首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lipid composition and transbilayer distribution of plasma membrane isolated from primary tumor (L-929, LM, A-9 and C3H) and nine metastatic cell lines cultured under identical conditions was examined. Cultured primary tumor and metastatic cells differed two-fold in sterol/phospholipid molar ratios. There was a direct correlation between plasma membrane anionic phospholipid (phosphatidylinositol and phosphatidylserine) content and plasma membrane sterol/phospholipid ratio. This finding may bear on the possible link between oncogenes and inositol lipids. The fluorescent sterol, dehydroergosterol, was incorporated into primary tumor and metastatic cell lines. Selective quenching of outer monolayer fluorescence by covalently linked trinitrophenyl groups demonstrated an asymmetric transbilayer distribution of sterol in the plasma membranes. The inner monolayer of the plasma membranes from both cultured primary and metastatic tumor cells was enriched in sterol as compared with the outer monolayer. Consistent with this, the inner monolayer was distinctly more rigid as determined by the limiting anisotropy of 1,6-diphenyl-1,3,5-hexatriene. Dehydroergosterol fluorescence was temperature dependent and sensitive to lateral phase separations in phosphatidylcholine vesicles and in LM cell plasma membranes. Dehydroergosterol detected phase separations near 24 degrees C in the outer monolayer and at 21 degrees C and 37 degrees C in the inner monolayer of LM plasma membranes. Yet, no change in transbilayer sterol distribution was detected in ascending or descending temperature scans between 4 and 45 degrees C. Alterations in plasma membrane phospholipid polar head group composition by choline analogues (N,N-dimethylethanolamine, N-methylethanolamine, and ethanolamine) also did not perturb transbilayer sterol asymmetry. Treatment with phenobarbital or prilocaine, drugs that selectively fluidize the outer and inner monolayer of LM plasma membranes, respectively, did not change dehydroergosterol transbilayer distribution.  相似文献   

2.
Physical properties of the fluorescent sterol probe dehydroergosterol   总被引:3,自引:0,他引:3  
Spectroscopic studies were performed on the fluorescent sterol probes ergosta-5,7,9(11),22-tetraen-3 beta-ol (dehydroergosterol) and cholesta-5,7,9(11)-trien-3 beta-ol (cholestatrienol). In most isotropic solvents, these molecules exhibited a single lifetime near 300 ps. Fluorescence lifetimes in 2-propanol were independent of emission wavelength and independent of excitation wavelength. Excited state behavior of these probes appears relatively simple. In isotropic solvents, dehydroergosterol fluorescence emission underwent at most a small Stokes shift as solvent polarity was modified. Time-resolved anisotropy decays indicated that dehydroergosterol decay was monoexponential, with rotational correlation times dependent on solvent viscosity. When incorporated into L-alpha-dimyristoylphosphatidylcholine liposomes at a concentration of 0.9 mol%, dehydroergosterol fluorescence lifetime decreased at the phase transition of this phospholipid indicating that the sterol probe was detecting physical changes of the bulk phospholipids. Furthermore, total fluorescence decays and anisotropy decays were sensitive to the environment of the sterol. Dehydroergosterol and cholestatrienol are thus useful probes for monitoring sterol behavior in biological systems.  相似文献   

3.
Aqueous dispersions of egg phosphatidylethanolamine/18 : 1c, 18 : 1c-phosphatidylcholine/cholesterol/18 : 1c, 18 : 1c-phosphatidic acid (50 : 16 : 30 : 4) undergo a temperature-dependent transition from extended bilayers to structures characterized by isotropic 31P-NMR signals and visualized by freeze-fracturing as lipidic particles associated with the bilayer. This transition is accompanied by a 3-fold increase in the phosphatidylcholine pool which can be exchanged by phospholipid exchange protein demonstrating a direct relation between the occurrence of non-bilayer lipid structures and an increased transbilayer movement of phosphatidylcholine.  相似文献   

4.
The fluorescent sterol dehydroergosterol (DHE) is often used as a marker for cholesterol in cellular studies. We show by vesicle fluctuation analysis that DHE has a lower ability than cholesterol to stiffen lipid bilayers suggesting less efficient packing with phospholipid acyl chains. Despite this difference, we found by fluorescence and atomic force microscopy, that DHE induces liquid-ordered/-disordered coexistent domains in giant unilamellar vesicles (GUVs) and supported bilayers made of dipalmitoylphosphatidylcholine (DPPC), dioleylphosphatidylcholine (DOPC) and DHE or cholesterol. DHE-induced phases have a height difference of 0.9-1 nm similar as known for cholesterol-containing domains. DHE not only promotes formation of liquid-liquid immiscibility but also shows strong partition preference for the liquid-ordered phase further supporting its suitability as cholesterol probe.  相似文献   

5.
The domain structure of cholesterol in membranes and factors affecting it are not well understood. A method, based on kinetics of delta 5,7,9,(11),22-erogostatetraen-3 beta-ol (dehydroergosterol) fluorescence polarization change and not requiring separation of donor and acceptor membranes, was used to examine sterol domains in three-component cholesterol:dehydroergosterol:phospholipid small unilamellar vesicles (SUV). A new mathematical data treatment was developed to provide a direct correlation between molecular sterol exchange and steady-state dehydroergosterol fluorescence polarization measurements. The method identified multiple kinetic pools of sterol in SUV: a small but rapidly exchanging pool, a predominant slowly exchanging pool, and a very slowly exchangeable (nonexchangeable) pool. The relative sizes of the pools and half-times of exchange were highly dependent on the presence of acidic phospholipids and on cytosolic proteins involved in sterol transfer. Thus, the method provides a direct measure of molecular sterol transfer between membranes without separating donor and acceptor membranes.  相似文献   

6.
We have studied the effects of trinitrophenylation on the transbilayer movement of phosphatidylcholine and the macroscopic lipid structure in rat liver microsomal membranes. The transbilayer movement of phosphatidylcholine was investigated using the PC-specific transfer protein. 31P-NMR was employed to monitor the phospholipid organization in intact microsomal vesicles. The results indicate that modification of microsomes with trinitrobenzenesulfonic acid enhances the transbilayer movement of phosphatidylcholine at 4°C. Furthermore, phosphatidylethanolamine headgroup trinitrophenylation in microsomes increases the isotropic component in the 31P-NMR spectra even at 4°C, possibly representing the appearance of intermediate non-bilayer lipid structures. The observed parallel between these data suggests that phosphatidylethanolamine molecules in the microsomal membrane, probably in combination with a protein component, are able to destabilize the bilayer organization, thereby facilitating the transmembrane movement of phospholipids.  相似文献   

7.
A model is presented to simulate transverse lipid movement in the human erythrocyte membrane. The model is based on a system of differential equations describing the time-dependence of phospholipid redistribution and the steady state distribution between the inner and outer membrane monolayer. It takes into account several mechanisms of translocation: (i) ATP-dependent transport via the aminophospholipid translocase; (ii) protein-mediated facilitated and (iii) carrier independent transbilayer diffusion. A reasonable modelling of the known lipid asymmetry could only be achieved by introducing mechanism (iii). We have called this pathway the compensatory flux, which is proportional to the gradient of phospholipids between both membrane leaflets. Using realistic model parameters, the model allows the calculation of the transbilayer motion and distribution of endogenous phospholipids of the human erythrocyte membrane for several biologically relevant conditions. Moreover, the model can also be applied to experiments usually performed to assess phospholipid redistribution in biological membranes. Thus, it is possible to simulate transbilayer motion of exogenously added phospholipid analogues in erythrocyte membranes. Those experiments have been carried out here in parallel using spin labeled lipid analogues. The general application of this model to other membrane systems is outlined.Abbreviations PBS phosphate buffered saline - DFP diisopropyl fluorophosphate - ESR electron spin resonance - RBC red blood cells - PC phosphatidylcholine - PE phosphatidylethanolamine - PS phosphatidylserine - SM sphingomyelin - (0,2)PC 1-palmitoyl-2(4doxylpentanoyl)-PC - (0,2)PE 1-palmitoyl-2(4-doxylpentanoyl)-PE - (0,2) PS 1-palmitoyl-2(4-doxylpentanoyl)-PS  相似文献   

8.
Accumulation of excess non-esterified free cholesterol (FC) in macrophages is a key factor in macrophage death during late stages of atheroslerosis. Raising FC content in macrophages has been shown to trigger Rac activation and actin polymerisation and to inhibit cell migration. Here, the plasma membrane distribution of the fluorescent cholesterol-mimicking sterol dehydroergosterol (DHE) was investigated in FC-loaded J774 macrophages. Wide field fluorescence and deconvolution microscopy were combined with quantitative assessment of sterol distribution in straightened plasma membrane image segments. DHE's surface distribution matched exactly large ruffles and membrane protrusions which were pronounced in FC-loaded cells. Plasma membrane blebs, however, formed in FC-loaded J774 cells had a homogenous staining along the membrane bilayer at 20 degrees C. The results show that even in FC-loaded cells with increased membrane cholesterol content, sterols do not form a separate phase in the plasma membrane.  相似文献   

9.
Olsher M  Yoon SI  Chong PL 《Biochemistry》2005,44(6):2080-2087
We developed a new fluorescence assay for sterol oxidation and used it to study the relationship between free radical-induced sterol oxidation and membrane sterol lateral organization. This assay used dehydroergosterol (DHE) as both a membrane probe and a membrane component. Sterol oxidation was induced by a free radical generator, AAPH (2,2'-azobis(2-amidinopropane)dihydrochloride). Using this new assay, we found that, in unilamellar vesicles composed of DHE and 1-palmitoyl-2-oleoyl-l-alpha-phosphatidylcholine (POPC), the initial rate of DHE oxidation induced by AAPH changed with membrane sterol content in an alternating manner, exhibiting a local maximum at 20.3, 22.2, 25.0, 32.3, and 40.0 mol % DHE. These mole fractions correspond to the critical sterol mole fractions C(r) predicted for maximal sterol superlattice formation. In three-component bilayers composed of POPC, cholesterol, and DHE (fixed at 1 and 5 mol %), the initial rate of AAPH-induced DHE oxidation exhibited a biphasic change whenever the total sterol mole fraction, irrespective of the DHE content, was near C(r), indicating that the correlation between sterol oxidation and sterol superlattice formation revealed in this study is not an artifact due to the use of the fluorescent cholesterol analogue DHE. The alternating variation of AAPH-induced sterol oxidation with sterol content also appeared in multicomponent unilamellar vesicles containing bovine brain sphingomyelins (bbSPM), POPC, and DHE. The present work and our previous study on cholesterol oxidase-induced sterol oxidation [Wang et al. (2004) Biochemistry 43, 2159-2166] suggest that sterol oxidation in general, either by reactive oxygen species or by enzymes, may be regulated by the extent of sterol superlattice in the membrane and thus regulated by the membrane sterol content in a fine-tuning manner.  相似文献   

10.
The transbilayer diffusion of unlabeled ceramides with different acyl chains (C6-Cer, C10-Cer, and C16-Cer) was investigated in giant unilamellar vesicles (GUVs) and in human erythrocytes. Incorporation of a very small percentage of ceramides (approximately 0.1% of total lipids) to the external leaflet of egg phosphatidylcholine GUVs suffices to trigger a shape change from prolate to pear shape vesicle. By observing the reversibility of this shape change the transmembrane diffusion of lipids was inferred. We found a half-time for unlabeled ceramide flip-flop below 1 min at 37 degrees C. The rapid diffusion of ceramides in a phosphatidylcholine bilayer was confirmed by flip-flop experiments with a spin-labeled ceramide analogue incorporated into large unilamellar vesicles. Shape change experiments were also carried out with human erythrocytes to determine the trans-membrane diffusion of unlabeled ceramides into a biological membrane. Addition of exogenous ceramides to the external leaflet of human erythrocytes did not trigger echinocyte formation immediately as one would anticipate from an asymmetrical accumulation of new amphiphiles in the outer leaflet but only after approximately 15 min of incubation at 20 degrees C in the presence of an excess of ceramide. We interpret these data as being indicative of a rapid ceramide equilibration between both erythrocyte leaflets as indicated also by electron spin resonance spectroscopy with a spin-labeled ceramide. The late appearance of echinocytes could reveal a progressive trapping of a fraction of the ceramide molecules in the outer erythrocytes leaflet. Thus, we cannot exclude the trapping of ceramides into plasma membrane domains.  相似文献   

11.
Ceramide is known to induce structural rearrangements in membrane bilayers, including the formation of ceramide-rich and -poor domains and the efflux of aqueous solutes. This report describes a novel effect of ceramide, namely the induction of transbilayer lipid movements. This effect was demonstrated in both model (large unilamellar vesicles) and cell (erythrocyte ghost) membranes in which ceramide generation took place in situ through the action of an externally added sphingomyelinase. Two different novel assays were developed to detect transbilayer lipid movement. One of the assays required the preparation of vesicles containing a ganglioside only in the outer monolayer and entrapped neuraminidase. Sphingomyelinase activity induced ganglioside hydrolysis under conditions in which no neuraminidase was released from the vesicles. The second assay involved the preparation of liposomes or erythrocyte ghosts labeled with a fluorescent energy donor in their inner leaflets. Sphingomyelin hydrolysis was accompanied by fluorescence energy transfer to an impermeable acceptor in the outer aqueous medium. Ceramide-induced transbilayer lipid movement is explained in terms of another well known property of ceramide, namely the facilitation of lamellar to non-lamellar lipid-phase transitions. Thus, sphingomyelinase generates ceramide on one side of the membrane; ceramide then induces the transient formation of non-lamellar structural intermediates, which cause the loss of lipid asymmetry in the bilayer, i.e. the transbilayer movement of ceramide together with other lipids. As direct targets for ceramide tend to be intracellular, these observations may be relevant to the mechanism of transmembrane signaling by means of the sphingomyelin pathway.  相似文献   

12.
The transbilayer movement and distribution of spin-labeled analogs of the steroids androstane (SLA) and cholestane (SLC) were investigated in the human erythrocyte and in liposomes. Membranes were labeled with SLA or SLC, and the analogs in the outer leaflet were selectively reduced at 4C using 6-O-phenylascorbic acid. As shown previously, 6-O-phenylascorbic acid reduces rapidly nitroxides exposed on the outer leaflet, but its permeation of membranes is comparatively slow and thus does not interfere with the assay. From the reduction kinetics, we infer that transbilayer movement of SLA in erythrocytes is rapid at 4C with a half-time of approximately 4.3 min and that the probe distributes almost symmetrically between both halves of the plasma membrane. We have no indication that a protein-mediated transport is involved in the rapid transbilayer movement of SLA because 1) pretreatment of erythrocytes with N-ethyl maleimide affected neither flip-flop nor transbilayer distribution of SLA and 2) flip-flop of SLA was also rapid in pure lipid membranes. The transbilayer dynamics of SLC in erythrocyte membranes could not be resolved by our assay. Thus, the rate of SLC flip-flop must be on the order of, or even faster than, that of probe reduction rate on the exoplasmic leaflet (half-time approximately 0.5 min). The results are discussed with regard to the transbilayer dynamics of cholesterol.  相似文献   

13.
Evidence is presented that endocytosis-deficient Saccharomyces cerevisiae end4 yeast cells rapidly internalize the fluorescent phospholipid analogues 1-palmitoyl-2-{6-[7-nitro-2,1, 3-benzoxadiazol-4-yl(NBD)amino] caproyl}phosphatidylcholine (P-C6-NBD-PtdCho) and P-C6-NBD-phosphatidylserine (P-C6-NBD-PtdSer). Both analogues redistributed between the exoplasmic and cytoplasmic leaflet with a half-time of < 15 min at 0 degrees C. The plateau of internalized analogues was about 70%. Transbilayer movement is probably protein-mediated, as the flip-flop of both analogues was very slow in liposomes composed of plasma-membrane lipids. Rapid analogue internalization was not abolished on depletion of intracellular ATP by about 90%. For P-C6-NBD-PtdCho only was a moderate decrease in the plateau of internalized analogues of about 20% observed, while that of P-C6-NBD-PtdSer was not affected. The Drs2 protein plays only a minor role, if any, in the rapid transbilayer movement of analogues in S. cerevisiae end4 cells. In S. cerevisiae end4 Deltadrs2 cells harbouring both an end4 allele and a drs2 null allele, about 60% and 50% of P-C6-NBD-PtdCho and P-C6-NBD-PtdSer, respectively, became internalized within 15 min at 0 degrees C. The preferential orientation of P-C6-NBD-PtdSer to the cytoplasmic leaflet is in qualitative agreement with the sequestering of endogenous phosphatidylserine to the cytoplasmic leaflet, as assessed by binding of annexin V. Virtually no binding of annexin V to spheroplasts of the parent wild-type strain or the mutant strains was observed. Likewise, no difference in the exposure of endogenous aminophospholipids to the exoplasmic leaflet between these strains was found by labelling with trinitrobenzenesulfonic acid. Thus, lipid asymmetry, at least of aminophospholipids, was preserved in S. cerevisiae end4 cells independently of the presence of the Drs2 protein.  相似文献   

14.
Phospholipase D is used to convert egg phosphatidylcholine to phosphatidic acid in unilamellar vesicles. The transbilayer distribution of both lipids is determined by 31P NMR using paramagnetic ions. Phosphatidic acid formed in the outer monolayer is translocated to the inner monolayer with a halftime of 30-40 min or less. This is accompanied by an equally fast movement of part of the phosphatidylcholine from the inner to the outer monolayer. During these fast transbilayer movements the barrier properties of the vesicle bilayer are maintained.  相似文献   

15.
The exchange of cholesterol between [14C]cholesterol-labeled Mycoplasma gallisepticum cells and an excess of sonicated egg phosphatidylcholine/cholesterol vesicles (molar ratio of 0.9) was measured. More than 90% of the radioactive cholesterol underwent transfer from intact cells to the vesicles. The kinetics of the transfer was biphasic. About 50% of the radioactive cholesterol was exchanged with a half-time of about 4 h. The residual was exchanged at a slower rate with a half-time of about 9 h at 37°C. Bovine serum albumin had a pronounced effect in enhancing both the fast and slow rates of cholesterol exchange, but did not affect the pool sizes significantly. The half-time for equilibration of the two pools in the presence of 2% albumin, calculated using a reversible two-pool method of analysis, was 6.2 h. The effect of albumin was also obtained with isolated membrane preparations and with cells treated with growth inhibitors, suggesting that this effect is independent of albumin preservation of cell viability. The rate enhancement of albumin was concentration dependent with maximal effects observed with 2%, where the rates of exchange of both the rapidly and slowly exchanging pools were twice as fast. The mechanism by which albumin may affect the exchange rates is discussed.  相似文献   

16.
The behavior of dehydroergosterol in -α-dimyristoylphosphatidylcholine (DMPC) unsonicated multilamellar liposomes was characterized by absorption spectroscopy and fluorescence measurements. Dehydroergosterol exhibited a lowered absorption coefficient in multilamellar liposomes whiel the steady-state fluorescence anisotropy of dehydroergosterol in these membranes decreased significantly with increasing dehydroergosterol concentration, suggesting membrane sterol-sterol interactions. The comparative steady-state anisotropy of 0.9 mole percent dehydroergosterol in multilamellar liposomes was lower than in small unilamellar vesicles suggesting different sterol environments for dehydroergosterol. Dehydroergosterol fluorescence lifetime was relatively independent of membrane sterol content and yielded similar values in sonicated and unsonicated model membranes. In multilamellar liposomes containing 5 mole percent cholesterol, the gel-to-liqui crystalline phase transition of DMPC detected by 0.9 mole percent dehydroergosterol was significantly broadened when compared to the phase transition detected by dehydroergosterol in the absence of membrane cholesterol (Smutzer, G. et al. (1986) Biochim. Biophys. Acta 862, 361–371). In multilamellar liposomes containing 10 mole percent cholesterol, the major fluorescence lifetime of dehydroergosterol did not detect the gel-to-liquid crystalline phase transition of DMPC. Time-correlated fluorescence anisotropy decays of dehydroergosterol in DMPC multilamellar liposomes in the absence and presence of 5 mole percent cholesterol exhibited a single rotational correlation time near one nanosecond that was relatively independent of temperature and low concentrations of membrane cholesterol. The limiting anisotropy of 0.9 mole percent dehydroergosterol decreased above the gel-to-liquid crystalline phase transition in membranes without cholesterol and was not significantly affected by the phase transition in membranes containing 5 mole percent cholesterol. These results suggested hindered rotational diffusion of dehydroergosterol in multilamellar liposomes. Lifetime and time-correlated fluorescence measurements of 0.9 mole percent dehydroergosterol in multilamellar liposomes further suggested this fluorophore was detecting physical properties of the bulk membrane phospholipids in membranes devoid of cholesterol and was detecting sterol-rich regions in membranes of low sterol concentration.  相似文献   

17.
In view of the demonstrated cholesterol-binding capabilities of certain cyclodextrins, we have examined whether these agents can also catalyze efficient transfer of cholesterol between lipid vesicles. We here demonstrate that beta- and gamma-cyclodextrins can dramatically accelerate the rate of cholesterol transfer between lipid vesicles under conditions where a negligible fraction of the sterol is bound to cyclodextrin in steady state. beta- and gamma-cyclodextrin enhance the rate of transfer of cholesterol between vesicles by a larger factor than they accelerate the transfer of phospholipid, whereas, for alpha- and methyl-beta-cyclodextrin, the opposite is true. Analysis of the kinetics of cyclodextrin-mediated cholesterol transfer between large unilamellar vesicles composed mainly of 1-stearoyl-2-oleoyl phosphatidylcholine (SOPC) or SOPC/cholesterol indicates that transbilayer flip-flop of cholesterol is very rapid (halftime < 1-2 min at 37 degrees C). Using beta-cyclodextrin to accelerate cholesterol transfer, we have measured the relative affinities of cholesterol for a variety of different lipid species. Our results show strong variations in cholesterol affinity for phospholipids bearing different degrees of chain unsaturation and lesser, albeit significant, effects of phospholipid headgroup structure on cholesterol-binding affinity. Our findings also confirm previous suggestions that cholesterol interacts with markedly higher affinity with sphingolipids than with common membrane phospholipids.  相似文献   

18.
Two different pyrene derivatives, namely 12-(1-pyrene)dodecanoic acid (P12-FA) and N-(12-(1-pyrene)dodecanoyl)-galactosylsphingosine I3-sulfate (P12-CS) have been used to follow lipid peroxidation both in model and natural membranes. The malondialdehyde (MDA) production in small unilamellar vesicles of dipalmitoylphosphatidylcholine/arachidonic acid (80:20, molar ratio), symmetrically labelled with both probes determined a progressive decrease of pyrene fluorescence due to an involvement of pyrene in the peroxidative reaction. Nervous membranes are particularly sensitive to lipid oxidation which differentially acts on the two layers of the membrane determining a greater rigidity of the exofacial one. Thus, we consider the possibility to asymmetrically introduce the pyrene ring, as P12-FA or P12-CS, in synaptosomes for monitoring lipid peroxidation in each layer of the membrane. The amount of the two probes incorporated in the membrane was 20 +/- 3 and 10 +/- 2 nmol/mg of protein for P12-FA and P12-CS, respectively. P12-FA was symmetrically distributed in the two layers, whereas 95% of P12-CS was incorporated in the exofacial layer of the membrane as determined by TNBS measurements. The decrease in fluorescence of synaptosome associated pyrene was, in the early stages of lipid peroxidation, greater for P12-CS than for P12-FA labelled membranes, indicating a greater susceptibility of the exofacial layer to iron-induced peroxidation.  相似文献   

19.
We measured the nonradiative fluorescence resonance energy transfer between 7-nitro-2,1,3-benzoxadiazol-4-yl (NBD) labeled lipids (amine labeled phosphatidylethanolamine or acyl chain labeled phosphatidylcholine) and rhodamine labeled lipids in large unilamellar dioleoylphosphatidylcholine vesicles. Two new rhodamine labeled lipid analogues, one a derivative of monolauroylphosphatidylethanolamine and the other of sphingosylphosphorylcholine, were found to exchange through the aqueous phase between vesicle populations but not to be capable of rapid transbilayer movement between leaflets. Energy transfer from NBD to rhodamine was measured using liposomes with symmetric or asymmetric distributions of these new rhodamine labeled lipid analogues to determine the relative contributions of energy transfer between donor and acceptor fluorophores in the same (cis) and opposite (trans) leaflets. Since the characteristic R0 values for energy transfer ranged from 47 to 73 A in all cases, significant contributions from both cis and trans energy transfer were observed. Therefore, neither of these probes acts strictly as a half-bilayer quencher of NBD lipid fluorescence. The dependence of transfer efficiency on acceptor density was fitted to a theoretical treatment of energy transfer to determine the distances of closest approach for cis and trans transfer. These parameters set limits on the positions of the fluorescent groups relative to the bilayer center, 20-31 A for NBD and 31-55 A for rhodamine, and provide a basis for future use of these analogues in measurements of transbilayer distribution and transport.  相似文献   

20.
The rate of transbilayer movement of dioleoylphosphatidylcholine in sonicated lipid vesicles is enhanced by at least two orders of magnitude upon incorporation of glycophorin in the bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号