首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability to elicit protective immune responses after intranasal immunization with rotavirus particles, either with or without the attenuated Escherichia coli heat-labile enterotoxin LT(R192G) as an adjuvant, was examined in the adult mouse model. BALB/c mice were administered one or two inoculations of psoralen/UV-inactivated, triple-layered (tl) or double-layered (dl) purified rotavirus particles. Four weeks after immunization, mice were challenged with the murine rotavirus strain EDIM, and the shedding of rotavirus antigen was quantified. Rotaviruses used for immunization included EDIM and heterotypic simian (RRV), bovine (WC3), and human (89-12) strains. tl EDIM stimulated both systemic and intestinal rotavirus antibody responses and complete protection with as little as one 1-microgram dose. Inclusion of LT(R192G) (10 micrograms) significantly increased rotavirus antibody responses and reduced antigen concentrations needed for full protection. Both dl EDIM and heterotypic dl and tl particles stimulated protection, but they did so less than tl EDIM at comparable concentrations, either with or without LT(R192G). When B-cell-deficient microMt mice were immunized with tl EDIM particles, protection was reduced to levels similar to those induced with dl EDIM and heterotypic particles in BALB/c mice. However, dl EDIM particles induced similar levels of protection in both mouse strains. The protection stimulated by tl or dl EDIM particles was not diminished by CD8 cell depletion prior to immunization in either strain of mice. These results indicate that tl EDIM induced immunity at least partially through responses to its outer capsid proteins, presumably by stimulation of serotype-specific neutralizing antibody. In contrast, the other particles stimulated protection primarily by an antibody-independent mechanism. Finally, depletion of CD8 cells had no effect on protection by either mechanism.  相似文献   

2.
The pathogenic profiles of two heterologous animal rotaviruses, rhesus rotavirus strain MMU 18006 and bovine rotavirus strain WC3, were evaluated in mice with severe combined immunodeficiency (SCID mice) and normal BALB/c mice. Control animals were inoculated with homologous murine strain EDIM 5099 or a tissue culture-adapted murine rotavirus. Heterologous infection with rhesus rotavirus resulted in hepatitis in 84% of SCID and 21% of BALB/c mice, with mortality rates of 27 and 0%, respectively. Surviving SCID animals developed chronic liver disease, while symptoms in BALB/c mice resolved in 2 to 4 weeks after onset. Histopathologic examination revealed a diffuse hepatitis with focal areas of parenchymal necrosis. Rotavirus was detected in liver tissue from 100% of 29 SCID and 85% (11 of 13) BALB/c animals tested by cell culture infectivity, immunofluorescence, or electron microscopy. No extramucosal spread of virus or hepatitis was observed after infection with heterologous bovine strain WC3 or homologous murine rotaviruses. This finding of a novel rotavirus-induced disease manifestation suggests altered tissue tropism in a heterologous host for a group of viruses previously shown to replicate exclusively in the gut mucosa. The implications of our observations suggest that in human vaccine trials utilizing heterologous rotavirus strains, special attention should be paid to children with immunodeficiency disorders, and screening for hepatic function should be included in vaccine protocols.  相似文献   

3.
Oral inoculation of human rotavirus MO strain (serotype 3) into 5-day-old BALB/c mice cause gastroenteritis characterized by diarrhea. Clinical symptoms, histopathological changes in the small intestine, and the detection of rotavirus antigen in enterocytes were all characteristic of rotavirus-induced gastroenteritis. Using this small animal model, passive protection of suckling mice against human rotavirus infection was achieved with the use of immunoglobulin (IgY) from the yolks of eggs of rotavirus-immunized hens. When IgY against a rotavirus strain homotypic to the challenge virus (MO strain) was administered in the mice, complete protection against rotavirus infection was achieved. On the other hand, with oral administration of IgY against a heterotypic strain (serotype 1, Wa strain), a lower protective effect was nevertheless obtained. The four different strains of human rotavirus (Wa, KUN, MO, and ST3) were inactivated in vitro by treatment with PSK, a protein-bound polysaccharide preparation, in a dose-dependent manner. Oral administration of 2.5 mg of PSK caused a therapeutic effect on experimentally MO-infected suckling mice. The antiviral effect of PSK was indicated by the reduction of the duration of diarrhea.  相似文献   

4.
This study was to determine whether individual rotavirus capsid proteins could stimulate protection against rotavirus shedding in an adult mouse model. BALB/c mice were intranasally or intramuscularly administered purified Escherichia coli-expressed murine rotavirus strain EDIM VP4, VP6, or truncated VP7 (TrVP7) protein fused to the 42.7-kDa maltose-binding protein (MBP). One month after the last immunization, mice were challenged with EDIM and shedding of rotavirus antigen was measured. When three 9-microg doses of one of the three rotavirus proteins fused to MBP were administered intramuscularly with the saponin adjuvant QS-21, serum rotavirus immunoglobulin G (IgG) was induced by each protein. Following EDIM challenge, shedding was significantly (P = 0.02) reduced (i.e., 38%) in MBP::VP6-immunized mice only. Three 9-micrograms doses of chimeric MBP::VP6 or MBP::TrVP7 administered intranasally with attenuated E. coli heat-labile toxin LT(R192G) also induced serum rotavirus IgG, but MBP::VP4 immunization stimulated no detectable rotavirus antibody. No protection against EDIM shedding was observed in the MBP::TrVP7-immunized mice. However, shedding was reduced 93 to 100% following MBP::VP6 inoculation and 56% following MBP::VP4 immunization relative to that of controls (P = <0.001). Substitution of cholera toxin for LT(R192G) as the adjuvant, reduction of the number of doses to 1, and challenge of the mice 3 months after the last immunization did not reduce the level of protection stimulated by intranasal administration of MBP::VP6. When MBP::VP6 was administered intranasally to B-cell-deficient microMt mice that made no rotavirus antibody, shedding was still reduced to <1% of that of controls. These results show that mice can be protected against rotavirus shedding by intranasal administration of individual rotavirus proteins and that this protection can occur independently of rotavirus antibody.  相似文献   

5.
M M McNeal  M N Rae    R L Ward 《Journal of virology》1997,71(11):8735-8742
The effector functions responsible for resolution of shedding in mice orally inoculated with the murine rotavirus strain EDIM were identified in B-cell-deficient and normal BALB/c mice after monoclonal antibody (MAb) depletion of CD4 and CD8 cells. When depleted of CD8 cells, B-cell-deficient muMt mice resolved their infections more slowly than nondepleted animals, but CD4 cell depletion caused chronic, high-level shedding. This finding indicated that CD4 cell-dependent immunological effectors other than, or in addition to, CD8 cells played roles in rotavirus resolution in muMt mice in the absence of antibody. The roles of CD4 and CD8 cells in resolution of rotavirus shedding were further characterized in immunologically normal BALB/c mice. Depletion of CD4 cells before EDIM inoculation resulted in rapid resolution of most shedding, but chronic, low-level shedding continued for weeks. When the CD4 cell-depleted BALB/c mice were subsequently depleted of CD8 cells, shedding levels increased significantly (P < 0.001), indicating that CD8 cells were responsible for the rapid but incomplete suppression of rotavirus shedding. Further experimentation revealed that little rotavirus antibody was made in CD4 cell-depleted BALB/c mice, and only after CD4 cells were repopulated did antibody production increase and virus shedding fully resolve. Thus, resolution of rotavirus shedding in both muMt and BALB/c mice was associated with CD4 and CD8 cell effector activities.  相似文献   

6.
We determined the capacity of microcapsules formed by the combination of sodium alginate, an aqueous anionic polymer, and spermine hydrochloride, an aqueous cationic amine, to enhance protection against rotavirus challenge in mice. Adult BALB/c mice were orally inoculated with either free or microencapsulated rotavirus (simian rotavirus strain RRV) and challenged 6 or 16 weeks later with murine rotavirus strain EDIM. Virus-specific humoral immune responses were determined at the time of challenge and 4 days after challenge by intestinal fragment culture. We found that spermine-alginate microcapsules enhanced protection against challenge 16 weeks after immunization but not 6 weeks after immunization. Quantities of virus-specific immunoglobulin A produced by small intestinal lamina propria lymphocytes were correlated with the degree of protection against challenge afforded by spermine-alginate microcapsules. Possible mechanisms by which microcapsules enhance protection against rotavirus challenge are discussed.  相似文献   

7.
Severe combined immunodeficient (SCID) mice lack both functional T and B cells. These mice develop chronic rotavirus infection following an oral inoculation with the epizootic diarrhea of infant mice (EDIM) rotavirus. Reconstitution of rotavirus-infected SCID mice with T lymphocytes from immunocompetent mice allows an evaluation of a role of T-cell-mediated immunity in clearing chronic rotavirus infection. Complete rotavirus clearance was demonstrated in C.B-17/scid mice 7 to 9 days after the transfer of immune CD8+ splenic T lymphocytes from histocompatible BALB/c mice previously immunized intraperitoneally with the EDIM-w strain of murine rotavirus. The virus clearance mediated by T-cell transfer was restricted to H-2d-bearing T cells and occurred in the absence of rotavirus-specific antibody as determined by enzyme-linked immunosorbent assay, neutralization, immunohistochemistry, and radioimmunoprecipitation. Temporary clearance of rotavirus was observed after the transfer of immune CD8+ T cells isolated from the intestinal mucosa (intraepithelial lymphocytes [IELs]) or the spleens of BALB/c mice previously infected with EDIM by the oral route. Chronic virus shedding was transiently eliminated 7 to 11 days after spleen cell transfer and 11 to 12 days after IEL transfer. However, recurrence of rotavirus infection was detected 1 to 8 days later in all but one SCID recipient receiving cells from orally immunized donors. The viral clearance was mediated by IELs that were both Thy1+ and CD8+. These data demonstrated that the clearance of chronic rotavirus infection in SCID mice can be mediated by immune CD8+ T lymphocytes and that this clearance can occur in the absence of virus-specific antibodies.  相似文献   

8.
Rotavirus vaccines are delivered early in life, when the immune system is immature. To determine the effects of immaturity on responses to candidate vaccines, neonatal (7 days old) and adult mice were immunized with single doses of either Escherichia coli-expressed rotavirus VP6 protein and the adjuvant LT(R192G) or live rhesus rotavirus (RRV), and protection against fecal rotavirus shedding following challenge with the murine rotavirus strain EDIM was determined. Neonatal mice immunized intranasally with VP6/LT(R192G) were unprotected at 10 days postimmunization (dpi) and had no detectable rotavirus B-cell (antibody) or CD4(+) CD8(+) T-cell (rotavirus-inducible, Th1 [gamma interferon and interleukin-2 {IL-2}]-, Th2 [IL-5 and IL-4]-, or ThIL-17 [IL-17]-producing spleen cells) responses. However, by 28 and 42 dpi, these mice were significantly (P >or= 0.003) protected and contained memory rotavirus-specific T cells but produced no rotavirus antibody. In contrast, adult mice were nearly fully protected by 10 dpi and contained both rotavirus immunoglobulin G and memory T cells. Neonates immunized orally with RRV were also less protected (P=0.01) than adult mice by 10 dpi and produced correspondingly less rotavirus antibody. Both groups contained few rotavirus-specific memory T cells. Protection levels by 28 dpi for neonates or adults were equal, as were rotavirus antibody levels. This report introduces a neonatal mouse model for active protection studies with rotavirus vaccines. It indicates that, with time, neonatal mice develop full protection after intranasal immunization with VP6/LT(R192G) or oral immunization with a live heterologous rotavirus and supports reports that protection depends on CD4(+) T cells or antibody, respectively.  相似文献   

9.
Clearance of chronic murine rotavirus infection in SCID mice can be demonstrated by adoptive transfer of immune CD8+ T lymphocytes from histocompatible donor mice immunized with a murine homotypic rotavirus (T. Dharakul, L. Rott, and H.B. Greenberg, J. Virol 64:4375-4382, 1990). The present study focuses on the protein specificity and heterotypic nature of cell-mediated clearance of chronic murine rotavirus infection in SCID mice. Heterotypic cell-mediated clearance was demonstrated in SCID mice infected with EDIM (murine) rotavirus after adoptive transfer of CD8+ T lymphocytes from BALB/c mice that were immunized with a variety of heterologous (nonmurine) rotaviruses including Wa (human, serotype 1), SA11 and RRV (simian, serotype 3), and NCDV and RF (bovine, serotype 6). This finding indicates the serotypic independence of T-cell-mediated rotavirus clearance. To further identify the rotavirus proteins that are capable of generating CD8+ T cells that mediate virus clearance, donor mice were immunized with SF-9 cells infected with a baculovirus recombinant expressing one of the following rotavirus proteins: VP1, VP2, NS53 (from RF), VP4, VP7, NS35 (from RRV), VP6, and NS28 (from SA11). SCID mice stopped shedding rotavirus after receiving CD8+ T cells from mice immunized with VP1, VP4, VP6, and VP7 but not with VP2, NS53, NS35, NS28, or wild-type baculovirus. These results suggest that heterotypic cell-mediated clearance of rotavirus in SCID mice is mediated by three of the major rotavirus structural proteins and by a putative polymerase protein.  相似文献   

10.
Serum specimens from infants 2 to 12 months old vaccinated with the WC3 bovine rotavirus were analyzed to determine the relative concentrations of neutralizing antibody to the VP4 and VP7 proteins of the vaccine virus. To do this, reassortant rotaviruses that contained the WC3 genome segment for only one of these two neutralization proteins were made. The segment for the other neutralization protein in these reassortants was from heterotypic rotaviruses that were serotypically distinct from WC3. Sera were examined from 31 infants who had no evidence of a previous rotavirus infection and the highest postvaccination WC3-neutralizing antibody titers (i.e., 160 to 600) of the 103 subjects administered the vaccine. A reassortant (3/17) that contained both neutralization proteins from the heterotypic rotaviruses, i.e., EDIM (EW strain of mouse rotavirus) VP7 and rhesus rotavirus VP4, was not neutralized by these sera (geometric mean titer [GMT], less than 20). A reassortant (E19) that contained EDIM VP7 and WC3 VP4 was also very poorly neutralized by these antisera (GMT = 20). In contrast, antibody titers to a reassortant (R20) that contained WC3 VP7 and rhesus rotavirus VP4 were higher than those against WC3 (GMTs of 458 and 313, respectively). Thus, VP7 appeared to be the dominant immunogen for production of neutralizing antibody after intestinal infection of previously uninfected infants vaccinated with WC3 bovine rotavirus.  相似文献   

11.
Respiratory syncytial virus (RSV) is the major cause of infantile bronchiolitis and hospitalization. Severe RSV disease is associated with the development of wheezing in later life. In a mouse model of the delayed effects of RSV, the age at primary infection determines responses to reinfection in adulthood. During primary RSV infection, neonatal BALB/c mice developed only mild disease and recruited CD8 cells that were defective in gamma interferon production. Secondary reinfection of neonatally primed mice caused enhanced inflammation and profuse lung T-cell recruitment. CD4 cell depletion during secondary RSV challenge attenuated disease (measured by weight loss); depletion of CD8 cells also markedly attenuated disease severity but enhanced lung eosinophilia, and depletion of both CD4 and CD8 cells together completely abrogated weight loss. Depletion of CD8 (but not CD4) cells during primary neonatal infection was protective against weight loss during adult challenge. Therefore, T cells, in particular CD8 T cells, play a central role in the outcome of neonatal infection by enhancing disease during secondary challenge. These findings demonstrate a crucial role for T cells in the regulation of immune responses after neonatal infection.  相似文献   

12.
Adult BALB/c mice were orally inoculated with murine (strain EDIM), simian (strain RRV), or bovine (strain WC3) rotavirus. Six or 16 weeks after inoculation, mice were challenged with EDIM. At the time of challenge and in the days immediately following challenge, production of rotavirus-specific immunoglobulin A (IgA), IgG, and IgM by small intestinal lamina propria lymphocytes (LPL) was determined by fragment culture, and quantities of virus-specific antibodies at the intestinal mucosal surface were determined by intestinal lavage. Mice immunized with EDIM were completely protected against EDIM challenge both 6 and 16 weeks after immunization. Protection was associated with production of high levels of IgA by LPL and detection of virus-specific IgA at the intestinal mucosal surface. In addition, animals immunized and later challenged with EDIM did not develop a boost in antibody responses, suggesting that they were also not reinfected. We also found that in mice immunized with nonmurine rotaviruses, (i) quantities of virus-specific IgA generated following challenge were greater 16 weeks than 6 weeks after immunization, (ii) immunization enhanced the magnitude but did not hasten the onset of production of high quantities of virus-specific IgA by LPL after challenge, and (iii) immunization induced partial protection against challenge; however, protection was not associated with either production of virus-specific antibodies by LPL or detection of virus-specific antibodies at the intestinal mucosal surface.  相似文献   

13.
We describe a method for long-term culture of primary small intestinal epithelial cells (IEC) from suckling mice. IEC were digested from intestinal fragments as small intact units of epithelium (organoids) by using collagenase and dispase. IEC proliferated from organoids on a basement-membrane-coated culture surface and remained viable for 3 weeks. Cultured IEC had the morphologic and functional characteristics of immature enterocytes, notably sustained expression of cytokeratin and alkaline phosphatase. Few mesenchymal cells were present in the IEC cultures. IEC were also cultured from adult BALB/c mice and expressed major histocompatibility complex (MHC) class II antigens for at least 48 h in vitro. Primary IEC supported the growth of rhesus rotavirus (RRV) to a greater extent than a murine small intestinal cell line, m-IC(cl2). Cell-culture-adapted murine rotavirus strain EDIM infected primary IEC and m-IC(cl2) cells to a lesser extent than RRV. Wild-type EDIM did not infect either cell type. Long-term culture of primary murine small intestinal epithelial cells provides a method to study (i) virus-cell interactions, (ii) the capacity of IEC to act as antigen-presenting cells using a wide variety of MHC haplotypes, and (iii) IEC biology.  相似文献   

14.
The purpose of this study was to determine which regions of the VP6 protein of the murine rotavirus strain EDIM are able to elicit protection against rotavirus shedding in the adult mouse model following intranasal (i.n.) immunization with fragments of VP6 and a subsequent oral EDIM challenge. In the initial experiment, the first (fragment AB), middle (BC), or last (CD) part of VP6 that was genetically fused to maltose-binding protein (MBP) and expressed in Escherichia coli was examined. Mice (BALB/c) immunized with two 9-microg doses of each of the chimeras and 10 microg of the mucosal adjuvant LT(R192G) were found to be protected against EDIM shedding (80, 92, and nearly 100% reduction, respectively; P 相似文献   

15.
本文研究了1986—1989年间BALB/C小鼠发生的两次散发流行和一次有BALB/C及NIH鼠群暴发流行的EDIM(Epizootic diarrhea of infant mice)。经过电镜、PAGE、实验感染、“ABC”组化抗原定位等证实病原为MRV,而且病毒大小、RNA电泳型与国外报道的MRV有差异。观察了本繁育场内7个品系小鼠,均查出有MRV抗体,但发病只见于BALB/C和NIH鼠群。不同鼠龄和胎次发病率亦有差异。还观察了病变组织的病理组织学,扫描电镜和超微结构的改变。  相似文献   

16.

Background

Rotaviruses are the single most important cause of severe diarrhea in young children worldwide. The current study was conducted to assess whether colostrum containing rotavirus-specific antibodies (Gastrogard-R®) could protect against rotavirus infection. In addition, this illness model was used to study modulatory effects of intervention on several immune parameters after re-infection.

Methods

BALB/c mice were treated by gavage once daily with Gastrogard-R® from the age of 4 to 10 days, and were inoculated with rhesus rotavirus (RRV) at 7 days of age. A secondary inoculation with epizootic-diarrhea infant-mouse (EDIM) virus was administered at 17 days of age. Disease symptoms were scored daily and viral shedding was measured in fecal samples during the post-inoculation periods. Rotavirus-specific IgM, IgG and IgG subclasses in serum, T cell proliferation and rotavirus-specific delayed-type hypersensitivity (DTH) responses were also measured.

Results

Primary inoculation with RRV induced a mild but consistent level of diarrhea during 3-4 days post-inoculation. All mice receiving Gastrogard-R® were 100% protected against rotavirus-induced diarrhea. Mice receiving both RRV and EDIM inoculation had a lower faecal-viral load following EDIM inoculation then mice receiving EDIM alone or Gastrogard-R®. Mice receiving Gastrogard-R® however displayed an enhanced rotavirus-specific T-cell proliferation whereas rotavirus-specific antibody subtypes were not affected.

Conclusions

Preventing RRV-induced diarrhea by Gastrogard-R® early in life showed a diminished protection against EDIM re-infection, but a rotavirus-specific immune response was developed including both B cell and T cell responses. In general, this intervention model can be used for studying clinical symptoms as well as the immune responses required for protection against viral re-infection.  相似文献   

17.
One outbred (CF1) and four inbred (BALB/c, C57, CBA and C3H) strains of mice were tested for susceptibility to Babesia microti of human origin. Of these, intact C3H mice developed higher parasitemia than all other intact mice, while BALB/c mice developed the highest parasitemia among splenectomized mice. Susceptibility was not related to H-2 haplotype in any obvious way. Because C3H and BALB/c mice developed relatively high initial peak parasitemias, the parasite was serially passaged in both of these mouse strains in an attempt to increase parasite virulence. After 30 passages in BALB/c and 49 passages in C3H mice over a period of 12 months, maximum parasitemias were 50 times higher than those observed initially. After the peak parasitemias of these two mouse-adapted parasites had stabilized, the relationship between onset and level of maximum parasitemia and number of parasites inoculated was determined. With both C3H- and BALB/c-adapted parasites, as inoculum size increased, the time required to reach maximum parasitemia decreased and the level of maximum parasitemia increased. Studies involving infection of either mouse strain with parasites adapted to the heterologous mouse strain indicated that C3H mice were more susceptible than BALB/c mice to homologous or heterologous parasites. These data suggest that the virulence of B. microti to the mouse can be increased by prolonged passage in this host. Once adaptation to this host species has occurred, virulence appears to be more dependent on the innate susceptibility of the mouse strain than on adaptation of the parasites to a particular strain of mouse.  相似文献   

18.
目的探讨新生BALB/c小鼠胆道梗阻模型的建立,并与报告的新生BALB/c小鼠感染猕猴轮状病毒(RRV)模型小鼠生存曲线进行比较。方法将出生后5~7 d的BALB/c小鼠随机分为实验组和对照组,实验组进行胆总管结扎,然后关腹。对照组打开腹部后关腹不结扎胆总管。实验完成后每天观察小鼠的体重变化、无毛区皮肤颜色变化、小鼠存活天数以及在术后第5、10天时分别取小鼠肝脏做病理及免疫组化。结果小鼠在结扎后随着时间的延长,小鼠的体重及肝体比、无毛区皮肤颜色、存活天数、肝脏病理等都存在一定变化。小鼠体重增长逐渐缓慢,术后第2天就会出现无毛区的皮肤变黄,在尿道口会有淡黄色的液体并随后出现陶土样便。在术后第5天及第10天时取肝脏做肝体比有统计学差异(P≤0.05),小鼠在术后第10天左右会出现死亡高峰。结论新生BALB/c小鼠胆总管结扎模型是研究胆道梗阻的可靠动物实验,其生存曲线与报告的猕猴轮状病毒致胆道闭锁大体类似。  相似文献   

19.
We evaluated the adoptive transfer of DCs on Leishmania (L.) mexicana-infected neonatal BALB/c mice. DCs were isolated and purified from the spleens of the following donor groups: a) Adult BALB/c mice infected during adulthood with L. (L) mexicana; b) Adult BALB/c mice infected during neonatal life; c) Healthy neonatal BALB/c mice; d) Healthy adult BALB/c mice. A neonatal model of infection, generated after inoculation with 5 × 105 promastigotes of L. (L) mexicana, was used as the infection control group. Sixteen hours after intraperitoneal transfer of DCs (1 × 103, 1 × 105, or 1 × 106 cells/ml), neonatal recipient BALB/c mice were infected. The adoptive transfer of DCs diminished disease progression in neonatal mice. This reduction depends on the quantity and provenance of transferred DCs, since the effect was more evident with high numbers of DCs from adult mice infected during adulthood and healthy neonatal mice. Protection was significantly reduced in animals receiving DCs from healthy adult mice but it was absent in mice receiving DCs from adult mice infected during neonatal life. These results suggest that genetic susceptibility to Leishmania infection can be modified during neonatal life, and that the period of life when antigens are encountered is crucial in influencing the capacity of DCs to induce resistance or tolerance.  相似文献   

20.
The aim of this study was to verify the effect of immunosuppression by cyclophosphamide (Cy) on susceptibility of BALB/c mice subjected to challenge with recombinant strains of Toxoplasma gondii. Animals were prime infected with the D8 (recombinant I/III) or the ME49 (type II) non-virulent strains, weekly immunosuppressed with Cy and challenged with the CH3 or EGS virulent strains (I/III). Parasites recovered from surviving mice were submitted to PCR-RFLP analysis to confirm co-infection. Prime-infection with the D8 strain conferred more protection against challenge with the CH3 and EGS strains when compared with ME49 prime infection. Cy treatment caused significant leukopenia in the infected mice, what probably favors reinfection after challenge. Reinfection was associated with increased levels of IgA. Otherwise, Cy-treated mice presented significantly lower IgA levels after challenge, suggesting involvement of this immunoglobulin on protection against reinfection. In conclusion, BALB/c mice susceptibility to reinfection by T. gondii is related to genetic differences among the strains used for primary and challenge infections. Alteration of the host's immune integrity by Cy probably compromises the protection previously established by primary infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号