首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We succeeded in reconstituting the endogenous nuclear DNA synthesis of the sea urchin. Endogenous DNA synthesis of isolated nuclei was reconstituted by mixing the salt-treated nuclei (chromatin exhibiting essentially no endogenous DNA synthesis) and the salt extract containing DNA polymerase-alpha. DNA synthesis in this reconstitution system showed a level of activity and a mode of inhibition by aphidicolin similar to those of the original isolated nuclei (noncompetitive with respect to dCTP). On the other hand, the inhibitory mode was competitive with respect to dCTP in DNA synthesis in the reconstituted system obtained from the chromatin and purified DNA polymerase-alpha, indicating that some other factor(s) in addition to DNA polymerase-alpha is necessary for the reconstitution with reference to the inhibitory mode of aphidicolin. We also studied the template activity of the chromatin. When chromatin was used as a template, inhibition by aphidicolin of DNA polymerase-alpha was noncompetitive and uncompetitive with respect to the template at high and low concentrations, respectively. Treatment of chromatin with 5 M urea gave urea-treated chromatin (nonhistone protein-deprived chromatin) and the extract (mainly nonhistone protein fraction). Inhibition by aphidicolin of DNA polymerase-alpha was uncompetitive with respect to the urea-treated chromatin. However, when chromatin reconstituted from the urea-treated chromatin and the extract was used as a template, the inhibitory mode by aphidicolin was similar to that with original chromatin, indicating that the nonhistone protein fraction contained factor(s) which modified the inhibitory mode of aphidicolin. Thus, the inhibitory mode of aphidicolin is a useful parameter for monitoring the resolution and reconstitution of endogenous DNA synthesis of isolated nuclei.  相似文献   

2.
3.
Nucleotide excision repair in chromatin and the right of entry   总被引:3,自引:0,他引:3  
Gong F  Kwon Y  Smerdon MJ 《DNA Repair》2005,4(8):884-896
  相似文献   

4.
A cell-free system from Xenopus eggs mimics the reaction occurring at the eukaryotic replicative fork in vivo when chromatin assembly is coupled to complementary strand synthesis of DNA. DNA synthesis on single-stranded circular DNA promotes supercoiling and the replicated molecule sediments as a discrete nucleoprotein complex. Micrococcal nuclease digestion reveals a characteristic pattern of multiples of 200 bp of DNA. The kinetics of chromatin assembly and DNA synthesis are coincident and both processes occur with a rate comparable with chromosomal replication in vivo in early embryos. The DNA synthesis reaction can be uncoupled from the assembly reaction. Thus, titration of chromatin proteins by preincubation of the extract with double-stranded DNA prevents the supercoiling of replicated DNA without affecting the rate of synthesis. In contrast, chromatin assembly performed on unreplicated double-stranded DNA is a slower process as compared with the assembly coupled to DNA synthesis. Supercoiled molecules are detected after 30 min replication whereas at least 2 h are required to observe the first form I DNA with unreplicated double-stranded DNA. Such a system where chromatin assembly is promoted by DNA synthesis should be valuable for studying the interaction of specific factors with DNA during chromatin assembly at the replicative fork.  相似文献   

5.
DNA isolated from (a) liver chromatin digested in situ with endogenous Ca2+, Mg2+-dependent endonuclease, (b) prostate chromatin digested in situ with micrococcal nuclease or pancreatic DNAase I, and (c) isolated liver chromatin digested with micrococcal nuclease or pancreatic DNAase I has been analyzed electrophoretically on polyacrylamide gels. The electrophoretic patterns of DNA prepared from chromatin digested in situ with either endogenous endonuclease (liver nuclei) or micrococcal nuclease (prostate nuclei) are virtually identical. Each pattern consists of a series of discrete bands representing multiples of the smallest fragment of DNA 200 +/- 20 base pairs in length. The smallest DNA fragment (monomer) accumulates during prolonged digestion of chromatin in situ until it accounts for nearly all of the DNA on the gel; approx. 20% of the DNA of chromatin is rendered acid soluble during this period. Digestion of liver chromatin in situ in the presence of micrococcal nuclease results initially in the reduction of the size of the monomer from 200 to 170 base pairs of DNA and subsequently results in its conversion to as many as eight smaller fragments. The electrophoretic pattern obtained with DNA prepared from micrococcal nuclease digests of isolated liver chromatin is similar, but not identical, to that obtained with liver chromatin in situ. These preparations are more heterogeneous and contain DNA fragments smaller than 200 base pairs in length. These results suggest that not all of the chromatin isolated from liver nuclei retains its native structure. In contrast to endogenous endonuclease and micrococcal nuclease digests of chromatin, pancreatic DNAase I digests of isolated chromatin and of chromatin in situ consist of an extremely heterogeneous population of DNA fragments which migrates as a continuum on gels. A similar electrophoretic pattern is obtained with purified DNA digested by micrococcal nuclease. The presence of spermine (0.15 mM) and spermidine (0.5 mM) in preparative and incubation buffers decreases the rate of digestion of chromatin by endogenous endonuclease in situ approx. 10-fold, without affecting the size of the resulting DNA fragments. The rates of production of the smallest DNA fragments, monomer, dimer, and trimer, are nearly identical when high molecular weight DNA is present in excess, indicating that all of the chromatin multimers are equally susceptible to endogenous endonuclease. These observations points out the effects of various experimental conditions on the digestion of chromatin by nucleases.  相似文献   

6.
The distribution of methyl methanesulfonate induced DNA repair was measured in mouse mammary cell chromatin by digestion of "repair labeled" nuclei with micrococcal nuclease. The results indicate that there is a nonuniform distribution of DNA repair in chromatin. The chromatin fraction digested during the first 5 minutes of incubation with micrococcal nuclease appears to be a primary site of DNA repair after methyl methanesulfoante treatment. The observed nonuniform distribution of DNA repair in chromatin may be due to 1)a nonrandom alkylation of DNA in chromatin by methyl methanesulfonate or 2)areas in chromatin of increased accessibility for the repair enzymes to the DNA lesions.  相似文献   

7.
The effect of chromatin non-histone protein on DNA and chromatin stability is investigated by differential thermal denaturation method. 1) Chromatin (rat liver) yields a multiphasic melting profile. The major part of the melting curve of this chromatin is situated at temperatures higher than pure DNA, with a distinct contribution due to nucleosomes melting. A minor part melts at temperatures lower than DNA which may be assigned to chromatin non-histone protein-DNA complex which destabilized DNA structure. 2) Heparin which extracts histones lowers the melting profile of chromatin and one observes also a contribution with a Tm lower that of pure DNA. In contrast, extraction on non-histone proteins by urea supresses the low Tm peak. 3) Reconstitution of chromatin non-histone protein-DNA complexes confirms the existence of a fraction of chromatin non-histone protein which lowers the melting temperature when compared to pure DNA. It is concluded that chromatin non-histone proteins contain different fractions of proteins which are causing stabilizing and destabilizing effect on DNA structure.  相似文献   

8.
Methylation of chromatin DNA.   总被引:6,自引:4,他引:2       下载免费PDF全文
E. coli DNA methylase has been used to methylate chromatin DNA in vitro. At saturation only 50% of the chromatin DNA becomes methylated. The methylated regions of chromatin correspond to that fraction of the chromatin which is sensitive to staphylococcal nuclease. Using in vitro methylated chromatin followed by nuclease digestion movement of chromatin proteins along the DNA can be detected. By this criterion, sonication of chromatin or precipitation with MnCl2 causes 10% of the previously uncovered methylated regions to become covered by protein. Reconstitution of methylated chromatin results in the randomization of the chromatin proteins. Using nuclei which were methylated in vitro we have demonstrated that a small degree of protein sliding does occur during the preparation of chromatin from nuclei. Finally, we have prepared open region DNA by polylysine titration. This procedure does not cause displacement of chromatin proteins.  相似文献   

9.
Various fragments of pigeon brain neuron chromatin with very short linker DNA have been studied by circular dichroism (CD). The DNA structure in core particles of the brain and thymus chromatins is very similar. Linker DNA and a part of core DNA in the mononucleosomes of brain chromatin is extended. This conclusion follows from increasing CD amplitude of the brain mononucleosomes as compared with the corresponding value for thymus mononucleosomes. The internucleosome interactions stabilized the compactness of core DNA in the brain oligonucleosomes. The whole linker DNA of the brain chromatin unlike thymus chromatin is extended at low ionic strength. This fact can explain the brain chromatin ability to form a compact structure with increasing ionic strength.  相似文献   

10.
Chromatin has been isolated from cultured Chinese-hamster lung fibroblasts as an expanded aqueous gel. The DNA in isolated chromatin has been examined by sedimentation on alkaline sucrose gradients. The average molecular weight of the DNA has been determined to be 50 million. gamma-irradiation of isolated chromatin degrades the DNA to lower molecular weight. The yield of single-strand breaks in the DNA is 0.02 single-strand breaks per krad-10(6) dalton, calculated from a dose-range of &--400 krad and covering a DNA molecular weight range of 2 X 10(7)-1.4 X 10(5). There is a considerable difference in the efficiency of the formation of single-strand breaks in DNA irradiated as isolated chromatin compared with chromatin irradiated in whole cells before isolation. For isolated chromatin, values of 6 dV per break have been calculated compared with about 80 eV per break for chromatin irradiated in whole cells, which suggest a large contribution from indirect action by aqueous radicals in isolated chromatin.  相似文献   

11.
Pancreatic DNase I was used as a probe to study DNA-protein interactions in condensed and extended chromatin fractions isolated from Chinese hamster liver, and in human lymphocyte and mouse L cell metaphase chromosomes in situ. By studying the rate of digestion of chromatin DNA by DNase, we have previously shown that DNA in extended chromatin is more sensitive to DNase digestion than that in condensed chromatin. In the current investigation, we have examined whether this differential sensitivity of the chromatin fractions to DNase is due to differences in protein binding to DNA or differences in the degree of chromatin condensation. By “decondensing” the condensed chromatin and comparing its rate of digestion to that of untreated condensed and extended chromatin, it was found that differences in the degree of binding of proteins to DNA rather than the degree of condensation of the chromatin primarily determines the sensitivity of each fraction to DNase. Extraction of the various classes of chromosomal proteins, followed by DNase digestion of the residual chromatin revealed that both the histone and non-histone proteins protect the DNA in the chromatin fractions from DNase attack; however, the more tightly associated non-histones appear to be specifically responsible for the differential sensitivity of the chromatin fractions to DNase digestion. These non-histones may be more tightly associated with the DNA in condensed than in extended chromatin, thereby protecting the DNA in condensed chromatin against DNase attack to a greater extent than that in extended chromatin. When metaphase chromosomes were briefly digested with DNase in situ and subsequently stained with Feulgen reagent, incontrovertible C-banding and some G-banding was obtained. This DNaseinduced banding demonstrates that the DNA in C-band and possibly G-band regions is less accessible to DNase than that in the interband regions, and our biochemical data suggest that this differential accessibility is caused by differential DNA-protein binding such that the non-histones are more tightly coupled to the DNA in the G- and C-band regions than they are in the interbands. Differences in the binding of non-histones to DNA in different segments of the metaphase chromosome may be involved in the mechanism of G- and C-banding.  相似文献   

12.
13.
Electrostatic mechanism of chromatin folding   总被引:16,自引:0,他引:16  
  相似文献   

14.
A chromatin fraction solubilized from mouse myeloma nuclei under near-physiological ionic conditions by very mild micrococcal nuclease digestion at 0°C is enriched at least 7-fold in DNA complementary to total myeloma polyadenylated mRNA, and 15-fold in DNA originating near the replication fork (labeled within 30 s). Newly replicated DNA recovered in solubilized chromatin after brief labeling was incorporated mainly into particles sedimenting with, or faster than, mononucleosomes. A rapid decrease in enrichment of newly replicated DNA in readily released, soluble chromatin with increasing labeling times indicated that newly replicated chromatin matured within 90 s to a form that was partitioned similarly to bulk chromatin by this fractionation method. Previous studies showed that chromatin readily solubilized from myeloma nuclei is enriched in high-mobility-group (HMG) and other non-histone proteins, RNA and single-stranded DNA; and depleted in H1 and 5-methylcytosine, relative to bulk chromatin (Jackson, J.B., Pollock, J.M., Jr., and Rill, R.L. (1979) Biochemistry 18, 3739–3748). Mild digestion of chicken erythrocyte nuclei with micrococcal nuclease yielded a soluble chromatin fraction (1–2% of the total DNA) with similar properties. This fraction was enriched at least 6-fold in DNA complementary to chicken globin mRNA, relative to total erythrocyte DNA.  相似文献   

15.
Increased amounts of chromatin condensation (i.e., localized areas of high DNA density, or chromatin higher order packing state) have been described in NIH 3T3 cells transformed with the Ha-ras oncogene. The structural basis for this oncogene-mediated alteration in nuclear organization is unknown. Since DNA methylation is likely to be involved in regulating the nucleosomal level of DNA packaging, we studied the role of DNA methylation in higher-order chromatin organization induced by Ha-ras. CpG-methylated DNA content was estimated in "condensed" chromatin of Ha-ras-transformed NIH 3T3 cell lines which differ in ras expression and ras-induced metastatic ability but present approximately the same values of "condensed" chromatin areas. The question posed was that if DNA methylation were involved with the chromatin higher-order organization induced by Ha-ras in these cell lines, the methylated DNA density in the "condensed" chromatin would also be the same. The DNA evaluation was performed by video image analysis in Feulgen-stained cells previously subjected to treatment with Msp I and Hpa II restriction enzymes, which distinguish between methylated and non-methylated DNA. The amount of methylated CpG sequences not digested by Hpa II in "condensed" chromatin regions was found to vary in the studied ras-transformed cell lines. DNA CpG methylation status is thus suggested not to be involved with the higher order chromatin condensation induced by ras transformation in the mentioned NIH 3T3 cell lines.  相似文献   

16.
Purified duck reticulocyte DNA was incubated in vitro with a 7,8-dihydrodiol-9,10-oxide derivative of benzo(a)pyrene (BPDE). The carcinogen-modified DNA was somewhat more susceptible to partial digestion by the single strand specific endonuclease S1 than unmodified DNA, suggesting slight denaturation of the helix at sites of modification. Chromatin was reconstituted in vitro utilizing this carcinogen-modified DNA and unmodified-chromatin associated proteins. This reconstituted chromatin showed the same kinetics and extent of digestion by Staphylococcal nuclease, and similar nucleosome profiles on sucrose density gradient centrifugation, as those obtained with native chromatin or chromatin reconstituted with unmodified DNA. Moreover, polyacrylamide gel electrophoresis of DNA fragments obtained from nuclease digests gel electrophoresis of DNA fragments obtained from nuclease digests of the reconstituted chromatins suggested that the chromatin containing carcinogen-modified DNA had the same subnucleosome structure as that reconstituted with unmodified DNA. In a separate set of studies intact duck reticulocyte chromatin was reacted directly with BPDE. Nuclease digestion studies indicated that 65% of the carcinogen was bound to the ‘open’ regions of chromatin, and 35% to ‘closed’ regions.These results indicate that although covalent binding of a benzo(a)pyrene (BP) derivative to DNA produces local distortions in conformation of the helix, this modification does not appear to interfere with the ability of the DNA to associate with histones to form nucleosome structures. In addition, although DNA in the open regions of chromatin is more susceptible to reaction with the BP derivative, there is appreciable reaction with the DNA associated with histones.  相似文献   

17.
Mouse DNA and chromatin were melted on hydroxyapatite and the denaturation profiles of ribosomal and satellite DNAs were followed by hybridization with their complementary RNAs. Neither ribosomal nor bulk DNA had significantly different melting profiles in chromatin as compared to DNA. However, most of satellite DNA eluted at higher temperature from chromatin than from purified DNA. One explanation for the higher melting temperature of mouse satellite DNA in chromatin suggests that the complex between this particular DNA component and at least some proteins in chromatin is more stable than the average DNA-protein interaction.  相似文献   

18.
The packaging of DNA into nucleosomes and the organisation into higher order structures of chromatin limits the access of sequence specific DNA binding factors to DNA. In cells, DNA methylation is preferentially occuring in the linker region of nucleosomes, suggesting a structural impact of chromatin on DNA methylation. These observations raise the question whether DNA methyltransferases are capable to recognize the nucleosomal substrates and to modify the packaged DNA. Here, we performed a detailed analysis of nucleosome binding and nucleosomal DNA methylation by the maintenance DNA methyltransferase Dnmt1. Our binding studies show that Dnmt1 has a DNA length sensing activity, binding cooperatively to DNA, and requiring a minimal DNA length of 20 bp. Dnmt1 needs linker DNA to bind to nucleosomes and most efficiently recognizes nucleosomes with symmetric DNA linkers. Footprinting experiments reveal that Dnmt1 binds to both DNA linkers exiting the nucleosome core. The binding pattern correlates with the efficient methylation of DNA linkers. However, the enzyme lacks the ability to methylate nucleosomal CpG sites on mononucleosomes and nucleosomal arrays, unless chromatin remodeling enzymes create a dynamic chromatin state. In addition, our results show that Dnmt1 functionally interacts with specific chromatin remodeling enzymes to enable complete methylation of hemi-methylated DNA in chromatin.  相似文献   

19.
Nascent DNA (newly replicated DNA) was visualized in situ with regard to the position of the previously replicated DNA and to chromatin structure. Localization of nascent DNA at the replication sites can be achieved through pulse labeling of cells with labeled DNA precursors during very short periods of time. We were able to label V79 Chinese Hamster cells for as shortly as 2 min with BrdU; Br-DNA, detected by immunoelectron microscopy, occurs at the periphery of dense chromatin, at individual dispersed chromatin fibers, and within dispersed chromatin areas. In these regions DNA polymerase alpha was also visualized. After a 5-min BrdU pulse, condensed chromatin also became labeled. When the pulse was followed by a chase, a larger number of gold particles occurred on condensed chromatin. Double-labeling experiments, consisting in first incubating cells with IdU for 20 min, chased for 10 min and then labeled for 5 min with CldU, reveal CldU-labeled nascent DNA on the periphery of condensed chromatin, while previously replicated IdU-labeled DNA has been internalized into condensed chromatin. Altogether, these results show that the sites of DNA replication correspond essentially to perichromatin regions and that the newly replicated DNA moves rapidly from replication sites toward the interior of condensed chromatin areas.  相似文献   

20.
Using UV-induced cross-linking between proteins and DNA, the contacts between single-stranded DNA-binding proteins (SSB proteins) and chromatin DNA have been demonstrated. Ehrlich ascites tumour DNA was labeled in vivo by inoculation of tumour-bearing mice with 3H-thymidine. The cells were irradiated with the UV light dose of 3000 J/m2, destroyed in a Triton X-100-containing hypotonic medium, and separated by centrifugation into the extrachromatin fraction and chromatin. Chromatin DNA was digested with DNAase 1, and the chromatin proteins were extracted with 2 M NaCl-polyethyleneglycol. SSB proteins from the extrachromatin fraction and chromatin were purified. Only SSB proteins from UV-irradiated cell chromatin appeared to possess a high specific radioactivity which exceeded 7.5-fold that of non-irradiated cells. There were no differences between chromatin SSB proteins in control and irradiated cells as could be evidenced from SDS electrophoresis data. It is assumed that in irradiated cells SSB proteins of DNA-digested chromatin are covalently cross-linked with DNA fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号