首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The RNA N-glycosidase activity of ricin A-chain has been characterized. When rat liver ribosomes were used as substrates, the A-chain cleaved the N-glycosidic bond at A-4324 in 28S rRNA. An apparent Michaelis constant (Km) for the reaction was determined to be 2.6 microM and the turnover number (Kcat) was 1777 min-1. When naked rRNA was the substrate, the A-chain cleaved the same bond in 28S rRNA but at a greatly reduced rate. The Km value was 5.8 microM. The results suggest that the A-chain has a similar affinity for 28S rRNA in both ribosomes and the naked states. When the deproteinized Escherichia coli rRNA was the substrates, ricin A-chain cleaved a N-glycosidic bond at A-2600 in 23S rRNA which corresponds to the ricin-site in 28S rRNA of rat liver ribosomes, while the A-chain has little activity on 23S rRNA in the ribosomes. The results suggest that ricin A-chain acts directly on RNA by recognizing a certain structure in the molecules. Using the secondary structure models for each species of rRNA, we have deduced a loop and stem structure having GAGA in the loop to be a minimum requirement for the substrate of ricin A-chain.  相似文献   

2.
In a previous report (Endo, Y. and Tsurugi, K. (1987) J. Biol. Chem. 262, 8128-8130) it was shown that the RNA N-glycosidase activity of ricin A-chain was responsible for the ability of this protein to inactivate eukaryotic ribosomes. The objective of the present study was to determine whether a similar mechanism was used by a ribosome-inactivating protein from pearled barley (barley toxin). Rat liver ribosomes were incubated either with ricin A-chain or barley toxin, and the rRNA was extracted and treated with acidic aniline to hydrolyze phosphodiester bonds rendered susceptible by removal of a purine or pyrimidine base. Evaluation of the rRNA by polyacrylamide/agarose electrophoresis disclosed two 28 S rRNA-derived fragments which differed in size from those generated by untreated (control) ribosomes. Sequencing of the smaller of these fragments confirmed that - as is the case for ricin A-chain - the aniline-sensitive site in barley toxin-treated ribosomes was between A and G in 28 S rRNA. We conclude that barley toxin inactivates ribosomes via a mechanism identical to that of ricin A-chain: enzymatic hydrolysis of the N-glycosidic bond at A of 28 S rRNA.  相似文献   

3.
Ribosomal RNA identity elements for ricin A-chain recognition and catalysis   总被引:7,自引:0,他引:7  
Ricin is a cytotoxic protein that inactivates ribosomes by hydrolyzing the N-glycosidic bond between the base and the ribose at position A4324 in eukaryotic 28 S rRNA. The requirements for the recognition by ricin A-chain of this nucleotide and for the catalysis of cleavage were examined using a synthetic oligoribonucleotide that reproduces the sequence and the secondary structure of the RNA domain (a helical stem, a bulged nucleotide, and a 17-member single-stranded loop). The wild-type RNA (35mer) and a number of mutants were transcribed in vitro from synthetic DNA templates with phage T7 RNA polymerase. With the wild-type oligoribonucleotide the ricin A-chain catalyzed reaction has a Km of 13.55 microM and a Kcat of 0.023 min-1. Recognition and catalysis by ricin A-chain has an absolute requirement for A at the position that corresponds to 4324. The helical stem is also essential; however, the number of base-pairs can be reduced from the seven found in 28 S rRNA to three without loss of identity. The nature of these base-pairs can affect catalysis. A change of the second set from one canonical (G.C) to another (U.A) reduces sensitivity to ricin A-chain; whereas, a change of the third pair (U.A----G.C) produces supersensitivity. The bulged nucleotide does not contribute to identification. Hydrolysis is affected by altering the nucleotides in the universal sequence surrounding A4324 or by changing the position in the loop of the tetranucleotide GA(ricin)GA: all of these mutants have a null phenotype. If ribosomes are treated first with alpha-sarcin to cleave the phosphodiester bond at G4325 ricin can still catalyze depurination at A4324. This implies that cleavage by alpha-sarcin at the center of what has been presumed to be a 17 nucleotide single-stranded loop in 28 S rRNA produces ends that are constrained in some way. On the other hand, hydrolysis by alpha-sarcin of the corresponding position in the synthetic oligoribonucleotide prevents recognition by ricin A-chain. The results suggest that the loop has a complex structure, affected by ribosomal proteins, and this bears on the function in protein synthesis of the alpha-sarcin/ricin rRNA domain.  相似文献   

4.
Y Endo  K Tsurugi  H Franz 《FEBS letters》1988,231(2):378-380
The site of action of the A-chain of mistletoe lectin (ML-A) from Viscum album on eukaryotic ribosomes was studied. Treatment of rat liver ribosomes with ML-A, followed by treatment of the isolated rRNA with aniline, caused the release of a fragment with about 450 nucleotides from 28 S rRNA. Further analysis of nucleotide sequences of this fragment revealed that the aniline-sensitive site of phosphodiester bond was between positions A-4324 and G-4325 in 28 S rRNA. These results indicate that ML-A inactivates the ribosomes by cleaving a N-glycosidic bond at A-4324 of 28 S rRNA in the ribosomes as ricin A-chain does.  相似文献   

5.
Ricin is a cytotoxic protein that inactivates ribosomes by hydrolyzing the N-glycosidic bond between the base and the ribose of the adenosine at position 4324 in eukaryotic 28 S rRNA. Ricin A-chain will also catalyze depurination in naked prokaryotic 16 S rRNA; the adenosine is at position 1014 in a GAGA tetraloop. The rRNA identity elements for recognition by ricin A-chain and for the catalysis of cleavage were examined using synthetic GAGA tetraloop oligoribonucleotides. The RNA designated wild-type, an oligoribonucleotide (19-mer) that approximates the structure of the ricin-sensitive site in 16 S rRNA, and a number of mutants were transcribed in vitro from synthetic DNA templates with phage T7 RNA polymerase. With the wild-type tetraloop oligoribonucleotide the ricin A-chain-catalyzed reaction has a Km of 5.7 microM and a Kcat of 0.01 min-1. The toxin alpha-sarcin, which cleaves the phosphodiester bond on the 3' side of G4325 in 28 S rRNA, does not recognize the tetraloop RNA, although alpha-sarcin does affect a larger synthetic oligoribonucleotide that has a 17-nucleotide loop with a GAGA sequence; thus, there is a clear divergence in the identity elements for the two toxins. Mutants were constructed with all of the possible transitions and transversions of each nucleotide in the GAGA tetraloop; none was recognized by ricin A-chain. Thus, there is an absolute requirement for the integrity of the GAGA sequence in the tetraloop. The helical stem of the tetraloop oligoribonucleotide can be reduced to three base-pairs, indeed, to two base-pairs if the temperature is decreased, without affecting recognition; the nature of these base-pairs does not influence recognition or catalysis by ricin A-chain. If the tetraloop is opened so as to form a GAGA-containing hexaloop, recognition by ricin A-chain is lost. This suggests that during the elongation cycle, a GAGA tetraloop either exists or is formed in the putative 17-member single-stranded region of the ricin domain in 28 S rRNA and this bears on the mechanism of protein synthesis.  相似文献   

6.
Ricin is a potent cytotoxic protein derived from the higher plant Ricinus communis that inactivates eukaryotic ribosomes. In this paper we have studied the mechanism of action of ricin A-chain on rat liver ribosomes in vitro. Our findings indicate that the toxin inactivates the ribosomes by modifying both or either of two nucleoside residues, G4323 and A4324, in 28 S rRNA. These nucleotides are located close to the alpha-sarcin cleavage site and become resistant to all ribonucleases tested. The examination of the lability of phosphodiester bonds of these nucleotides to both mild alkaline digestion and aniline treatment at acidic pH suggests that the base of A4324 is removed by the toxin. This unique activity of ricin A-chain was also observed when naked 28 S rRNA is used as a substrate, indicating that the toxin directly acts on the RNA. Similar activity on 28 S rRNA is also exhibited by abrin and modeccin, ricin-related toxins, suggesting a general mechanistic pathway for ribosome inactivation by lectin toxins.  相似文献   

7.
Ricin, Shiga toxin, and Shiga-like toxin II (SLT-II, Vero toxin 2) exhibit an RNA N-glycosidase activity which specifically removes a single base near the 3' end of 28 S rRNA in isolated rat liver ribosomes and deproteinized 28 S rRNA (Endo Y., Mitsui, K., Motizuki, M., & Tsurugi, K. (1987) J. Biol. Chem. 262, 5908-5912; Endo Y. & Tsurugi, K. (1987) J. Biol. Chem. 262, 8128-8130, Endo, Y., Tsurugi, K., Yutsudo, T., Takeda, Y., Ogasawara, K. & Igarashi, K. (1988) Eur. J. Biochem. 171, 45-50). These workers identified the single base removed, A-4324, by examining a 28 S rRNA degradation product which was generated by contaminating ribonucleases associated with the ribosomes. To determine whether this N-glycosidase activity applies in living cells, we microinjected ricin into Xenopus oocytes. We also microinjected Shiga toxin and a variant of Shiga-like toxin II (SLT-IIv). All three toxins specifically removed A-3732, located 378 nucleotides from the 3' end of 28 S rRNA. This base is analogous to the site observed in rat 28 S rRNA for ricin, Shiga toxin, and SLT-II. Purified, glycosylated, ricin A chain contains this RNA N-glycosidase activity in oocytes. We also demonstrated that the nonglycosylated A subunit of recombinant ricin exhibits this RNA N-glycosidase activity when injected into Xenopus oocytes. Ricin, Shiga toxin, and SLT-IIv also caused a rapid decline in oocyte protein synthesis for nonsecretory proteins.  相似文献   

8.
The site of action of six different ribosome-inactivating proteins from plants on eukaryotic ribosomes was studied. Treatment of ribosomes with any one of these proteins caused the 28S rRNA extracted from the inactivated ribosomes to become sensitive to treatment with aniline. A fragment containing about 450 nucleotides was released from the 28S rRNA. Further analysis of the nucleotide sequences of the 450-nucleotide fragments revealed that the aniline-sensitive phosphodiester bond was between A-4324 and G-4325 of the 28S rRNA. These results indicate that all six ribosome-inactivating proteins damage eukaryotic ribosomes by cleaving the N-glycosidic bond at A-4324 of the 28S rRNA of the ribosomes, as does ricin A-chain.  相似文献   

9.
We have studied on the mechanism of ricin action on rat liver ribosomes and present evidence which shows that the toxin inactivates ribosomes by modifying two bases at positions G-4323 and A-4324 of 28S rRNA adjacent to alpha-sarcin cleavage site. Further results showing that those phosphodiester bonds are very labile against alkaline digestion and aniline-treatment strongly suggest that these purine bases are removed by N-glycosidase activity of the toxin. In parallel, we also present evidence showing that abrin and modeccin have the same activity on eukaryotic ribosomes as ricin does.  相似文献   

10.
alpha-Sarcin is a ribonuclease that cleaves the phosphodiester bond on the 3' side of G4325 in 28S rRNA; ricin A-chain is a RNA N-glycosidase that depurinates the 5' adjacent A4324. These single covalent modifications inactivate the ribosome. An oligoribonucleotide that reproduces the structure of the sarcin/ricin domain in 28S rRNA was synthesized and mutations were constructed in the 5' C and the 3' G that surround a GAGA tetrad that has the sites of toxin action. Covalent modification of the RNA by ricin, but not by alpha-sarcin, requires a Watson-Crick pair to shut off a putative GAGA tetraloop. Either the recognition elements for the two toxins are different despite their catalyzing covalent modification of adjacent nucleotides in 28S rRNA or there are transitions in the conformation of the alpha-sarcin/ricin domain in 28S rRNA and one conformer is recognized by alpha-sarcin and the other by ricin A-chain.  相似文献   

11.
Y Endo  T Oka  K Tsurugi  H Franz 《FEBS letters》1989,248(1-2):115-118
A toxic lectin from Phoradendron californicum (PCL) was found to inactivate catalytically 60 S ribosomal subunits of rabbit reticulocytes, resulting in the inhibition of protein synthesis. To study the mechanism of action of PCL, rat liver ribosomes were treated with the toxin and the extracted rRNA was treated with aniline. A fragment containing about 450 nucleotides was released from the 28 S rRNA. Analysis of the nucleotide sequence of the fragment revealed that the aniline-sensitive phosphodiester bond was between A4324 and G4325 of the 28 S rRNA. These results indicate that PCL inactivates the ribosomes by cleaving an N-glycosidic bond at A4324 of 28 S rRNA in the ribosomes as does ricin A-chain.  相似文献   

12.
Ricin A-chain catalyzes the hydrolysis of the N-glycosidic bond of a conserved adenosine residue at position 4324 in the sarcin/ricin domain of 28S RNA of rat ribosome. The GAGA tetraloop closed by C-G pairs is required for recognition of the cleavage site on 28S ribosomal RNA by ricin A-chain. In this study, ricin A-chain (reduced ricin) exhibits specific depurination on a synthetic oligoribonucleotide (named SRD RNA) mimic of the sarcin/ricin domain of rat 28S ribosomal RNA under neutral and weak acidic conditions. Furthermore, the activity of intact ricin is also similar to that of ricin A-chain. However, under more acidic conditions, both enzymes lose their site specificity. The alteration in specificity of depurination is not dependent on the GAGA tetraloop of SRD RNA. A higher concentration of KCl inhibits the non-specific N-glycosidase activity much more than the specific activity of ricin A-chain. In addition, characterization of depurination sites by RNA sequencing reveals that under acidic conditions ricin A-chain can release not only adenines, but also guanines from SRD RNA or 5S ribosomal RNA. This is the first report of the non-specific deadenylation and deguanylation activity of ricin A-chain to the naked RNA under acidic conditions.  相似文献   

13.
Cibacron blue F3GA, a sulfonated polyaromatic blue dye, inhibited the ability of ricin A-chain to inactivate ribosomes. Difference-spectroscopic study revealed that the dye bound to the A-chain (Kd = 0.72 microM), producing a difference spectrum with a single maximum at 688 nm and two minima at 585 and 628 nm. Such a significant difference spectrum was not observed in the presence of ricin B-chain or intact ricin, neither of which can inactivate ribosomes. Modification of arginine residues in the A-chain with phenylglyoxal showed a correlation between the loss of inhibitory activity on protein synthesis and the loss of difference absorbance produced by the dye-A-chain interaction. Both losses occurred significantly at an early stage of the modification. Furthermore, the dye protected the A-chain against a loss of its inhibitory activity resulting from the modification of arginine residues. These results suggest that the same arginine residues participate both in the interaction with the dye and in the inactivation of ribosomes. Based on these data, the dye appears to interact with the active site of the A-chain. Addition of several polynucleotides, namely rRNA, tRNA, poly(U) and DNA, to the dye-A-chain complex resulted in a marked displacement of the dye, whereas mono- and dinucleotides had little or no effect on the dye-A-chain interaction. These findings indicate the possible existence of a polynucleotide binding site in the active site of the A-chain. A combination of these and other results suggests that the A-chain recognizes and acts on some part of RNA of the 60 S ribosomal subunit.  相似文献   

14.
The molecular action of ricin A chain involves cleavage of the N-glycosidic bond between ribose and the adenine 4324 nucleotides from the 5' end of mammalian 28 S rRNA (Endo, Y., and Tsurugi, K. (1987) J. Biol. Chem. 262, 8128-8130). In this paper, four ricin- and abrin-resistant Chinese hamster ovary cell mutants that possess ribosomes resistant to this N-glycosidase action are described. Three of the mutant phenotypes, Lec26, Lec27, and Lec28, were recessive in somatic cell hybrids and define at least two new lectin-resistant complementation groups. The most extensively characterized mutant type, LEC17, was dominant in such hybrids. None of the mutants were cross-resistant to modeccin. Post-mitochondrial supernatants from each of the four mutants were resistant to inhibition of cell-free protein synthesis by ricin, ricin A chain, and abrin. In addition, polysomes isolated from mutant cells were resistant to cleavage of the adenine-ribose N-glycosidic bond by ricin A chain or abrin, as assayed by the release of an approximately 470-nucleotide fragment following aniline treatment of ribosomal RNA extracted from toxin-treated polysomes. The unique lectin-resistance properties of the different mutants suggests that the accessibility of adenine 4324 to each toxin differs. It seems likely that the recessive Chinese hamster ovary ribosomal mutants reflect structural changes in different ribosomal proteins while the dominant phenotype may be due to the modification of protein(s) or rRNA involved in toxin-ribosome interaction. Further analysis of these cell lines should provide new insights into the structure/function relationships of eukaryotic ribosomes.  相似文献   

15.
Ribosome-mediated folding of partially unfolded ricin A-chain   总被引:6,自引:0,他引:6  
After endocytic uptake by mammalian cells, the cytotoxic protein ricin is transported to the endoplasmic reticulum, whereupon the A-chain must cross the lumenal membrane to reach its ribosomal substrates. It is assumed that membrane traversal is preceded by unfolding of ricin A-chain, followed by refolding in the cytosol to generate the native, biologically active toxin. Here we describe biochemical and biophysical analyses of the unfolding of ricin A-chain and its refolding in vitro. We show that native ricin A-chain is surprisingly unstable at pH 7.0, unfolding non-cooperatively above 37 degrees C to generate a partially unfolded state. This species has conformational properties typical of a molten globule, and cannot be refolded to the native state by manipulation of the buffer conditions or by the addition of a stem-loop dodecaribonucleotide or deproteinized Escherichia coli ribosomal RNA, both of which are substrates for ricin A-chain. By contrast, in the presence of salt-washed ribosomes, partially unfolded ricin A-chain regains full catalytic activity. The data suggest that the conformational stability of ricin A-chain is ideally poised for translocation from the endoplasmic reticulum. Within the cytosol, ricin A-chain molecules may then refold in the presence of ribosomes, resulting in ribosome depurination and cell death.  相似文献   

16.
Trichosanthin is a ribosome-inactivating protein from root tubers of Trichosanthes kirilowii Maxim. In this paper, the mechanism of action of trichosanthin on eukaryotic ribosomes was studied. A fragment of about 450 nucleotides was released from 28S ribosomal RNA after treatment of rat liver ribosome with trichosanthin and its isolated ribosomal RNAs were treated with aniline. Analysis of nucleotide sequence of 5' terminus of this fragment revealed that the aniline-sensitive site of the phosphodiester bond was between positions A4324 and G4325 in the 28S rRNA. Adenine was recovered by ion-exchange column chromatography from the 50% ethanol soluble fraction of the reaction mixture in which rat liver ribosomes were treated with trichosanthin. Thin-layer chromatographic analysis indicated that 1 mol of adenine was released from 1 mol of ribosomes. When the ribosomes were incubated with trichosanthin in the presence of inorganic [32P]phosphate, little incorporation of radioactivity into 28S rRNA was observed, indicating that the release of adenine was not mediated by phosphorolysis. These results demonstrate that trichosanthin inactivates the ribosomes by cleaving the N-C glycosidic bond of adenylic acid at 4324 of 28S rRNA in a hydrolytic fashion.  相似文献   

17.
Ricin acts by translocating to the cytosol the enzymatically active toxin A-chain, which inactivates ribosomes. Retrograde intracellular transport and translocation of ricin was studied under conditions that alter the sensitivity of cells to the toxin. For this purpose tyrosine sulfation of mutant A-chain in the Golgi apparatus, glycosylation in the endoplasmic reticulum (ER) and appearance of A-chain in the cytosolic fraction was monitored. Introduction of an ER retrieval signal, a C-terminal KDEL sequence, into the A-chain increased the toxicity and resulted in more efficient glycosylation, indicating enhanced transport from Golgi to ER. Calcium depletion inhibited neither sulfation nor glycosylation but inhibited translocation and toxicity, suggesting that the toxin is translocated to the cytosol by the pathway used by misfolded proteins that are targeted to the proteasomes for degradation. Slightly acidified medium had a similar effect. The proteasome inhibitor, lactacystin, sensitized cells to ricin and increased the amount of ricin A-chain in the cytosol. Anti-Sec61alpha precipitated sulfated and glycosylated ricin A-chain, suggesting that retrograde toxin translocation involves Sec61p. The data indicate that retrograde translocation across the ER membrane is required for intoxication.  相似文献   

18.
Ricin from Ricinus communis was isolated and the binding of 3H-reductively alkylated or 125I-iodinated ricin was studied by incubating the toxic protein with ribosomes and isolating the ricin-ribosome complex by centrifugation. Neither of the labeled ricin derivatives nor 3H-labeled A chain bound Escherichia coli ribosomes, but both bound rat liver ribosomes in a reproducible manner. 3H-labeled ricin bound in a ratio of 1 mol/mol of ribosomes with a dissociation constant of 3 μm as calculated from a Scatchard plot. Similarly, 3H-labeled B chain isolated from ricin also bound in a one-to-one complex with a dissociation constant of 1 μm. The binding of ricin and ricin B chain was sensitive to lactose, while the binding of reduced ricin or ricin A chain was not prevented by lactose. Reduced 125I-labeled ricin in the presence of lactose and 3H-labeled A chain bound with a ratio of 2 mol/mol of ribosomes. It was further demonstrated that 3H-labeled ricin A chain bound only to the 60S ribosomal subunit and not to the 40S ribosomal subunit. The dissociation constant for the binding was 2 μm both in the presence and absence of lactose and 2 mol of A chain were bound per mole of 60S ribosomal subunit.  相似文献   

19.
Identification of the ricin lipase site and implication in cytotoxicity   总被引:4,自引:0,他引:4  
Ricin is a heterodimeric plant toxin and the prototype of type II ribosome-inactivating proteins. Its B-chain is a lectin that enables cell binding. After endocytosis, the A-chain translocates through the membrane of intracellular compartments to reach the cytosol where its N-glycosidase activity inactivates ribosomes, thereby arresting protein synthesis. We here show that ricin possesses a functional lipase active site at the interface between the two subunits. It involves residues from both chains. Mutation to alanine of catalytic serine 221 on the A-chain abolished ricin lipase activity. Moreover, this mutation slowed down the A-chain translocation rate and inhibited toxicity by 35%. Lipase activity is therefore required for efficient ricin A-chain translocation and cytotoxicity. This conclusion was further supported by structural examination of type II ribosome-inactivating proteins that showed that this lipase site is present in toxic (ricin and abrin) but is altered in nontoxic (ebulin 1 and mistletoe lectin I) members of this family.  相似文献   

20.
Inhibition of protein synthesis per se does not potentiate the stress-activated protein kinases (SAPKs; also known as cJun NH2-terminal kinases [JNKs]). The protein synthesis inhibitor anisomycin, however, is a potent activator of SAPKs/JNKs. The mechanism of this activation is unknown. We provide evidence that in order to activate SAPK/JNK1, anisomycin requires ribosomes that are translationally active at the time of contact with the drug, suggesting a ribosomal origin of the anisomycin-induced signaling to SAPK/JNK1. In support of this notion, we have found that aminohexose pyrimidine nucleoside antibiotics, which bind to the same region in the 28S rRNA that is the target site for anisomycin, are also potent activators of SAPK/JNK1. Binding of an antibiotic to the 28S rRNA interferes with the functioning of the molecule by altering the structural interactions of critical regions. We hypothesized, therefore, that such alterations in the 28S rRNA may act as recognition signals to activate SAPK/JNK1. To test this hypothesis, we made use of two ribotoxic enzymes, ricin A chain and alpha-sarcin, both of which catalyze sequence-specific RNA damage in the 28S rRNA. Consistent with our hypothesis, ricin A chain and alpha-sarcin were strong agonists of SAPK/JNK1 and of its activator SEK1/MKK4 and induced the expression of the immediate-early genes c-fos and c-jun. As in the case of anisomycin, ribosomes that were active at the time of exposure to ricin A chain or alpha-sarcin were able to initiate signal transduction from the damaged 28S rRNA to SAPK/JNK1 while inactive ribosomes were not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号