首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteins of the human erythrocyte membrane as modified by pronase   总被引:25,自引:0,他引:25  
Pronase degrades proteins on the outer surface of the human erythrocyte membrane which run in polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulfate at a molecular weight of approximately 125,000. Carbohydrate and sialic acid are removed, but fragments of molecular weight 50,000 to 100,000 remain attached to the membrane. The most prominent fragment, one of molecular weight about 73,000, can be labeled with a membrane-impermeable reagent (sulfanilic acid diazonium salt), so it is still accessible from the outside of the cell. Pronase rapidly inactivates membrane-bound acetylcholinesterase, but it has relatively little effect on the facilitated diffusion of glucose; both are inhibited by the diazonium salt. Extensive digestion leads to potassium loss and osmotic lysis. Ghosts prepared in 15 mosm-Tris (pH 7.6) are extensively degraded by pronase: essentially all the protein shifts to low molecular weight. Pronase is even more potent in 3% sodium dodecyl sulfate. Ghosts prepared from intact cells which have been treated with the enzyme hydrolyze when dissolved in the detergent unless steps are taken to inhibit proteolysis.  相似文献   

2.
The sialoglycoprotein periodate fuchsin sulfite 2 has about 8% of the sialic acid contained in the sialoglycoproteins of the human erythrocyte membrane. This polypeptide appears to have an apparent monomeric molecular weight of 35,000, somewhat smaller than the monomer of the major sialoglycoprotein (periodate fuchsin sulfite 1) as judged by sodium dodecyl sulfate-polyacry lamide gel electrophoresis, and has frequently been confused with the monomer of the major sialoglycoprotein. Periodate fuchsin sulfite 2 is not labeled by the lactoperoxidase procedure in the intact cell, although it is accessible to neuraminidase and other hydrolases. On the other hand, this component can be labeled by lactoperoxidase on the cytoplasmic surface of open membranes or resealed ghosts. Thus, it is a trans membrane protein. Although most of the other transmembrane proteins of the human erythrocyte membrane are extracted from the membrane by 0.1% Triton X-100 in 7 mm phosphate buffer, pH 7.4, this component is not removed and may be a cytoskeletal component. Trypsin, chymotrypsin, and thermolysin peptides, as well as cyanogen bromide fragments, clearly indicate that the primary sequence of this polypeptide can be distinguished from dimeric or monomeric forms of the major sialoglycoprotein (periodate fuchsin sulfite 1).  相似文献   

3.
The cell surface protein components of Sarcoma 180 ascites tumor cells have been investigated by a combination of plasma membrane isolation techniques and lactoperoxidase iodination. For plasma membrane isolation cells were homogenized in the presence or absence of Zn2+ and fractionated by sucrose density gradient centrifugation or a two-phase partition to give large membrane fragments or membrane envelopes. Membrane purification was monitored by phase contrast microscopy and chemical and enzyme marker assays. The membrane preparations were analyzed by acrylamide gel electrophoresis in sodium dodecylsulfate. Each preparation showed a common protein pattern of about 15 bands ranging in molecular weights from 33 000 to >300000. Two carbohydrate-containing bands were also present in all preparations. Membranes prepared with Zn2+ were much less fragmented and showed much greater amounts of three high molecular weight components than those prepared in the absence of Zn2+. This might suggest a role for these components in membrane stabilization.The tumor cells were also subjected to iodination with lactoperoxidase, followed by membrane isolation and acrylamide gel electrophoresis in sodium dodecylsulfate in order to identify polypeptides accessible to the cell surface. The major radioactive band coincided with the major carbohydrate-containing band, presumably a surface glycoprotein. A second carbohydrate-containing band showed variable labeling behavior between different cell preparations. This material had a high molecular weight, as indicated by both acrylamide gel electrophoresis and gel permeation chromatography in dodecylsulfate. Several other components are labeled to a lesser extent in the intact cell.  相似文献   

4.
LACTOPEROXIDASE-COUPLED IODINATION OF BOVINE CHROMAFFIN GRANULES   总被引:1,自引:1,他引:0  
Abstract— Chromaffin granules were iodinated with lactoperoxidase at either their external or internal membrane surfaces. When iodination of internal soluble granule proteins and membrane phospholipids was minimized, the majority of the membrane proteins, including the 83,000 component, were iodinated. Components with molecular weights 63,000, 61,000, 51,000, 44,000, 32,000, 26,000 and 19,000 had a higher 125I specific activity than did the other membrane components, suggesting they were more accessible at the outer membrane surface than were the other components. In the presence of detergent, the iodination of all membrane components was increased more than 10-fold; the incorporation of 125I was now similar to their Coomassie Blue staining intensity in disc gels, indicating that all components were equally accessible to lactoperoxidase. In the presence of detergent, iodine incorporation into the MW 83,000 and 16,000 components was stimulated approx 100-fold.
The MW 83,000, 63,000, 61,000 and 37,000 components incorporated significant amounts of 125I when granule membranes were iodinated from their internal surface, suggesting these components have a portion of their polypeptide chain accessible at the inner membrane surface. Thus the MW 83,000 component, which we identified as dopamine β hydroxylase, and the MW 63,000/61,000 components, which are part of the membrane ATPase, can be iodinated from both membrane surfaces. This would suggest that these are transmembrane proteins. However, the major portion of all the proteins in this membrane were inaccessible to lactoperoxidase at either membrane surface.  相似文献   

5.
D R Critchley 《Cell》1974,3(2):121-125
Cell surface glycoproteins of normal and virus transformed NIL1 hamster fibroblasts have been labeled by incubation with galactose oxidase followed by reduction with tritiated borohydride. A high molecular weight protein labeled on normal but not transformed cells is the same protein previously detected by lactoperoxidase catalysed iodination.  相似文献   

6.
Secretion of amber fragments of an E. coli periplasmic protein, the maltose-binding protein, was studied to determine if the mature portion of the protein is required for its export across the cytoplasmic membrane. A fragment lacking 25–35 amino acid residues at the C terminus is secreted at normal levels, suggesting that this sequence is not required for secretion. This is in contrast to the results obtained with the periplasmic protein β-lactamase. In studying another fragment of one-third the molecular weight of the intact protein, we found that the majority of the fragment is not recovered from the periplasmic fraction. However, a small amount of secretion of this polypeptide was observed. This fragment is synthesized as a larger molecular weight form when cells are induced for the synthesis of a maltose-binding protein-β-galactosidase hybrid protein, which was previously shown to block the proper localization and processing of envelope proteins. This result is consistent with the idea that the larger form is a precursor with an unprocessed signal sequence, whereas in the absence of the hybrid protein the fragment is a processed mature form. Thus secretion of the smaller fragment may be occurring up to the point where the signal sequence is removed. That this fragment has passed through the cytoplasmic membrane is further supported by its accessibility to externally added trypsin. We suggest that the fragment may be secreted to the periplasm, but cannot assume a water-soluble conformation; the majority of the polypeptide may be associated with the external surface of the cytoplasmic membrane. Thus the mature sequence of maltose-binding protein, at least its C-terminal two thirds, may not be required for its export across the cytoplasmic membrane.  相似文献   

7.
The nature of the protein components and their location in the sarcoplasmic reticulum membrane were studied using sarcoplasmic reticulum vesicles isolated from rat skeletal muscle and purified by a density gradient centrifugation system. On the basis of analysis by means of sodium dodecyl sulfate gel electrophoresis, the protein components appear to be similar if not identical with those reported by others for rabbit sarcoplasmic reticulum, and the relative amount of each component is also similar to that found with rabbit sarcoplasmic reticulum. Evidence is presented that radioiodine-labeled diazotized diiodosulfanilic acid is a nonpermeant labeling agent of the protein components of sarcoplasmic reticulum vesicles; this agent minimally disturbs the functional activities of these membranes. By means of this labeling agent and perturbing agents, it is concluded that the protein components with molecular weights greater than 120,000 and the (Ca2+ + Mg2+)-adenosine triphosphatase partially or totally reside on or at the external surface of the sarcoplasmic reticulum vesicles. In the case of the adenosine triphosphatase, highly controlled trypsin treatment cleaves the molecule into two products, a 65,000 molecular weight fragment and a 56,000 molecular weight fragment. The evidence indicates that the 65,000 molecular weight component of the (Ca2+ + Mg2+)-adenosine triphosphatase is located in a more exposed fashion on the external surface of the vesicles than the 56,000 molecular weight compoenet and that some adenosine triphosphatase molecules have a more exposed position on the external surface of the vesicle than others. The protein components designated by MacLennan (MacLennan, D. H. (1975) Can. J. Biochem. 53, 251-261) as "calsequestrin" and "high affinity Ca2+ binding protein" are shown not to be on the external surface of the rat sarcoplasmic reticulum vesicle but rather to reside either within the core of the membrane or on the inside surface of the vesicle. The results of this study are in agreement with the model for the organization of the protein components of the sarcoplasmic reticulum membrene recently proposed by MacLennan (MacLennan, D. H. (1975) Can. J. Biochem. 53, 251-261).  相似文献   

8.
9.
The 180,000 molecular weight protein from [32P]phosphorylated wheat germ agglutinin-purified rat liver plasma membranes was digested with trypsin. NIH 3T3 HIR 3.5 cells were [32P]phosphate-labelled in the presence of 10(-7) M insulin, and the 185,000 molecular weight cytoplasmic protein was digested with trypsin. Digests were applied to a C18-mu Bondapak column, eluted with acetonitrile gradients, and radioactivity in the eluate was monitored. The chromatogram for the cytoplasmic protein was similar but not identical to chromatograms of trypsin digests of insulin receptor substrates from other cultured cells. Thirteen and seven phosphopeptides were obtained from the plasma membrane and cytoplasmic substrate, respectively. One phosphopeptide from the two digests eluted at the same acetonitrile concentration; however, dissimilarity in elution profiles and dissimilarity in relative yields of individual phosphopeptides, suggest that the primary structures of tyrosine phosphorylation sites in the two insulin receptor substrates are different.  相似文献   

10.
To characterize envelope proteins encoded by the chloroplast genome, envelopes were isolated from Chlamydomonas reinhardtii cells labeled with [35S] sulfate while blocking synthesis by cytoplasmic ribosomes. One and two-dimensional gel electrophoresis of envelopes and fluorography revealed four highly labeled proteins. Two with masses of 29 and 30 kDa and pI 5.5 were absent from the stroma and thylakoid fractions, while the others at 54 kDa, pI 5.2 and 61 kDa, pI 5.4 were detected there in smaller amounts. The 29- and 30-kDa proteins were associated with outer envelope membranes separated from inner envelope membranes after chloroplast lysis in hypertonic solution. A 32-kDa protein not labeled by [35S]sulfate was found exclusively in the inner membrane fraction, suggesting the existence of a phosphate translocator in C. reinhardtii. To identify envelope proteins exposed on the chloroplast surface, isolated active chloroplasts were surface-labeled with 125I and lactoperoxidase. The 54-kDa, pI 5.2 protein as well as a protein corresponding to either of the 29- or 30-kDa proteins described above were among the labeled components. These results show that envelope proteins of C. reinhardtii are encoded by the chloroplast genome and two are located on the outer envelope membranes.  相似文献   

11.
Externally oriented components on the human sperm cell surface and components in human seminal plasma were labeled by enzymatic iodination with lactoperoxidase and [125I] NaI. SDS-7.5% PAGE of labeled sperm surface resolved one minor and four major components with approximate molecular weights of 92, 72, 46, 30, and 20K daltons, respectively. SDS-7.5% PAGE of labeled seminal plasma resolved five components with approximate molecular weights of 74, 51, 43, 28, and 20K daltons. Three of the five moieties seen on the sperm surface and in seminal plasma were similar in molecular weight. This suggested that these surface components were adsorbed from seminal secretions. Because the iodination procedure used labels both proteins and lipids, labeled sperm surface and labeled seminal plasma were subjected to isopycnic density gradient centrifugation to identify the chemical composition of the radioiodinated components. With human sperm surface, two areas of radioactivity were resolved in CsCl gradients, one corresponding to protein and the other to lipid. With human seminal plasma, only one area of radioactivity, corresponding to protein, was identified. Electrophoretic analysis of each peak of radioactivity obtained from the gradients demonstrated that all of the sperm surface and four of five seminal plasma components were in the protein fractions. All three of the seminal plasma components which correspond to sperm surface components were recovered in the protein fraction. This observation supports our hypothesis that some of the proteins labeled on the human sperm cell surface are adsorbed from seminal secretions.  相似文献   

12.
Complexes of HLA class II alpha- and beta-chains with invariant chain were proteolytically digested to study domain interactions between these molecules. Detergent extracts of metabolically labeled monensin-treated B lymphoblastoid cells (B-LCL) were digested with proteinase K and immunoprecipitated with anti-HLA-DR or anti-invariant chain antibodies. Subsequent two-dimensional polyacrylamide amide gel electrophoresis showed that proteinase K treatment results in the sequential generation of three polypeptides of approximately 21,500, 19,500, and 18,000 daltons respectively. All are proteolytic fragments derived from invariant chain, and all remain associated with class II antigens. Two-dimensional gels of endoglycosidase H-treated immunoprecipitates showed that all three fragments contain two N-linked oligosaccharides. Neuraminidase treatment of immunoprecipitates and Bandeiraea simplicifolia lectin binding of cell extracts showed that the largest fragment, but not the smallest fragment, also contains O-linked oligosaccharides. None of the fragments possess the transmembrane region; fragments were released in soluble form when biosynthetically labeled B-LCL were ruptured by freezing and thawing and intact membranes were separated from aqueous components by ultracentrifugation. Lack of the transmembrane sequence was confirmed on the 18,000 dalton fragment by demonstrating through specific peptide cleavage at tryptophanyl residues that this fragment retains a substantial portion of the C-terminal region of I chain beyond trp162. Retention of the C-terminal region excludes the presence of the transmembrane region when m.w. are considered. Our data, taken in context of the amino acid sequence of the invariant chain predicted by the cDNA clone, demonstrate that invariant chain interacts with class II antigens via its extracytoplasmic region.  相似文献   

13.
Cell surface protein of Pseudomonas (Hydrogenomonas) facilis   总被引:5,自引:0,他引:5       下载免费PDF全文
Intact cells of Pseudomonas facilis contain one major molecular weight class of protein that is exposed at the cell surface as revealed by lactoperoxidase-catalyzed iodination with (125)I. All molecular weight classes of protein in derived cell envelope preparations are apparently saturated by iodination by lactoperoxidase after prolonged sonic treatment. The molecular weight of the predominantly exposed protein in intact cells is approximately 16,000, which is the minimal molecular weight of a cell envelope protein that precipitates as a complex with phospholipid from extracts of P. facilis. The isolation of labeled phospholipoprotein (PLP) after labeling intact cells with (125)I corroborates previous experiments which suggested a surface location for the protein portion of the phospholipoprotein (P(PLP)). Solvent extraction of cells and immunological evidence, including studies with ferritin-coupled antibodies, indicate that P(PLP) is located at the cell surface and may also be within the cell envelope. These experiments suggest that P(PLP) is the major cell surface protein in P. facilis.  相似文献   

14.
The topology of the human erythrocyte membrane anion-transport protein (band 3) has been investigated by isolation and peptide 'mapping' of the major and minor fragments derived from proteolytic cleavage of the lactoperoxidase 125I-labelled protein in erythrocytes and erythrocyte membranes. The content, in each fragment, of lactoperoxidase 125I-labelled sites (which have a known location in the extracellular or cytoplasmic domain of the protein), together with the location of the sites of proteolytic cleavage yielding the fragments, has allowed us to determine the alignment of the fragments on the linear amino acid sequence and to infer the topology of the polypeptide in the membrane. The results suggest that a region in the C-terminal portion of the polypeptide forms part of the cytoplasmic domain of the protein in addition to a large N-terminal segment. The membrane-bound regions of the protein are located in the C-terminal two-thirds of the molecule. In this region the polypeptide chain traverses the membrane at least four times and an additional loop of polypeptide is either embedded in the membrane or also penetrates through it to the other surface. The location of the lectin receptors on the protein and the site of binding of an anion-transport inhibitor have also been studied.  相似文献   

15.
This paper extends our recent report that renal Na+,K(+)-ATPase is digested by trypsin in the absence of Ca2+ and presence of Rb+ ions to a stable 19-kDa fragment and smaller membrane-embedded fragments of the alpha chain and essentially intact beta chain. These are referred to as "19-kDa membranes." Occlusion of both Rb+ (K+) or Na+ ions is preserved, but ATP-dependent functions are lost (Karlish, S. J. D., Goldshleger, R., and Stein, W. D. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 4566-4570). We now show that extensive digestion with nonselective fungal proteases (Pronase and proteinase K) alone, in combination, or after tryptic digestion can remove up to 70% of membrane protein without destroying Rb+ occlusion. In the most heavily digested membranes, the 19-kDa fragment or a slightly shorter 18.5-kDa fragment and smaller fragments of the alpha chain remain, whereas the beta chain is largely digested, leaving smaller membrane-embedded fragments (13-15 kDa). For either trypsin or Pronase digestion, preservation of Rb+ occlusion and the specific fragmentation pattern is observed only in the absence of divalent metal ions (Mg2+ or Ca2+) and presence of either Rb+ or Na+ or congener ions. Tryptic digestion at pH 7.0 can split the beta chain into two fragments of approximately 50 and 16 kDa joined by an S-S bridge. The 16-kDa fragment is protected against further digestion by the presence of Rb+ ions, but probably is not directly involved in occluding cations. Tryptic 19-kDa membranes show a clear and reproducible fragmentation pattern in which all predicted membrane segments are identifiable. Families of fragments from 19-kDa membranes, including seven peptides of 7.6-11.7 kDa, have been separated by size-exclusion high performance liquid chromatography, concentrated, and resolved on 16.5% Tricine gels. N-terminal sequences of the different fragments have been determined after transfer to polyvinylidene difluoride paper. The most interesting findings are as follows. (a) Whereas the 19-kDa tryptic fragment begins at Asn831 as reported previously, the 18.5-kDa Pronase fragment begins at Thr834. (b) Fragments in tryptic 19-kDa membranes of 7.6-11.7 kDa begin at Asp68, Ile263, and Gln737, respectively. These include all putative transmembrane segments other than those in the 19-kDa fragment. (c) A Pronase fragment of 7.8 kDa begins at Thr834, i.e. apparently the 19-kDa fragment has been partially cut, without loss of Rb+ occlusion. (d) Tryptic 16- and approximately 50-kDa fragments of the beta chain begin at Ala5 and Gly143, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The protein composition and architecture of the photosynthetic membranes from the cyanobacterium, Synechococcus cedrorum, were analyzed with the aid of site-specific labels. Using membranes labeled with 35S, about 50 membrane proteins can be detected by sodium dodecyl sulfate acrylamide gel electrophoresis. Approximately half of the proteins are accessible to modification by the impermeant probe, lactoperoxidase, indicating that they have surface-exposed domains. At least six of these external proteins can be removed by EDTA washing; the correspondence in molecular weights between five of these EDTA-extractable proteins and those of typical chloroplast coupling factor preparations may indicate that they are subunits of a membrane-bound ATPase. The photoactive, lipophilic compound, [125I]iodonaphthyl azide, was used to label protein domains in contact with the lipid bilayer. Iodonaphthyl azide modification led to a labeling pattern significantly different from that seen with lactoperoxidase. In particular, proteins in the 13 000–20 000 dalton range that were labeled poorly or not at all by lactoperoxidase were heavily modified by iodonaphthyl azide.Photosystem I and II particles, extracted from the membrane by digitonin treatment, were iodinated by lactoperoxidase after isolation. The PS I particles acted as a relatively tight complex, with most of the proteins remaining inaccessible to surface modification. The PS II particles, on the other hand, responded as a more open structure, with most of the subunits yielding to lactoperoxidase iodination. Similar studies on a highly fluorescent, temperature-sensitive mutant of S. cedrorum revealed a different organization of the PS II complex. This mutant, when grown at 40°C, inserts a 51 kdalton polypeptide in place of a 53 kdalton protein. This protein also replaces the 53 kdalton species in the PS II complex of the mutant after 40°C growth. The structure of this complex is altered in that more sites become accessible to lactoperoxidase. This is particularly true of the 51 kdalton protein, which is barely labeled in wild-type PS II complexes.  相似文献   

17.
A photolabile nitrene precursor, 3-azido-(2,7)-naphthalene disulfonate (ANDS), has been synthesized and used as a membrane-impermeable probe. The aryl azide was nonfluorescent. When activated by light, a highly reactive nitrene was generated which was capable of nonspecific covalent modifications of hydrophilic regions of cell surfaces. The products of the photolysis were highly fluorescent and modified proteins could be identified by their characteristic fluorescence after electrophoresis on sodium dodecyl sulfate polyacrylamide gels. When intact human erythrocytes were labeled with ANDS, Protein 3, the major membrane protein, and the sialoglycoproteins were modified. No proteins of apparent molecular weight greater than Protein 3 were labeled by ANDS, suggesting that none of these membrane components was exposed to the hydrophilic external surface of the red blood cell. When open erythrocyte stroma were labeled with ANDS, virtually all protein bands detectable by Coomassie blue staining could be shown to contain some fluorescence label. The significance of these findings are discussed with relation to the use of various aryl azides as surface labels of membranes.  相似文献   

18.
A presynaptic plasma membrane fraction was purified after subfractionation of pure cholinergic synaptosomes prepared from Torpedo electric organ. Two 67 kdalton proteins were highly enriched in the synaptosomal plasma membrane (SPM): the hydrophobic form of AChE and a protein against which we raised a monoclonal antibody (C1–8). These two proteins exhibit similar biochemical properties: both exist as disulphide linked dimers with the same molecular weight; they are glycoproteins binding Concanavalin A; they are exposed on the external surface of the SPM and detached as almost entire molecules by Pronase. Nevertheless, using the C1–8 monoclonal antibody, it was possible to show that they are different proteins. The C1–8 binding protein appears to be specific for the SPM in Torpedo electric organ since it was not detected in plasma membranes from the electroplaque, the electric nerve trunks or the electric lobe. The hydrophobic AChE and the C1–8 binding protein appear therefore to be useful markers of the SPM. Pronase treatment of intact synaptosomes removes most of the ectocellularly exposed proteins of the SPM, which amount to 35% of the SPM protein. Presynaptic AChE and the C1–8 binding protein are detached. But ACh release can still be induced by depolarization of the Pronase treated synaptosomes. This demonstrates that the two 67 kdalton presynaptic proteins are not directly involved in the release of the neurotransmitter.  相似文献   

19.
Axenically transformed primary sporocysts of Schistosoma mansoni (NMRI strain) were labeled with 125I in an effort to identify sporocyst proteins exposed at the tegumental surface. Using the 125I activating reagent, 1,3,4,6-tetrachloro-3 alpha,6 alpha-diphenylglycoluril, in conjunction with SDS-PAGE and autoradiography, up to 12 bands were radiolabeled out of 60 components visualized by silver staining. Labeled proteins ranged in apparent Mr from greater than 200 to less than 12 kDa. Pronase treatment of living sporocysts after radioiodination removed all labeled material, suggesting that only surface proteins were being iodinated. Western blot analysis employing 5 monoclonal antibodies (MAB's) to sporocyst surface antigens revealed a wide range of reactivities which produced banding patterns closely reflecting autoradiograms of identical samples. The concomitant removal by Pronase of immunoreactive and radiolabeled surface proteins with identical Mr in the range of 90-130 kDa suggests that epitopes recognized by these antibodies are associated with these higher molecular weight surface proteins. However, although Pronase removes all labeled surface proteins, substantial nonradiolabeled, immunoreactive material with Mr less than 90 kDa still remains on enzyme-treated parasites. This indicates that MAB-reactive epitopes, in addition to their occurrence with surface proteins, are also associated with either unlabeled, protease-resistant surface components or internal antigens. The immunohistochemical localization of antibody-reactive material in gland-like structures within sporocysts supports an internal source for nonradiolabeled, immunoreactive components. Finally, the periodate sensitivity of the epitopes recognized by all tested MAB's suggests that carbohydrate moieties may represent a common and extremely immunogenic constituent of the sporocyst surface.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Virulent strains of Aeromonas salmonicida observed by electron microscopy were characterized by an outer layer exhibiting a tetragonal repeat pattern. Attenuated strains had a 2.5 X 10(3)- to 5 X 10(3)-fold reduction in virulence and lost the outer layer, autoaggregating properties, and a 49-kilodalton protein (A protein) simultaneously. The A protein is the major protein component of outer membrane fractions of virulent strains. A variety of radiolabeling studies showed that this protein was surface localized and that it provided an effective barrier against iodination of other outer membrane proteins with either lactoperoxidase or diazoiodosulfanilic acid; A protein was not labeled with lactoperoxidase but was specifically labeled with diazoidosulfanilic acid. The A protein was purified by selective extraction with detergent and guanidine hydrochloride, and its amino acid composition was determined. The properties of A protein are compared with those of other bacterial surface layer proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号