首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Community assembly is a dynamic progression that reflects the interaction of several processes functioning at multiple scales. Understanding how these processes work in communities at different successional stages is important for identifying when regional or local processes are more important for community assembly, and for developing effective preservation and restoration strategies. We examined community assembly using a chronosequence of sub‐alpine meadows in Qinghai‐Tibetan Plateau that range from ‘natural’ (never farmed), to those that have been protected from agricultural exploitation for 1 to 10 years. We tested for shifts in species and traits among meadows and also for changes in environmental and spatial correlates of species distributions within meadows. We found that species richness increased and species composition returned to natural conditions within ten years of protection. These changes coincided with shifts in species traits; abundant species had high seed mass and specific leaf area in late‐successional meadows, whereas the opposite occurred in early‐successional meadows. Despite these shifts among meadows of different ages, spatial distributions of species within meadows did not change – when associated with abiotic variables, these spatial patterns reflected changes in soil pH and nitrogen. There was also no consistent change in the relative importance of environmental and spatial correlates of species distributions within meadows. These trends indicate that local processes of community assembly are similar within meadows even when species in those meadows differ. We conclude that successional change is a large‐scale process that alters the species pool and resulting suite of traits that are present within meadows. As a result, regional planning that incorporates successional age should be the focus for the conservation of diversity in this area. In contrast, local processes work within the constraints of the species pool set by successional age, producing consistent patterns within meadows of different ages.  相似文献   

2.
The evidence for species diversity effects on ecosystem functions is mainly based on studies not explicitly addressing local or regional processes regulating coexistence or the importance of community structure in terms of species evenness. In experimental communities of marine benthic microalgae, we altered the successional stages and thus the strength of local species interactions by manipulating rates of dispersal and disturbance. The treatments altered realized species richness, evenness and community biomass. For species richness, dispersal mattered only at high disturbance rates; when opening new space, dispersal led to maximized richness at intermediate dispersal rates. Evenness, in contrast, decreased with dispersal at low or no disturbance, i.e. at late successional stages. Community biomass showed a non-linear hump-shaped response to increasing dispersal at all disturbance levels. We found a positive correlation between richness and biomass at early succession, and a strong negative correlation between evenness and biomass at late succession. In early succession both community biomass and richness depend directly on dispersal from the regional pool, whereas the late successional pattern shows that if interactions allow the most productive species to become dominant, diverting resources from this species (i.e. higher evenness) reduces production. Our study emphasizes the difference in biodiversity–function relationships over time, as different mechanisms contribute to the regulation of richness and evenness in early and late successional stages.  相似文献   

3.
Post-fire succession of small mammals in the Cerrado of central Brazil   总被引:1,自引:0,他引:1  
In the Cerrado savannas from Brazil fire events are common and strongly influence the vegetation structure and, consequently, the associated small mammals. In this paper, we investigate changes in the structure of small mammal communities related to sites of different post-fire ages. Mammals were captured in similar Cerrado sites that differed in time since the last burn (1 to 26 yr). We sampled six sites in the wet season of 1997 (phase 1) and, three years later, six sites in the wet and dry seasons (phase 2). Six rodent species and four marsupials were captured. Community composition changed drastically as a function of time since fire. The diversity and abundance of small mammals reached maximum values in the early successional stages. The rodent Calomys tener was present only in early seral stages. The rodent Bolomys lasiurus was more frequent in mid-successional stages and decreased in later seral stages, and the rodent Oryzomys subflavus occupied all successional stages. The marsupial Gracilinanus agilis was dominant in the area that did not burn for at least 23 yr. Changes in composition of the community of small mammals were more accelerated in early successional stages, when there are more drastic vegetational changes. The ability of small mammals to cope with Cerrado fires and the great dissimilarity among post-burning seral stages suggest that a mosaic of areas representing different post-fire seral stages could increase the regional diversity of this group.  相似文献   

4.
黄土高原子午岭大披针苔草能量与养分特征   总被引:1,自引:0,他引:1  
对黄土高原子午岭林区不同植被群落的优势伴生种--大披针苔草的能量和养分特征进行了研究.结果表明:随着演替的进展,处于不同演替阶段群落的大披针苔草地上部分和地下部分去灰分热值呈下降趋势.狼牙刺群落的大披针苔草地上部分去灰分热值最高,沙棘群落的最低; 狼牙刺群落的大披针苔草地下部分去灰分热值最高, 辽东栎群落的最低.不同群落大披针苔草地上部分热值均明显高于地下部分, 且不同群落大披针苔草地下部分干质量热值和去灰分热值均呈极显著差异.处于演替早期的各群落(狼牙刺、沙棘、山杨和白桦群落)内的大披针苔草热值差异较大,而演替后期的油松和辽东栎群落的大披针苔草热值差异较小.大披针苔草地下部分干质量热值与C/N呈显著正相关关系.  相似文献   

5.
Aims The community succession theory is much debated in ecology. We studied succession on Zokor rodent mounds on the Tibetan Plateau to address several fundamental questions, among them: (i) During secondary succession, does the community composition converge towards one community state or multiple states depending on the initial colonization? (ii) Do mound communities located in different background communities exhibit different assembly trajectories?Methods In a sub-alpine meadow, we investigated a total of 80 mound communities at several successional stages in three different background communities resulting from different management histories and compared their changes in species composition. The distribution of plant communities over time was analyzed with quantitative classification and ordination methods. The co-occurrence patterns of species were evaluated at each successional stage, and the degree of convergence/divergence among communities was obtained by calculating two beta-diversity indices.Important findings During secondary succession, species richness of mound communities changed over time, and this change was dependent on the background community. Five life-form groups exhibited different dynamic patterns in species richness and plant cover. Community composition and the degree of species co-occurrence between communities increased over time since disturbance. There was much variation in species composition at earlier stages of succession, but communities on older mounds became more similar to each other and to their surrounding vegetation over the course of secondary succession. Post-disturbance succession of Zokor mound communities transitioned from 'multiple alternative states' to 'background-based deterministic community assembly' over time. Tradeoffs between competition and colonization, as well as the characteristics of different life-forms and mass effects within a limited species pool are the mechanisms responsible for convergence of mound communities.  相似文献   

6.
Evidence regarding the ability of agroforests to conserve biological diversity has been mixed; they tend to maintain avian communities with species richness similar to that of undisturbed forest ecosystems but generally do not completely preserve community composition. Using a combination of occupancy modeling and non-metric multidimensional scaling on point-count data, we assessed changes in avian community diversity and composition along a successional gradient in traditional Lacandon Maya agroforests and compared them to protected areas in the region. Bird species richness and diversity in Lacandon agroforests peaked in early secondary forest stages. These agroforests' mean Shannon–Weiner diversity was 5% higher than that of nearby protected areas, but their species richness was similar. Community composition in Lacandon agroforests changed throughout succession, with earlier stages supporting communities distinctly characterized by generalist species, while subsequent, less-intensively managed stages tended to support more forest-dwellers. The bird community observed in even the most mature secondary forest stages in Lacandon agroforests differed from that of undisturbed rain forest ecosystems. These results demonstrate the potential of traditional Lacandon agroforestry management to conserve avian biodiversity while ensuring food sovereignty for farmers. However, because the community composition of early-successional stages was different than later stages, shortening fallow cycles and reducing forest cover to increase agricultural production will limit the species this system can support. This study illustrates the value of incorporating traditional agroecosystems into conservation planning as well as maintaining protected areas, because the latter serve as refugia for species that require undisturbed forest habitat in an agroecological matrix.  相似文献   

7.
Ecosystem restoration provides unique opportunities to study community dynamics under succession and can reveal how consumer communities re-assemble and respond to successional changes. Studying community dynamics from both taxonomic and functional trait perspectives also may provide more robust assessments of restoration progress or success and allow cross-system comparisons. We studied ground beetle (Coleoptera: Carabidae) communities for three years in a restored grassland chronosequence with sites from 0 to 28 years old. We measured traditional community metrics (abundance, richness, Shannon diversity) and functional trait metrics based on species’ body length, wing morphology, activity time, phenology, and diet. Communities had high species richness and abundance in early successional stages, but these declined in later stages to low levels comparable to an adjacent grassland remnant. Species composition also shifted with time, converging with the remnant. Although functional richness, like species richness, declined as succession progressed, functional divergence quickly increased and was maintained over time, suggesting niche differentiation in established communities. Young sites were typified by small, macropterous, phytophagous species, while older sites contained larger species more likely to be flightless and carnivorous. Prescribed burns also affected traits, decreasing prevalence of larger species. This study demonstrates that functionally diverse consumer communities can self-assemble under restoration practices. In a relatively short amount of time both morphological and trophic level diversity are established. However, prescribed fire intended to control non-desirable plants may also shape beetle community functional composition, and restoration managers should consider if plant community benefits of fire outweigh potential declines in consumer function.  相似文献   

8.
9.
10.
Successional chronosequences provide a unique opportunity to study the effects of multiple ecological processes on plant community assembly. Using a series of 0.5 × 0.5 m2 plots (n = 30) from five successional sub‐alpine meadow plant communities (ages 3, 5, 9, 12, and undisturbed) in the Qinghai‐Tibetan Plateau, we investigated whether community assembly is stochastic or deterministic for species and functional traits. We tested directional change in species composition, functional trait composition, and then functional trait diversity measured by Rao's quadratic entropy for four traits – plant height, leaf dry matter content, specific leaf area, and seed mass – along two comparable successional chronosequences. We then evaluated the importance of species interactions, habitat filtering and stochasticity by comparing with random communities and partitioning the environmental and spatial components of Rao's quadratic entropy. We found no directional change in species composition, but clear directionality in functional trait composition. None of the abiotic environmental variables (except P) showed linear change with successional age, but soil moisture and nitrogen were positively related to functional diversity within meadows. Functional trait diversity increased significantly with the increase in successional age. Comparison with random communities showed a significant shift from trait divergence in early stages of succession (3‐ and 5‐yr) to convergence in the later stages of succession 9‐, 12‐yr and undisturbed). The relative importance of abiotic variables and spatial structure for functional trait diversity changed in a predictable manner with successional age. Stochasticity at the species level may indicate dispersal limitation, but deterministic effects on functional trait distributions show the role of both habitat effects and biotic interactions.  相似文献   

11.
Early successional communities on islands may include specialised aeolian-based pioneer arthropods scavenging on aerial fallout on volcanic lava or ash. Some such species appear to be restricted to such extreme habitats. Persistence of such species may be governed by volcanic activity and their future thus be beyond the control of people. Surveys to determine their presence elsewhere are needed to determine their possible status as refugees in later successional stages, and as a basis for any more informed conservation measures. Insect colonization patterns on Surtsey and Anak Krakatau are briefly reviewed and contrasted to indicate the background to insect community formation on remote islands.  相似文献   

12.
Abstract. Many ecological studies have addressed issues of vegetation spatial patterns in attempts to understand the processes generating them. We investigated changes in ecological processes during succession via the analysis of shrubs’ spatial patterns in a system of linear sand dunes, an arid ecosystem located in the Negev Desert in Israel during three consecutive years. We hypothesized that spatial patterns change from clustered to regular as succession progresses due to changes in the relative importance of facilitation and competition in this environment. In this ecosystem communities of early successional stages are frequently disturbed by high rates of sand movement, whereas in later successional stages sand stability is high. We mapped in the field individual shrubs on high‐resolution aerial photographs, and converted the digital images to a GIS data set. Using Ripley's K‐function we analysed spatial patterns at three levels: the single‐species level, among species and at the individual level, in three communities characterizing different successional stages. In the early successional communities we found clustered spatial patterns, in comparison with stable habitats where spatial patterns tended to be regular. We argue that these shifts in spatial patterns are indicative of the assumption that in this sand‐dune system ecological interactions change from facilitation to competition as succession progresses. Further, we argue that these interactions operate in different spatial scales at the different successional stages, and that the study of these processes should be conducted at the spatial scales specific to each community.  相似文献   

13.
The invertebrate community living in algal mats on intertidal boulders was studied for 2 yr. The diversity and abundance of the animals increased between the early and middle stages of algal succession, then remained similar into the later stage. Three possible mechanisms producing this pattern were investigated experimentally by manipulating natural algal mats and plastic algal mimics in the field and laboratory and evaluating the community of colonizing invertebrates. The first, the “ecological time” hypothesis, suggests that there are more species and individuals in later stages because they accumulate slowly with time; this hypothesis was tested experimentally and rejected. A second, “algal toxicity” hypothesis suggests that species richness and abundance are lower in earlier successional stages because the early colonizing green algae are more toxic to animals than are the later red algae. This hypothesis was also tested experimentally and rejected. The third, “habitat complexity” hypothesis suggests that increases in complexity of physical aspects of algal structure (biomass, surface area) cause increases in invertebrate richness and abundance. The fact that this result was found in both living algae and plastic mimics indicates that biological aspects of algal structure apparently have only minor importance. Algal biomass and surface area increase from early to middle successional stages; middle and late successional stages are similar. In general, increases in these physical aspects of algal structure produce concomitant increases in the abundance and diversity of the associated animal community. With higher biomass and surface area, increased numbers of individuals accumulate in algal mats. Because a larger sample of the available pool of individuals is therefore collected, more species are found in a given area of algal mat when the structure is more complex. The successional patterns of increase in species richness of this invertebrate community seem to result from this sampling phenomenon, rather than from increases in numbers of resources (i.e., “niches”).  相似文献   

14.
In urban brownfields (derelict sites), we studied the influence of local factors (successional age, vegetation structure, soil) and landscape context (spatial arrangement of brownfields of different successional stages) on the diversity of phytophagous insects, grasshoppers and leafhoppers (Orthoptera and Hemiptera: Auchenorrhyncha). The study was conducted on a total of 246 plots in the cities of Bremen and Berlin, Germany. We used a habitat modelling approach, enabling us to predict the community from single species models (30 species in Bremen, 28 in Berlin).
The results revealed that communities were predominantly determined by vegetation structure, followed by landscape context, soil parameters and site age. For most species, local factors were the most important. Only few species were strongly influenced by landscape context, even though some showed clear negative reactions to low proportions of brownfields in the surroundings.
Along a successional gradient of vegetation structure, from scarce and low to dense and high vegetation, the insect community was not static. Even though species numbers remained comparatively constant, species composition changed considerably. Many species showed clear preferences for certain successional stages. Thus, maintaining the regional species pool of a city requires a mosaic of all successional stages.  相似文献   

15.
通过对贵州省普定县喀斯特地区不同植被演替阶段群落的调查, 研究了植被演替过程中群落物种组成和群落结构的变化。结果表明, 该地区的植被主要处于5个演替阶段, 即次生乔木林、乔灌过渡林、藤刺灌丛、稀灌草丛以及火烧干扰后的蕨类植物群落。本次调查共记录到植物365种, 隶属89科218属。其中, 蕨类植物31种, 隶属14科23属; 种子植物334种, 隶属75科195属。物种分布较多的科主要有蔷薇科、菊科、禾本科、百合科、忍冬科、唇形科、莎草科、樟科、葡萄科和水龙骨科。随着正向演替的推进, 物种丰富度增加, 群落结构趋于复杂化。藤刺灌丛与乔灌过渡林群落层次不明显, 次生乔木林分层明显。从藤刺灌丛向次生乔木林演替的过程中, 小径级个体所占比例明显降低, 高于1.3 m植物的总密度、乔木密度和藤本密度都先升高后降低, 而灌木密度呈逐渐降低的趋势。对喀斯特地区植被的恢复提出了参考措施。  相似文献   

16.
Forest succession can influence herbivore communities through changes in host availability, plant quality, microclimate, canopy structure complexity and predator abundance. It is not well known, however, if such influence is constant across years. Caterpillars have been reported to be particularly susceptible to changes in plant community composition across forest succession, as most species are specialists and rely on the presence of their hosts. Nevertheless, in the case of tropical dry forests, plant species have less defined successional boundaries than tropical wet forests, and hence herbivore communities should be able to persist across different successional stages. To test this prediction, caterpillar communities were surveyed during eight consecutive years in a tropical dry forest in four replicated successional stages in Chamela, Jalisco and Mexico. Lepidopteran species richness and diversity were equivalent in mature forests and early successional stages, but a distinctive caterpillar community was found for the recently abandoned pastures. Species composition tended to converge among all four successional stages during the span of eight years. Overall, our results highlight the importance of both primary and secondary forest for the conservation of caterpillar biodiversity at a landscape level. We also highlight the relevance of long‐term studies when assessing the influence of forest succession to account for across year variation in species interactions and climatic factors. Abstract in French is available with online material.  相似文献   

17.
Soil organisms can strongly affect competitive interactions and successional replacements of grassland plant species. However, introduction of whole soil communities as management strategy in grassland restoration has received little experimental testing. In a 5-year field experiment at a topsoil-removed ex-arable site ( receptor site ), we tested effects of (1) spreading hay and soil, independently or combined, and (2) transplanting intact turfs on plant and soil nematode community development. Material for the treatments was obtained from later successional, species-rich grassland ( donor site ). Spreading hay affected plant community composition, whereas spreading soil did not have additional effects. Plant species composition of transplanted turfs became less similar to that in the donor site. Moreover, most plants did not expand into the receiving plots. Soil spreading and turf transplantation did not affect soil nematode community composition. Unfavorable soil conditions (e.g., low organic matter content and seasonal fluctuations in water level) at the receptor site may have limited plant and nematode survival in the turfs and may have precluded successful establishment outside the turfs. We conclude that introduction of later successional soil organisms into a topsoil-removed soil did not facilitate the establishment of later successional plants, probably because of the "mismatch" in abiotic soil conditions between the donor and the receptor site. Further research should focus on the required conditions for establishment of soil organisms at restoration sites in order to make use of their contribution to grassland restoration. We propose that introduction of organisms from "intermediate" stages will be more effective as management strategy than introduction of organisms from "target" stages.  相似文献   

18.
种间关系是植物群落重要的数量和结构特征之一, 分析群落不同垂直层次物种的种间联结和相关性对于理解群落结构、动态和分类等具有重要的生态意义。该研究选取浙江省天童处于演替前期的枫香树(Liquidambar formosana)群落乔木层3个物种、亚乔木层3个物种以及灌木层28个物种为研究对象, 应用基于二元数据的方差比率法、χ2统计量检验和基于数量数据的Spearman秩相关系数检验研究了3个垂直层次间物种的联结性与相关性。结果发现: (1)乔木层与亚乔木层物种总体间存在不显著正联结, 乔木层与亚乔木层主要物种间相互独立的种对较多, 较少种对显著联结或相关; (2)乔木层与灌木层物种总体显著正联结, 显著关联或相关的种对较多, 种对间依赖性较强; (3)亚乔木层与灌木层物种总体同样存在显著正联结, 种对间关系较为紧密。该研究结果表明: 群落垂直层次间物种生态习性和对生境适应的趋同性, 以及在垂直方向上对生境要求的互补性差异是决定演替前期种对关系的主要因素。  相似文献   

19.
《植物生态学报》2015,39(12):1136
Aims Interspecific relationship is one of the most important properties in plant communities. Analyzing species association and correlation between vertical layers in plant communities is ecologically crucial for understanding community structure, dynamics and classification. The objective of this study was to test how plant species in contrasting vertical layers of plant communities associate and correlate. Methods The study sites are located in Tiantong region in Zhejiang Province. Community structure and species composition were measured in an early successional community of Liquidambar formosana. Interspecific relationships were examined between 3 tree species and 3 sub-tree species, between 3 tree species and 28 shrub species, and between 3 sub-tree species and 28 shrub species. Interspecific relationships were analyzed by using χ2-test for 2 × 2 contingency table, variance ratio (VR) test and spearman rank correlation test.Important findings With respect to tree and sub-tree layers, positive significant association was not observed for overall species. Species were independent with each other for most species pairs. Few species pairs showed significant association or correlation. Regarding tree and shrub layers, there were significant positive associations between overall species. Species between tree and shrub layers were more dependent on each other, with the most species showing significant association or correlation. Similarly, positive significant association existed for overall species between sub-tree and shrub layers, displaying a close interspecific relationship. These results suggest that the convergences of species behavior and habitat acclimatization, and complementary differences in habitat requirement over species between vertical layers might be the main driver affecting patterns of species association and correlation in the early successional community.  相似文献   

20.
海南岛吊罗山热带山地雨林两个演替阶段的种间联结性   总被引:16,自引:0,他引:16  
种间联结一直是群落演替理论研究的焦点之一, 关于物种间相互作用与群落演替之间的动态关系仍然存在争议。本文中, 作者通过出现-不出现数据的方差比例、基于2×2列联表的种间联结分析和 2检验, 对海南岛吊罗山热带山地雨林演替前期和演替后期群落的种间联结性进行了研究, 以揭示种间联结与群落演替的相互作用。结果表明: (1)在演替前期, 群落内所有树种间总体呈正联结, 但不显著; 发展至演替后期达到显著正联结。群落内所有物种间正、负联结种对数占总种对数的比例随演替进程呈现下降趋势, 而无联结种对数的比例则大幅上升; 优势种和伴生种间呈现相同的趋势。这表明群落演替正朝着有利于物种稳定共存的方向发展。(2)演替前期建群种和后期侵入种间正联结与无联结种对数的比例(分别为37.8%与41.5%)远大于负联结的比例(20.7%), 但正联结均不显著; 前期定居树种和后期侵入种通过分割资源而共存, 而且也趋于独立存在。(3)后期侵入种间不存在负联结, 所有正联结(占总对数的33.3%)均达显著水平, 显示它们对生境有相似的适应和相互重叠的生态位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号