首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
VEGF plays a critical role during lung development and is decreased in human infants with bronchopulmonary dysplasia. Inhibition of VEGF receptors in the newborn rat decreases vascular growth and alveolarization and causes pulmonary hypertension (PH). Nitric oxide (NO) is a downstream mediator of VEGF, but whether the effects of impaired VEGF signaling are due to decreased NO production is unknown. Therefore, we sought to determine whether impaired VEGF signaling downregulates endothelial NO synthase (eNOS) expression in the developing lung and whether inhaled NO (iNO) decreases PH and improves lung growth after VEGF inhibition. Newborn rats received a single dose of SU-5416 (a VEGF receptor inhibitor) or vehicle by subcutaneous injection and were killed up to 3 wk of age for assessments of right ventricular hypertrophy (RVH), radial alveolar counts (RAC), lung eNOS protein, and NOx production in isolated perfused lungs (IPL). Neonatal treatment with SU-5416 increased RVH in infant rats and reduced RAC. Compared with controls, SU-5416 reduced lung eNOS protein expression by 89% at 5 days (P < 0.01). IPL studies from day 14 rats demonstrated increased baseline pulmonary artery pressure and lower perfusate NOx concentration after SU-5416 treatment. Importantly, iNO treatment prevented the increase in RVH and improved RAC after SU-5416 treatment. We conclude that treatment of neonatal rats with SU-5416 downregulates lung eNOS expression and that iNO therapy decreases PH and improves lung growth after SU-5416 treatment. We speculate that decreased NO production contributes to PH and decreases distal lung growth caused by impaired VEGF signaling.  相似文献   

2.
Platelet-derived growth factor (PDGF) is a potent smooth muscle cell mitogen that may contribute to smooth muscle hyperplasia during the development of chronic pulmonary hypertension (PH). We studied changes in PDGFalpha- and beta-receptor and ligand expression in lambs with chronic intrauterine PH induced by partial ligation of the ductus arteriosus (DA) at gestational age 124-128 days (term = 147 days). Western blot analysis performed on whole lung homogenates from PH animals after 8 days of DA ligation showed a twofold increase in PDGFalpha- and beta-receptor proteins compared with age-matched controls (P < 0.05). Lung PDGF-A and -B mRNA expression did not differ between PH and control animals. We treated PH animals with NX1975, an aptamer that selectively inhibits PDGF-B, by infusion into the left pulmonary artery for 7 days after DA ligation. NX1975 reduced the development of muscular thickening of small pulmonary arteries by 47% (P < 0.05) and right ventricular hypertrophy (RVH) by 66% (P < 0.02). Lung PDGFalpha- and beta-receptor expression is increased in perinatal PH, and NX1975 reduces the increase in wall thickness of small pulmonary arteries and RVH in this model. We speculate that PDGF signaling contributes to structural vascular remodeling in perinatal PH and that selective PDGF inhibition may provide a novel therapeutic strategy for the treatment of chronic PH.  相似文献   

3.
4.
VEGF signaling inhibition decreases alveolar and vessel growth in the developing lung, suggesting that impaired VEGF signaling may contribute to decreased lung growth in bronchopulmonary dysplasia (BPD). Whether VEGF treatment improves lung structure in experimental models of BPD is unknown. The objective was to determine whether VEGF treatment enhances alveolarization in infant rats after hyperoxia. Two-day-old Sprague-Dawley rats were placed into hyperoxia or room air (RA) for 12 days. At 14 days, rats received daily treatment with rhVEGF-165 or saline. On day 22, rats were killed. Tissue was collected. Morphometrics was assessed by radial alveolar counts (RAC), mean linear intercepts (MLI), and skeletonization. Compared with RA controls, hyperoxia decreased RAC (6.1 +/- 0.4 vs. 11.3 +/- 0.4, P < 0.0001), increased MLI (59.2 +/- 1.8 vs. 44.0 +/- 0.8, P < 0.0001), decreased nodal point density (447 +/- 14 vs. 503 +/- 12, P < 0.0004), and decreased vessel density (11.7 +/- 0.3 vs. 18.9 +/- 0.3, P < 0.001), which persisted despite RA recovery. Compared with hyperoxic controls, rhVEGF treatment after hyperoxia increased RAC (11.8 +/- 0.5, P < 0.0001), decreased MLI (42.2 +/- 1.2, P < 0.0001), increased nodal point density (502 +/- 7, P < 0.0005), and increased vessel density (23.2 +/- 0.4, P < 0.001). Exposure of neonatal rats to hyperoxia impairs alveolarization and vessel density, which persists despite RA recovery. rhVEGF treatment during recovery enhanced vessel growth and alveolarization. We speculate that lung structure abnormalities after hyperoxia may be partly due to impaired VEGF signaling.  相似文献   

5.
We investigated the pulmonary vascular effects of prophylactic use of sildenafil, a specific phosphodiesterase-5 inhibitor, in late-gestation fetal lambs with chronic pulmonary hypertension. Fetal lambs were operated on at 129 +/- 1 days gestation (term = 147 days). Ductus arteriosus (DA) was compressed for 8 days to cause chronic pulmonary hypertension. Fetuses were treated with sildenafil (24 mg/day) or saline. Pulmonary vascular responses to increase in shear stress and in fetal PaO2 were studied at, respectively, day 4 and 6. Percent wall thickness of small pulmonary arteries (%WT) and the right ventricle-to-left ventricle plus septum ratio (RVH) were measured after completion of the study. In the control group, DA compression increased PA pressure (48 +/- 5 to 72 +/- 8 mmHg, P < 0.01) and pulmonary vascular resistance (PVR) (0.62 +/- 0.08 to 1.15 +/- 0.11 mmHg x ml(-1) x min(-1), P < 0.05). Similar increase in PAP was observed in the sildenafil group, but PVR did not change significantly (0.54 +/- 0.06 to 0.64 +/- 0.09 mmHg x ml(-1) x min(-1)). Acute DA compression, after brief decompression, elevated PVR 25% in controls and decreased PVR 35% in the sildenafil group. Increased fetal PaO2 did not change PVR in controls but decreased PVR 60% in the sildenafil group. %WT and RVH were not different between groups. Prophylactic sildenafil treatment prevents the rise in pulmonary vascular tone and altered vasoreactivity caused by DA compression in fetal lambs. These results support the hypothesis that elevated PDE5 activity is involved in the consequences of chronic pulmonary hypertension in the perinatal lung.  相似文献   

6.
Phosphodiesterase (PDE) 4 inhibitors are potent anti-inflammatory drugs with antihypertensive properties, and their therapeutic role in bronchopulmonary dysplasia (BPD) is still controversial. We studied the role of PDE4 inhibition with piclamilast on normal lung development and its therapeutic value on pulmonary hypertension (PH) and right ventricular hypertrophy (RVH) in neonatal rats with hyperoxia-induced lung injury, a valuable model for premature infants with severe BPD. The cardiopulmonary effects of piclamilast treatment (5 mg·kg(-1)·day(-1)) were investigated in two models of experimental BPD: 1) daily treatment during continuous exposure to hyperoxia for 10 days; and 2) late treatment and injury-recovery in which pups were exposed to hyperoxia or room air for 9 days, followed by 9 or 42 days of recovery in room air combined with treatment started on day 6 of oxygen exposure until day 18. Prophylactic piclamilast treatment reduced pulmonary fibrin deposition, septum thickness, arteriolar wall thickness, arteriolar vascular smooth muscle cell proliferation and RVH, and prolonged survival. In the late treatment and injury-recovery model, hyperoxia caused persistent aberrant alveolar and vascular development, PH, and RVH. Treatment with piclamilast in both models reduced arteriolar wall thickness, attenuated RVH, and improved right ventricular function in the injury recovery model, but did not restore alveolarization or angiogenesis. Treatment with piclamilast did not show adverse cardiopulmonary effects in room air controls in both models. In conclusion, PDE4 inhibition attenuated and partially reversed PH and RVH, but did not advance alveolar development in neonatal rats with hyperoxic lung injury or affect normal lung and heart development.  相似文献   

7.

Background

Phosphodiesterase-5 inhibition with sildenafil has been used to treat severe pulmonary hypertension and bronchopulmonary dysplasia (BPD), a chronic lung disease in very preterm infants who were mechanically ventilated for respiratory distress syndrome.

Methods

Sildenafil treatment was investigated in 2 models of experimental BPD: a lethal neonatal model, in which rat pups were continuously exposed to hyperoxia and treated daily with sildenafil (50–150 mg/kg body weight/day; injected subcutaneously) and a neonatal lung injury-recovery model in which rat pups were exposed to hyperoxia for 9 days, followed by 9 days of recovery in room air and started sildenafil treatment on day 6 of hyperoxia exposure. Parameters investigated include survival, histopathology, fibrin deposition, alveolar vascular leakage, right ventricular hypertrophy, and differential mRNA expression in lung and heart tissue.

Results

Prophylactic treatment with an optimal dose of sildenafil (2 × 50 mg/kg/day) significantly increased lung cGMP levels, prolonged median survival, reduced fibrin deposition, total protein content in bronchoalveolar lavage fluid, inflammation and septum thickness. Treatment with sildenafil partially corrected the differential mRNA expression of amphiregulin, plasminogen activator inhibitor-1, fibroblast growth factor receptor-4 and vascular endothelial growth factor receptor-2 in the lung and of brain and c-type natriuretic peptides and the natriuretic peptide receptors NPR-A, -B, and -C in the right ventricle. In the lethal and injury-recovery model we demonstrated improved alveolarization and angiogenesis by attenuating mean linear intercept and arteriolar wall thickness and increasing pulmonary blood vessel density, and right ventricular hypertrophy (RVH).

Conclusion

Sildenafil treatment, started simultaneously with exposure to hyperoxia after birth, prolongs survival, increases pulmonary cGMP levels, reduces the pulmonary inflammatory response, fibrin deposition and RVH, and stimulates alveolarization. Initiation of sildenafil treatment after hyperoxic lung injury and continued during room air recovery improves alveolarization and restores pulmonary angiogenesis and RVH in experimental BPD.  相似文献   

8.
In addition to its vasodilator properties, nitric oxide (NO) promotes angiogenesis in the systemic circulation and tumors. However, the role of NO in promoting normal lung vascular growth and its impact on alveolarization during development or in response to perinatal stress is unknown. We hypothesized that NO modulates lung vascular and alveolar growth and that decreased NO production impairs distal lung growth in response to mild hypoxia. Litters of 1-day-old mouse pups from parents that were heterozygous for endothelial nitric oxide synthase (eNOS) deficiency were placed in a hypobaric chamber at a simulated altitude of 12,300 ft (Fi(O(2)) = 0.16). After 10 days, the mice were killed, and lungs were fixed for morphometric and molecular analysis. Compared with wild-type controls, mean linear intercept (MLI), which is inversely proportional to alveolar surface area, was increased in the eNOS-deficient (eNOS -/-) mice [51 +/- 2 micro m (eNOS -/-) vs. 41 +/- 1 micro m (wild type); P < 0.01]. MLI was also increased in the eNOS heterozygote (+/-) mice (44 +/- 1 micro m; P < 0.03 vs. wild type). Vascular volume density was decreased in the eNOS -/- mice compared with wild-type controls (P < 0.03). Lung vascular endothelial growth factor (VEGF) protein and VEGF receptor-1 (VEGFR-1) protein content were not different between the study groups. In contrast, lung VEGFR-2 protein content was decreased from control values by 63 and 34% in the eNOS -/- and eNOS +/- mice, respectively (P < 0.03). We conclude that exposure to mild hypoxia during a critical period of lung development impairs alveolarization and reduces vessel density in the eNOS-deficient mouse. We speculate that NO preserves normal distal lung growth during hypoxic stress, perhaps through preservation of VEGFR-2 signaling.  相似文献   

9.
Although vascular endothelial growth factor (VEGF) plays a vital role in lung vascular growth in the embryo, its role in maintaining endothelial function and modulating vascular structure during late fetal life has not been studied. We hypothesized that impaired lung VEGF signaling causes pulmonary hypertension, endothelial dysfunction, and structural remodeling before birth. To determine whether lung VEGF expression is decreased in an experimental model of persistent pulmonary hypertension of the newborn (PPHN), we measured lung VEGF and VEGF receptor protein content from fetal lambs 7-10 days after ductus arteriosus ligation (132-140 days gestation; term = 147 days). In contrast with the surge in lung VEGF expression during late gestation in controls, chronic intrauterine pulmonary hypertension reduced lung VEGF expression by 78%. To determine whether VEGF inhibition during late gestation causes pulmonary hypertension, we treated fetal lambs with EYE001, an aptamer that specifically inhibits VEGF(165). Compared with vehicle controls, EYE001 treatment elevated pulmonary artery pressure and pulmonary vascular resistance by 22 and 50%, respectively, caused right ventricular hypertrophy, and increased wall thickness of small pulmonary arteries. EYE001 treatment reduced lung endothelial nitric oxide synthase protein content by 50% and preferentially impaired the pulmonary vasodilator response to ACh, an endothelium-dependent agent. We conclude that chronic intrauterine pulmonary hypertension markedly decreases lung VEGF expression and that selective inhibition of VEGF(165) mimics the structural and physiological changes of experimental PPHN. We speculate that hypertension downregulates VEGF expression in the developing lung and that impaired VEGF signaling may contribute to the pathogenesis of PPHN.  相似文献   

10.
Monocrotaline (MCT) produces respiratory dysfunction, pulmonary hypertension (PH), and right ventricular hypertrophy (RVH) in rats. Tachykinins, such as substance P (SP) and neurokinin A (NKA), may mediate these effects. The purpose of this study was to investigate the length of tachykinin depletion (via capsaicin treatment) is needed to prevent (or attenuate) PH and/or RVH. Six groups of rats were injected subcutaneously with saline (3 ml/kg); capsaicin followed by saline or MCT (60 mg/kg); or MCT followed 7, 11, or 14 days later by capsaicin. Capsaicin (cumulative dose, 500 mg/kg) was given over a period of 4-5 days. Respiratory function, pulmonary vascular parameters, lung tachykinin levels, and tracheal neutral endopeptidase (NEP) activity were measured 21 days after MCT or saline injection. Capsaicin significantly decreased lung levels of SP but not NKA. Both capsaicin pretreatment and posttreatment blocked the following MCT-induced alterations: increases in lung SP and airway constriction; decreases in tracheal NEP activity and dynamic respiratory compliance. Administration of capsaicin before or 7 days after MCT blocked MCT-induced PH and RVH. The above data suggest that the early tachykinin-mediated airway dysfunction requires only transient elevated tachykinins, while progression of late tachykinin-mediated effects (PH and RVH) requires elevated tachykinins for more than one week.  相似文献   

11.
We hypothesized that disrupted alveolarization and lung vascular growth caused by brief perinatal hypoxia would predispose infant rats to higher risk for developing pulmonary hypertension when reexposed to hypoxia. Pregnant rats were exposed to 11% inspired oxygen fraction (barometric pressure, 410 mmHg; inspired oxygen pressure, 76 mmHg) for 3 days before birth and were maintained in hypoxia for 3 days after birth. Control rats were born and raised in room air. At 2 wk of age, rats from both groups were exposed to hypoxia for 1 wk or kept in room air. We found that brief perinatal hypoxia resulted in a greater increase in right ventricular systolic pressure and higher ratio of right ventricle to left ventricle plus septum weights after reexposure to hypoxia after 2 wk of age. Moreover, perinatal hypoxic rats had decreased radial alveolar counts and reduced pulmonary artery density. We conclude that brief perinatal hypoxia increases the severity of pulmonary hypertension when rats are reexposed to hypoxia. We speculate that disrupted alveolarization and lung vascular growth following brief perinatal hypoxia may increase the risk for severe pulmonary hypertension with exposure to adverse stimuli later in life.  相似文献   

12.
Recent studies suggest that VEGF may worsen pulmonary edema during acute lung injury (ALI), but, paradoxically, impaired VEGF signaling contributes to decreased lung growth during recovery from ALI due to neonatal hyperoxia. To examine the diverse roles of VEGF in the pathogenesis of and recovery from hyperoxia-induced ALI, we hypothesized that exogenous recombinant human VEGF (rhVEGF) treatment during early neonatal hyperoxic lung injury may increase pulmonary edema but would improve late lung structure during recovery. Sprague-Dawley rat pups were placed in a hyperoxia chamber (inspired O(2) fraction 0.9) for postnatal days 2-14. Pups were randomized to daily intramuscular injections of rhVEGF(165) (20 microg/kg) or saline (controls). On postnatal day 14, rats were placed in room air for a 7-day recovery period. At postnatal days 3, 14, and 21, rats were killed for studies, which included body weight and wet-to-dry lung weight ratio, morphometric analysis [including radial alveolar counts (RAC), mean linear intercepts (MLI), and vessel density], and lung endothelial NO synthase (eNOS) protein content by Western blot analysis. Compared with room air controls, hyperoxia increased pulmonary edema by histology and wet-to-dry lung weight ratios at postnatal day 3, which resolved by day 14. Although treatment with rhVEGF did not increase edema in control rats, rhVEGF increased wet-to-dry weight ratios in hyperoxia-exposed rats at postnatal days 3 and 14 (P < 0.01). Compared with room air controls, hyperoxia decreased RAC and increased MLI at postnatal days 14 and 21. Treatment with VEGF resulted in increased RAC by 181% and decreased MLI by 55% on postnatal day 14 in the hyperoxia group (P < 0.01). On postnatal day 21, RAC was increased by 176% and MLI was decreased by 58% in the hyperoxia group treated with VEGF. rhVEGF treatment during hyperoxia increased eNOS protein on postnatal day 3 by threefold (P < 0.05). We conclude that rhVEGF treatment during hyperoxia-induced ALI transiently increases pulmonary edema but improves lung structure during late recovery. We speculate that VEGF has diverse roles in hyperoxia-induced neonatal lung injury, contributing to lung edema during the acute stage of ALI but promoting repair of the lung during recovery.  相似文献   

13.
We have previously shown that lung VEGF expression is decreased in a fetal lamb model of PPHN and that VEGF165 inhibition causes severe pulmonary hypertension in fetal lambs. Therefore, we hypothesized that treatment with rhVEGF165 would preserve endothelium-dependent vasodilation and reduce the severity of pulmonary vascular remodeling in an experimental model of PPHN. We studied the effects of daily intrapulmonary infusions of rhVEGF after partial ligation of the ductus arteriosus (DA). We performed surgery in 24 late-gestation fetal lambs and placed catheters in the main pulmonary artery, left atrium, and aorta for pressure measurements and in the left pulmonary artery for drug infusions. A pressure transducer was placed around the LPA to measure blood flow to the left lung (Qp), and the DA was surgically constricted to induce pulmonary hypertension. rhVEGF165 or vehicle was infused for 7 or 14 days. ACh or 8-BrcGMP was infused on days 2 and 13 to assess endothelium-dependent and -independent vasodilation, respectively. ACh-induced vasodilation was reduced in PPHN lambs after 14 days (change in Qp from baseline, 106% vs. 11%). In contrast, the response to ACh was preserved in lambs treated with rhVEGF (change in Qp, 94% vs. 90%). Pulmonary vasodilation to 8-BrcGMP was not altered in PPHN lambs or enhanced by VEGF treatment. rhVEGF treatment increased expression of lung eNOS protein and decreased pulmonary artery wall thickness by 34% vs. PPHN lambs. We conclude that VEGF165 preserves endothelium-dependent vasodilation, upregulates eNOS expression, and reduces the severity of pulmonary vascular remodeling in experimental PPHN.  相似文献   

14.
Failed alveolar formation and excess, disordered elastin are key features of neonatal chronic lung disease (CLD). We previously found fewer alveoli and more elastin in lungs of preterm compared with term lambs that had mechanical ventilation (MV) with O(2)-rich gas for 3 wk (MV-3 wk). We hypothesized that, in preterm more than in term lambs, MV-3 wk would reduce lung expression of growth factors that regulate alveolarization (VEGF, PDGF-A) and increase lung expression of growth factors [transforming growth factor (TGF)-alpha, TGF-beta(1)] and matrix molecules (tropoelastin, fibrillin-1, fibulin-5, lysyl oxidases) that regulate elastin synthesis and assembly. We measured lung expression of these genes in preterm and term lambs after MV for 1 day, 3 days, or 3 wk, and in fetal controls. Lung mRNA for VEGF, PDGF-A, and their receptors (VEGF-R2, PDGF-Ralpha) decreased in preterm and term lambs after MV-3 wk, with reduced lung content of the relevant proteins in preterm lambs with CLD. TGF-alpha and TGF-beta(1) expression increased only in lungs of preterm lambs. Tropoelastin mRNA increased more with MV of preterm than term lambs, and expression levels remained high in lambs with CLD. In contrast, fibrillin-1 and lysyl oxidase-like-1 mRNA increased transiently, and lung abundance of other elastin-assembly genes/proteins was unchanged (fibulin-5) or reduced (lysyl oxidase) in preterm lambs with CLD. Thus MV-3 wk reduces lung expression of growth factors that regulate alveolarization and differentially alters expression of growth factors and matrix proteins that regulate elastin assembly. These changes, coupled with increased lung elastase activity measured in preterm lambs after MV for 1-3 days, likely contribute to CLD.  相似文献   

15.
Pulmonary hypertension and blunted pulmonary vascular responses to ACh develop when newborn pigs are exposed to chronic hypoxia for 3 days. To determine whether a cyclooxygenase (COX)-dependent contracting factor, such as thromboxane, is involved with altered pulmonary vascular responses to ACh, newborn piglets were raised in 11% O(2) (hypoxic) or room air (control) for 3 days. Small pulmonary arteries (100-400 microm diameter) were cannulated and pressurized, and their responses to ACh were measured before and after either the COX inhibitor indomethacin; a thromboxane synthesis inhibitor, dazoxiben or feregrelate; or the thromboxane-PGH(2)-receptor antagonist SQ-29548. In control arteries, indomethacin reversed ACh responses from dilation to constriction. In contrast, hypoxic arteries constricted to ACh before indomethacin and dilated to ACh after indomethacin. Furthermore, ACh constriction in hypoxic arteries was nearly abolished by either dazoxiben, feregrelate, or SQ-29548. These findings suggest that thromboxane is the COX-dependent contracting factor that underlies the constrictor response to ACh that develops in small pulmonary arteries of piglets exposed to 3 days of hypoxia. The early development of thromboxane-mediated constriction may contribute to the pathogenesis of chronic hypoxia-induced pulmonary hypertension in newborns.  相似文献   

16.
Endothelin receptor blockade is an emerging therapy for pulmonary hypertension. However, hemodynamic and structural effects and potential changes in endogenous nitric oxide (NO)-cGMP and endothelin-1 signaling of chronic endothelin A receptor blockade in pulmonary hypertension secondary to congenital heart disease are unknown. Therefore, the objectives of this study were to determine hemodynamic and structural effects and potential changes in endogenous NO-cGMP and endothelin-1 signaling of chronic endothelin A receptor blockade in a lamb model of increased pulmonary blood flow following in utero placement of an aortopulmonary shunt. Immediately after spontaneous birth, shunt lambs were treated lifelong with either an endothelin A receptor antagonist (PD-156707) or placebo. At 4 wk of age, PD-156707-treated shunt lambs (n = 6) had lower pulmonary vascular resistance and right atrial pressure than placebo-treated shunt lambs (n = 8, P < 0.05). Smooth muscle thickness or arterial number per unit area was not different between the two groups. However, the number of alveolar profiles per unit area was increased in the PD-156707-treated shunt lambs (190.7 +/- 5.6 vs. 132.9 +/- 10.0, P < 0.05). Plasma endothelin-1 and cGMP levels and lung NOS activity, cGMP, eNOS, preproendothelin-1, endothelin-converting enzyme-1, endothelin A, and endothelin B receptor protein levels were similar in both groups. We conclude that chronic endothelin A receptor blockade attenuates the progression of pulmonary hypertension and augments alveolar growth in lambs with increased pulmonary blood flow.  相似文献   

17.
Bleomycin-induced lung injury is characterized in the neonatal rat by inflammation, arrested lung growth, and pulmonary hypertension (PHT), as observed in human infants with severe bronchopulmonary dysplasia. Inhalation of CO(2) (therapeutic hypercapnia) has been described to limit cytokine production and to have anti-inflammatory effects on the injured lung; we therefore hypothesized that therapeutic hypercapnia would prevent bleomycin-induced lung injury. Spontaneously breathing rat pups were treated with bleomycin (1 mg/kg/d ip) or saline vehicle from postnatal days 1-14 while being continuously exposed to 5% CO(2) (Pa(CO(2)) elevated by 15-20 mmHg), 7% CO(2) (Pa(CO(2)) elevated by 35 mmHg), or normocapnia. Bleomycin-treated animals exposed to 7%, but not 5%, CO(2), had significantly attenuated lung tissue macrophage influx and PHT, as evidenced by normalized pulmonary vascular resistance and right ventricular systolic function, decreased right ventricular hypertrophy, and attenuated remodeling of pulmonary resistance arteries. The level of CO(2) neither prevented increased tissue neutrophil influx nor led to improvements in decreased lung weight, septal thinning, impaired alveolarization, or decreased numbers of peripheral arteries. Bleomycin led to increased expression and content of lung tumor necrosis factor (TNF)-α, which was found to colocalize with tissue macrophages and to be attenuated by exposure to 7% CO(2). Inhibition of TNF-α signaling with the soluble TNF-2 receptor etanercept (0.4 mg/kg ip from days 1-14 on alternate days) prevented bleomycin-induced PHT without decreasing tissue macrophages and, similar to CO(2), had no effect on arrested alveolar development. Our findings are consistent with a preventive effect of therapeutic hypercapnia with 7% CO(2) on bleomycin-induced PHT via attenuation of macrophage-derived TNF-α. Neither tissue macrophages nor TNF-α appeared to contribute to arrested lung development induced by bleomycin. That 7% CO(2) normalized pulmonary vascular resistance and right ventricular function without improving inhibited airway and vascular development suggests that vascular hypoplasia does not contribute significantly to functional changes of PHT in this model.  相似文献   

18.
Chronic early gestational chorioamnionitis is associated with development of bronchopulmonary dysplasia in preterm infants. A single intra-amniotic exposure to endotoxin decreased alveolarization and reduced expression of endothelial proteins in 125-day gestational age preterm lambs. We hypothesized that prolonged exposure to intra-amniotic endotoxin would cause progressive lung inflammation and inhibit alveolar and pulmonary vascular development. Endotoxin (1 mg/day) or saline was administered via an intra-amniotic osmotic pump from 80 to 108 days of gestational age (continuous pump) or by four weekly 10-mg intra-amniotic endotoxin injections starting at 100 days of gestational age (multiple dose). Lung morphometry, lung inflammation, vascular effects, and lung maturation were measured at delivery. The continuous pump lambs delivered at 100 days (approximately 70% of total endotoxin exposure) had lung inflammation, fewer saccules, and decreased endothelial proteins endothelial nitric oxide synthase and VEGF receptor 2 expression compared with controls. The continuous pump (delivered at 138 days) and multiple dose lambs (delivered at 130 and 145 days) had mild persistent lung inflammation and no significant differences in lung morphometry or expression of endothelial proteins compared with controls. Surfactant saturated phosphatidylcholine pool sizes were increased in all endotoxin-exposed groups, but lung function was not changed relative to controls. Contrary to our hypothesis, a prolonged fetal exposure to intra-amniotic endotoxin caused mild persistent inflammation but did not lead to progressive structural abnormalities in lungs of near-term gestation lambs.  相似文献   

19.
To determine whether angiogenesis is necessary for normal alveolarization, we studied the effects of two antiangiogenic agents, thalidomide and fumagillin, on alveolarization during a critical period of lung growth in infant rats. Newborn rats were treated with daily injections of fumagillin, thalidomide, or vehicle during the first 2 wk of life. Compared with control treatment, fumagillin and thalidomide treatment reduced lung weight-to-body weight ratio and pulmonary arterial density by 20 and 36%, respectively, and reduced alveolarization by 22%. Because these drugs potentially have nonspecific effects on lung growth, we also studied the effects of Su-5416, an inhibitor of the vascular endothelial growth factor receptor known as kinase insert domain-containing receptor/fetal liver kinase (KDR/flk)-1. As observed with the other antiangiogenic agents, Su-5416 treatment decreased alveolarization and arterial density. We conclude that treatment with three different antiangiogenic agents attenuated lung vascular growth and reduced alveolarization in the infant rat. We speculate that angiogenesis is necessary for alveolarization during normal lung development and that injury to the developing pulmonary circulation during a critical period of lung growth can contribute to lung hypoplasia.  相似文献   

20.
Acute partial compression of the fetal ductus arteriosus (DA) results in an initial increase in pulmonary blood flow (PBF) that is followed by acute vasoconstriction. The objective of the present study was to determine the role of nitric oxide (NO)-endothelin-1 (ET-1) interactions in the acute changes in pulmonary vascular tone after in utero partial constriction of the DA. Twelve late-gestation fetal lambs (132-140 days) were instrumented to measure vascular pressures and left PBF. After a 24-h recovery period, acute constriction of the DA was performed by partially inflating a vascular occluder, and the hemodynamic variables were observed for 4 h. In control lambs (n = 7), acute ductal constriction initially increased PBF by 627% (P < 0.05). However, this was followed by active vasoconstriction, such that PBF was restored to preconstriction values by 4 h. This was associated with a 43% decrease in total NO synthase (NOS) activity (P < 0.05) and a 106% increase in plasma ET-1 levels (P < 0.05). Western blot analysis demonstrated no changes in lung tissue endothelial NOS, preproET-1, endothelin-converting enzyme-1, or ET(B) receptor protein levels. The infusion of PD-156707 (an ET(A) receptor antagonist, n = 5) completely blocked the vasoconstriction and preserved NOS activity. These data suggest that the fetal pulmonary vasoconstriction after acute constriction of the DA is mediated by NO-ET-1 interactions. These include an increase in ET(A) receptor-mediated vasoconstriction and an ET(A) receptor-mediated decrease in NOS activity. The mechanisms of these NO-ET-1 interactions, and their role in mediating acute changes in PBF, warrant further studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号