首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Properties of brain L-glutamate decarboxylase: inhibition studies   总被引:3,自引:12,他引:3  
—l -Glutamate decarboxylase purified from mouse brain was found to be highly sensitive to the sulfhydryl reagents, 5,5-dithiobis (2-nitrobenzoic acid) (DTNB) and p-chloromerburibenzoate (PCMB), which were competitive inhibitors (Ki for DTNB is 1·1 · 10?8m ). Iodoacetamide and iodoacetic acid were less effective inhibitors than DTNB and PCMB. The mercapto acids, 3-mercaptopropionic, 2-mercaptopropionic, and 2-mercaptoacetic acids were potent competitive inhibitors with Ki values of 1·8, 53 and 300 μm , respectively. 2-Mercaptoethanol was less effective. Aminooxyacetic acid was the most potent carbonyl-trapping reagent tested inhibiting the enzyme activity completely at 1·6 μm , followed by hydroxylamine, hydrazine, semicarbazide, and d -penicillamine. Carboxylic acids with a net negative charge were strong competitive inhibitors e.g. d -glutamate (Ki 0·9 mm ), α-ketoglutarate (Ki, l·2mm ), fumarate (Ki,1·8 mm ), dl -β-hydroxyglutamate (Ki, 2·8 mm ), l -aspartate (ki, 3·1 mm ) and glutarate (Ki, 3·5 mm ). 2-Aminophosphonobutyric and 2-aminophosphonopropionic acids, phosphonic analogs of glutamate and aspartate, respectively, had no effect at l0mm . γ-Aminobutyric acid, l -glutamine, l -γ-methylene-glutamine, and α,γ-diaminoglutaric acid, amino acids with no net negative charge at neutral pH, had no effect at 5 mm . Glutaric and α-ketoglutaric acids were the most potent inhibitors among the various dicarboxylic and α-keto-dicarboxylic acids tested (Ki, 3·5 and 1·2 mm , respectively). Compounds with one carbon less, succinic and oxalacetic acids, or with one carbon more, adipic and α-ketoadipic acids, were less inhibitory. The monovalent cations, Li+, Na+, NH4+, and Cs+ had no effect on l -glutamate decarboxylase activity in concentrations up to 10mm . Divalent cations, on the other hand, were very potent inhibitors. Among eleven divalent cations tested, Zn2+ was the most potent inhibitor, inhibiting to the extent of 50 per cent at 10μm . The decreasing order of inhibitory potency was: Zn2+ > Cd2+, Hg2+, Cu2+ > Ni2+ > Mn2+ Co2+ > Ba2+ > Ca2+ > Mg2+ > Sr+2, The anions, I?, Br?, Cl? and F? were only weak inhibitors. The Ki value for Cl? was 17mm . The above findings suggest minimally the presence of aldehyde, sulfhydryl and positively charged groups at or near the active site of the holoenzyme. Intermediates of glycolysis had little effect on l -glutamate decarboxylase activity, but intermediates of the tricarboxylic acid cycle, e.g. α-ketoglutarate (Ki= 1·2 mm ) and fumarate (Ki= 1·8 mm ) were relatively potent inhibitors. The nucleotides, ATP, ADP, AMP, cyclic AMP, GTP, GDP, GMP, and cyclic GMP were weak inhibitors. l -Norepinephrine (Ki= 1·3 mm ) and serotonin were potent inhibitors, while acetylcholine, dopamine and histamine were less effective. Ethanol and dioxane inhibited the enzyme activity to the extent of 20-50 per cent at 10 per cent (v/v), while slight activation was observed at low concentrations (0·1-1 per cent) of both solvents. The possible role of Zn2+ and some metabolites in the regulation of steady-state levels of γ-aminobutyric acid also was discussed.  相似文献   

2.
Glutamate decarboxylase (GAD) is an enzyme that synthesizes gamma-aminobutyrate (GABA), a major inhibitory neurotransmitter in the central nervous system. Post-translational modification of GAD, such as N-terminal blockage, phosphorylation-dephosphorylation, and palmitoylation, is an important factor in the biological activity of GAD. In order to address the significance of post-translational events on GAD, we thought it crucial to obtain a non-recombinant form of GAD. In this study, we attempted to isolate GAD protein from the monkey brain, a model animal close to the human that has not been studied. Monkey brain was homogenized, fractionated with ammonium sulphate, and applied to a series of chromatographic steps, including hydrophobic, ion-exchange, and gel filtration. Purified GAD showed a single band on SDS-PAGE, and the enzyme was found to have a molecular weight of 61,000 and exhibited 1,100 nmol/min/mg of specific activity. It had an optimal pH of 7 and optimal thermal stability at 40 degrees C.  相似文献   

3.
4.
Purification and some properties of L-glutamate decarboxylase from human brain   总被引:17,自引:0,他引:17  
Glutamate decarboxylase (EC 4.1.1.15) from human brain has been purified 8000-fold with respect to the initial homogenate. The molecular weight of the native enzyme was found to be 140000 by electrophoresis on a polyacrylamide gradient gel slab. The presence of a single protein band (Mr 67000) on sodium dodecylsulphate/polyacrylamide gel and the existence of only one N-terminal amino acid suggest that the enzyme consists of two similar if not identical polypeptide chains. The Km of the enzyme at the optimum pH of 6.8 is about 1.3 x 10(-3) M for glutamate and 0.13 x 10(-6) M for pyridoxal phosphate. The analysis of the effects of various inhibitors of mouse brain glutamate decarboxylase on the human enzyme confirms the strong competitive inhibition caused by 3-mercaptopropionic acid (Ki = 2.7 x 10(-6) M) while the Ki values for allylglycine and chloride ion are 1.8 x 10(-2) M and 2.2 x 10(-2) M, respectively.  相似文献   

5.
Human and rat L-glutamate decarboxylases have been purified to electrophoretic homogeneity. These two enzymes were compared using an immunochemical method, amino acid analysis and tryptic fingerprinting. Structural studies revealed several differences in the primary structure of the two enzymes, but the immunochemical method used did not distinguish between the antigenicity of the two proteins.  相似文献   

6.
7.
Purification of L-glutamate decarboxylase by affinity chromatography   总被引:1,自引:0,他引:1  
L-Glutamate decarboxylase (L-glutamate 1-carboxy-lyase, EC 4.1.1.15) from rat brain synaptosomal extract was partially purified by affinity chromatography. On further purification by DEAE-Sephadex A 50 and Sephadex G-200, L-glutamate decarboxylase was purified to greater extent. It was found that a single affinity chromatography by appropriate elution gave a highly purified protein giving a single band of high specific activity on polyacrylamide gradient gel slab electrophoresis with minimal contamination. Substrate specificity of the purified enzyme was modified in the presence of 6-azauracil or phenylalanine resulting in decreased specificity to L-glutamate and increased specificity to L-aspartate.  相似文献   

8.
L-Glutamate decarboxylase (GAD) activity of Clostridium perfringens (ATCC 8009) cells grown in various culture conditions was investigated. Remarkable variations of GAD level occur during the growth cycle in thioglycollate broth. These changes are affected by the pH of the culture medium. Addition of alkali to the culture media results in decrease of cell GAD activity, whereas increase of enzyme level occurs only in cells growing in unbuffered media. The results indicate that the mechanism regulating the GAD levels is sensitive to the changes of pH (or buffering substances) rather than to the steady pH values. Neither repression by glucose nor induction by L-glutamate was observed. Moreover, high concentrations of the free amino acid substrate in the culture media considerably decrease cell GAD activity, owing to the buffering effect of the amino acid. The molecular mechanism supporting the variations of GAD activity during the growth cycle of the cells were investigated and tentatively related to the structural and functional properties of the pure enzyme. It is shown that the drop of GAD activity during the lag phase is due to protein breakdown. Evidence is presented suggesting a control of protein degradation by its quaternary structure. Data are also reported supporting de novo synthesis of GAD during the late logarithmic phase of cell growth. Finally, the possible role of GAD as part of the pH regulation system of C. perfringens cells is discussed in relation both to physiologic conditions of the bacterial cell and to the molecular mechanisms regulating the GAD activity in vivo.  相似文献   

9.
10.
Apical organs are a well-known structure in almost all ciliated eumetazoan larvae, although their function is poorly known. A review of the literature indicates that this small ganglion is the "brain" of the early larva, and it seems probable that it represents the brain of the ancestral, holopelagic ancestor of all eumetazoans, the gastraea. This early brain is lost before or at metamorphosis in all groups. Protostomes (excluding phoronids and brachiopods) appear to have brains of dual origin. Their larvae develop a pair of cephalic ganglia at the episphere lateral to the apical organ, and these two ganglia become an important part of the adult brain. The episphere and the cerebral ganglia show Otx expression, whereas Hox gene expression has not been seen in this part of the brain. A ventral nervous system develops around the blastopore, which becomes divided into mouth and anus by fusion of the lateral blastopore lips. The circumblastoporal nerve ring becomes differentiated into a nerve ring around the mouth, becoming part of the adult brain, a pair of ventral nerve cords, in some cases differentiated into a chain of ganglia, and a ring around the anus. This part of the nervous system appears to be homologous with the oral nerve ring of cnidarians. This interpretation is supported by the expression of Hox genes around the cnidarian mouth and in the ventral nervous system of the protostomes. The development of phoronids, brachiopods, echinoderms, and enteropneusts does not lead to the formation of an episphere or to differentiation of cerebral ganglia. In general, a well-defined brain is lacking, and Hox genes are generally not expressed in the larval organs, although this has not been well studied.  相似文献   

11.
Fibroblasts of newborn mice produced far less amount of interferon in the presence of sera from newborn animals than in the presence of sera from adult animals. The interferons obtained were purified by adsorption chromatography on porous glass and were analyzed by electrophoresis in polyacrylamide gel. It has been shown that antiviral activity of interferon preparations obtained in the presence of sera from newborn mice was associated with the fraction of 45 Kd. Addition into the growth medium of sera from adult animals led to the production by the same cells of interferon activity associated with 41 and 28 Kd fractions. It is assumed that the sera of newborn mice contained the components influencing the molecular content of interferon produced by the cells of newborn animals.  相似文献   

12.
13.
VERO cell lines are important substrates for viral vaccine manufacture. The mechanism by which these cells became neoplastically transformed is unknown. During tissue-culture passage, VERO cells can develop the capacity to form tumors. Although at the passage levels (around p140) currently used for vaccine manufacture, VERO cells are non-tumorigenic, questions have been raised about safety issues that might be associated with this capacity to acquire a tumorigenic phenotype. To begin to address these issues, the tumorigenicity of VERO cell lines, derived at different passage levels under different growth conditions, were evaluated in 365-day assays in adult and newborn nude mice. High passage (p>200) VERO cell lines established by random passaging in tissue culture produced tumors in adult (10 out of 27) mice and newborn (21 out of 30) mice, respectively. In contrast, a high passage (p>250) cell line established by passage at sub-confluence produced tumors only in newborn mice (16 out of 30). Progressively growing tumors began forming at 36 days in newborns and at 69 days in adults. Higher tumor incidences and shorter tumor latencies suggest that newborn nude mice may be more sensitive than adults in detecting the expression of a tumorigenic phenotype by some VERO cell lines.  相似文献   

14.
15.
The cellular and subcellular distribution of L-glutamate decarboxylase (GAD), the biosynthetic enzyme for gamma-aminobutyric acid (GABA), was determined immunohistochemically in rat pancreatic islet using light and electron microscopic techniques. The cellular distribution of GAD was determined at the light microscopic level using an elution/re-staining protocol and a computerized digital image processing technique. At this level of resolution, immunofluorescent GAD was observed to be co-localized with immunofluorescent insulin in the islet B-cells and absent in both the A-cells, which contained glucagon, and the D-cells, which contained somatostatin. Subcellular localization of GAD was determined using an electron microscopic, colloidal gold post-embedding protocol and was compared to insulin immunoreactivity in serial sections of the same B-cell. In the same islet B-cell, GAD immunoreactivity appeared predominantly in the extragranular cytoplasm, whereas insulin immunoreactivity was associated with the secretory granules. Quantitative analysis of GAD immunoreactivity in the B-cell revealed 15.3 +/- 1.8 gold particles/micron2 in the cytoplasm, 1.7 +/- 0.2 gold particles/micron2 in the secretory granules, and 0.4 +/- 0.4 gold particles/micron2 in the mitochondria. The results of this study, localization of the biosynthetic enzyme for GABA to the B-cell cytoplasmic compartment and its absence in the secretory granules which contain insulin, are compatible with the hypothesis that GABA functions as an intracellular mediator of B-cell activity.  相似文献   

16.
Summary The proliferative activity of newborn and adult mouse adrenal medullary cells was determined with light and electron microscopic autoradiography. The H3 thymidine labelling index of 2 weeks old mice adrenal medullary cells was about 9.4 % and declined to less than 1 % in adult mice. In electron microscopic autoradiography labelled norepinephrine as well as epinephrine cells could be seen. Only in 1 and 2 weeks old mice some morphologically undifferentiated cells were visible. In formaldehyde induced fluorescence combined with light microscopic autoradiography the fluorescence intensities of labelled and unlabelled medullary cells were measured. On average the fluorescence intensity of labelled cells was lower than that of unlabelled cells. The differences could be explained by a higher number of autoradiographic silver grains laying on the cytoplasm of labelled cells. These results give evidence that fully differentiated adrenal medullary cells are capable of division.This study was supported by Jubiläumsfonds der Österreichischen Nationalbank grant No. 818  相似文献   

17.
Irradiation of L-glutamate decarboxylase (L-glutamate 1-carboxy-lyase, EC 4.1.1.15) from Escherichia coli by visible light absorbed by the intrinsic chromophore, pyridoxal phosphate, caused the selective modification of two methionines per enzyme monomer. The disulfoxide derivative exhibited modified circular dichroism, chromatographic and kinetic properties, suggesting a conformational role for the two methionine residues. Irradiation of the enzyme in the presence of proflavin revealed the presence of two distinct groups of tryptophan residues with markedly different photooxidation rate constants. No evidence of involvement of tryptophans in the catalytic mechanisms of the enzyme was obtained. The results are compared with those obtained on irradiation of L-glutamate decarboxylase from Clostridium perfringens.  相似文献   

18.
19.
20.
The proliferation and differentiation of mouse epidermal cells can be sequentially analyzed by modification of extracellular calcium. Newborn cells cultured in low calcium medium (less than 0.1 mM) proliferate as a monolayer and maintain a typical basal cell phenotype in culture but have a limited proliferative capacity and short lifespan. Elevation of the magnesium content of the culture medium from 1 to 5 mM stimulated the proliferation of newborn mouse (1-3 days old) keratinocytes. Maximal DNA synthesis rates, as determined on day 5 of culture, were up to 2-3-fold higher in the magnesium-enriched cultures. Exposure to high magnesium caused 3-4-fold increases in the DNA content of newborn keratinocyte cultures, and extended the confluent phase of epidermal cell growth to over 10 days. Other divalent cations (strontium, copper, zinc, nickel, beryllium, and barium) did not improve keratinocyte growth in culture. Keratinocytes from the tail skin of adult (3 months old) mice displayed an absolute requirement for high phosphate in the culture medium. The medium containing an optimal (10 mM) phosphate concentration prevented the cell detachment caused by the standard low (1 mM) phosphate medium, and in combination with an elevated magnesium content (10-15 mM) it markedly increased both DNA synthesis rates and DNA content of the adult cell cultures. Optimally growing, newborn or adult cultures contained less cells in the G1 phase of the cell cycle and more cells in S and G2 +M. The addition of phosphate and magnesium per se did not induce keratinocyte differentiation and did not interfere with the high calcium (1 mM)-induced differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号