed that, at a split ratio of 1∶3, the percentages of grade A, B, and C colonies were 89.5, 8.8, and 1.7%, respectively. This was significantly different from the corresponding values of 52.7, 31.3, and 16.0%, respectively, obtained at a split ratio of 1∶8. Hence, our results indicated that a lower passage density led to a higher degree of spontaneous differentiation of hES colonies.  相似文献   

17.
18.
Cognitive impairment in Alzheimer's disease (AD) patients is associated with a decline in the levels of growth factors, impairment of axonal transport and marked degeneration of basal forebrain cholinergic neurons (BFCNs). Neurogenesis persists in the adult human brain, and the stimulation of regenerative processes in the CNS is an attractive prospect for neuroreplacement therapy in neurodegenerative diseases such as AD. Currently, it is still not clear how the pathophysiological environment in the AD brain affects stem cell biology. Previous studies investigating the effects of the β-amyloid (Aβ) peptide on neurogenesis have been inconclusive, since both neurogenic and neurotoxic effects on progenitor cell populations have been reported. In this study, we treated pluripotent human embryonic stem (hES) cells with nerve growth factor (NGF) as well as with fibrillar and oligomeric Aβ1-40 and Aβ1-42 (nM-μM concentrations) and thereafter studied the differentiation in vitro during 28-35 days. The process applied real time quantitative PCR, immunocytochemistry as well as functional studies of intracellular calcium signaling. Treatment with NGF promoted the differentiation into functionally mature BFCNs. In comparison to untreated cells, oligomeric Aβ1-40 increased the number of functional neurons, whereas oligomeric Aβ1-42 suppressed the number of functional neurons. Interestingly, oligomeric Aβ exposure did not influence the number of hES cell-derived neurons compared with untreated cells, while in contrast fibrillar Aβ1-40 and Aβ1-42 induced gliogenesis. These findings indicate that Aβ1-42 oligomers may impair the function of stem cell-derived neurons. We propose that it may be possible for future AD therapies to promote the maturation of functional stem cell-derived neurons by altering the brain microenvironment with trophic support and by targeting different aggregation forms of Aβ.  相似文献   

19.
B lymphocytes play a central role in host immunity. They orchestrate humoral immune responses that modulate activities of other immune cells and produce neutralizing antibodies that confer lasting immunity to infectious diseases including smallpox, measles and poliomyelitis. In addition to these traditional functions is the recent recognition that B cells also play critical role in maintaining peripheral tolerance and suppressing the development or severity of autoimmune diseases. Their immune suppressive function is attributed to relatively rare populations of regulatory B cells (Bregs) that produce anti-inflammatory cytokines including interleukin 10 (IL-10), IL-35 and transforming growth factor-β. The IL-35-producing B cell (i35-Breg) is the newest Breg subset described. i35-Bregs suppress central nervous system autoimmune diseases by inducing infectious tolerance whereby conventional B cells acquire regulatory functions that suppress pathogenic Th17 responses. In this review, we discuss immunobiology of i35-Breg cell, i35-Breg therapies for autoimmune diseases and potential therapeutic strategies for depleting i35-Bregs that suppress immune responses against pathogens and tumor cells.  相似文献   

20.
Cell therapy is emerging as a promising strategy for myocardial repair. This approach is hampered, however, by the lack of sources for human cardiac tissue and by the absence of direct evidence for functional integration of donor cells into host tissues. Here we investigate whether cells derived from human embryonic stem (hES) cells can restore myocardial electromechanical properties. Cardiomyocyte cell grafts were generated from hES cells in vitro using the embryoid body differentiating system. This tissue formed structural and electromechanical connections with cultured rat cardiomyocytes. In vivo integration was shown in a large-animal model of slow heart rate. The transplanted hES cell-derived cardiomyocytes paced the hearts of swine with complete atrioventricular block, as assessed by detailed three-dimensional electrophysiological mapping and histopathological examination. These results demonstrate the potential of hES-cell cardiomyocytes to act as a rate-responsive biological pacemaker and for future myocardial regeneration strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号