首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new composite facial and scalp transplantation model in rats   总被引:9,自引:0,他引:9  
There are limited sources of autogenous tissue available for reconstruction of severe facial and scalp deformities caused by extensive tumor ablation, burns, or trauma. Allografts from cadaveric sources may serve as a reconstructive alternative. However, technical and immunological aspects of harvesting and transplanting face and scalp flaps limit the routine use of such procedures. For evaluation of the feasibility of composite-tissue reconstruction, an experimental model of composite face/scalp flap transplantation in rats was designed. Technical aspects of the model, survival rates, and the complications encountered during development of the model are presented. A total of 64 animals, in three experimental groups, were studied. In group I, the anatomical study group (n = 6), the anatomical features of the face and scalp region in rats were explored. Groups II and III were the transplantation groups. Isograft transplantations were performed between identical Lewis rats (RT11 to RT11), and allografts were transplanted, across major histocompatibility complex barriers, between Lewis-Brown Norway rats (RT1l/n) and Lewis rats (RT11). In group II (the control group, n = 8), transplantation of nonvascularized composite face/scalp isografts and allografts was performed. In group III (the transplantation group, n = 50), vascularized face/scalp isografts (n = 36) and allografts (n = 14) were transplanted. Complications included partial or total flap necrosis, death attributable to food aspiration, and poor general condition. To prevent acute and chronic allograft rejection, cyclosporine A (16 mg/kg per day) therapy was initiated 24 hours after transplantation; the dose was tapered to 2 mg/kg per day within 4 weeks and was maintained at that level thereafter. Long-term survival (>170 days) was achieved, without any signs of rejection, with low-dose (2 mg/kg per day) cyclosporine A therapy. This is the first report documenting successful composite face/scalp flap transplantation in the rat model.  相似文献   

2.
With an organ transplant, hematopoietic donor cells are transferred to the recipient. To study the relevance of the resulting microchimerism for allograft acceptance, we analyzed a rat model of cyclosporine-induced tolerance for strongly incompatible heart allografts. Using a monoclonal antibody that detects a donor-specific CD45 allotype (RT7a), we selectively depleted donor leukocytes at different times after transplantation (days 0 or 18). Depletion was similarly effective at both times. However, only depletion on day 0 prevented tolerance induction and was associated with severe acute or chronic graft rejection. This indicates that passenger leukocytes have an essential immunomodulatory effect on the induction phase of allograft acceptance.  相似文献   

3.
Total lymphoid irradiation (TLI), originally developed as a non-myeloablative treatment for Hodgkin's disease, has been adapted for the induction of immune tolerance to organ allografts in rodents, dogs and non-human primates. Moreover, pretransplantation TLI has been used in prospective studies to demonstrate the feasibility of the induction of tolerance to cadaveric kidney allografts in humans. Two types of tolerance, chimeric and non-chimeric, develop after TLI treatment of hosts depending on whether donor bone marrow cells are transplanted along with the organ allograft. An advantageous feature of TLI for combined marrow and organ transplantation is the protection against graft-versus-host disease (GVHD) and facilitation of chimerism afforded by the predominance of CD4+ NK1.1(+) -like T cells in the irradiated host lymphoid tissues. Recently, a completely post-transplantation TLI regimen has been developed resulting in stable mixed chimerism and tolerance that is enhanced by a brief course of cyclosporine. The post-transplantation protocol is suitable for clinical cadaveric kidney transplantation. This review summarizes the evolution of TLI protocols for eventual application to human clinical transplantation and discusses the mechanisms involved in the induction of mixed chimerism and protection from GVHD.  相似文献   

4.
BACKGROUND: Donor specific tolerance to heart allografts is induced in LEW.1A rat recipient by two donor LEW.1W blood transfusions prior engraftment. Although the tolerant allograft is infiltrated by leukocytes, graft infiltrating cells are only expressing low levels of the Th1- or Th2-related cytokines suggesting that induction of tolerance is an active phenomenon in which the mechanisms remain to be elucidated. MATERIALS AND METHODS: Differential display (DD) method was applied on RNAs extracted from graft infiltrating cells (GIC) derived from allografts either from rejecting untreated rats or donor-specific blood transfusion treated tolerant rats. Quantitative RT/PCR was performed to confirm mRNA expressions of the selected genes. RESULTS: Among the six differentially displayed DNAs (ddDNA) overexpressed in GIC from rejected allografts, the macrophage scavenger receptor-A (A:D13265) was identified; it exhibited a stricking induction of mRNA expression from day 1 to 7 after transplantation. Among the seven ddDNAs overexpressed in GIC from tolerant allografts, the 3-hydroxy-3-methyl glutaryl coenzyme-A reductase (A:M29249) and an "unknown gene" (ddDNA EC9) were identified and both were confirmed to be up-regulated by quantitative RT/PCR. CONCLUSIONS: The relevance of these genes in transplantation has not yet been reported and must therefore be elucidated; they represent possible targets for immunointervention. Nevertheless, our data demonstrate that the DD is a powerful tool to identify new genes involved in organ transplantation.  相似文献   

5.
We investigated the ability of anti-ICAM-1 monoclonal antibodies to reduce endothelial cell damage by assessing microvascular permeability and microcirculatory function during the acute phase of allograft rejection. The composite rat hindlimb-cremaster muscle transplantation model was employed in three experimental groups of 18 animals each. Isograft control transplantations were performed between genetically identical Lewis (LEW, RT11) rats. Allograft transplantations were performed across a major histocompatibility barrier between Lewis-Brown-Norway (LBN, RT-11+n), and Lewis (LEW, RT11) rats. In addition, a third group of animals receiving allografts was treated with 1 mg/kg/day of anti-ICAM-1 monoclonal antibody. After 24 hours, 72 hours, and 7 days, we measured microvascular permeability, leukocyte activation, functional capillary perfusion, red blood cell velocity, vessel diameters, and endothelial edema index in six animals per each follow-up period. Endothelial cell damage was assessed by measuring graft permeability to fluorescein isothiocyanate-labeled albumin (0.2 ml/100 g body weight) with computer-aided image analysis. Mean microvascular permeability was lower in the treated allograft group than in untreated controls at all follow-up times (p<0.001). In addition, anti-ICAM-1 treatment significantly reduced the activation of sticking leukocytes at 24 and 72 hours (p<0.001) and the activation of transmigrating leukocytes at 72 hours and 7 days (p<0.05). The allografts presented a characteristic microcirculatory pattern of acute rejection as early as 24 hours after transplantation. The dysfunction of the endothelial cell barrier at all time points was indicated by significant increases in the degree of allograft macromolecular permeability and in the number of activated sticking and transmigrating leukocytes. Treatment with anti-ICAM-1 antibodies significantly reduced the surge of leukocytes in the allograft transplants and protected the endothelial barrier from the acute effects of transplantation trauma.  相似文献   

6.
Creation of stable hemopoietic chimerism has been considered to be a prerequisite for allograft tolerance after bone marrow transplantation (BMT). In this study, we demonstrated that allogeneic BMT with bone marrow cells (BMC) prepared from either knockout mice deficient in both CD4 and CD8 T cells or CD3E-transgenic mice lacking both T cells and NK cells maintained a high degree of chimerism, but failed to induce tolerance to donor-specific wild-type skin grafts. Lymphocytes from mice reconstituted with T cell-deficient BMC proliferated when they were injected into irradiated donor strain mice, whereas lymphocytes from mice reconstituted with wild-type BMC were unresponsive to donor alloantigens. Donor-specific allograft tolerance was restored when donor-type T cells were adoptively transferred to recipient mice given T cell-deficient BMC. These results show that donor T cell engraftment is required for induction of allograft tolerance, but not for creation of continuous hemopoietic chimerism after allogeneic BMT, and that a high degree of chimerism is not necessarily associated with specific allograft tolerance.  相似文献   

7.
Y Wang  Z Zheng  Y Wang  J Liu  N Li  X Hu  F Han  Y Liu  D Hu 《PloS one》2012,7(8):e43825

Background

Vascularized bone marrow transplantation (VBMT) is widely accepted as an efficient means of establishing chimerism and inducing tolerance. However, the mechanism underlying is poorly understood. Recently, regulatory T cells (Tregs) have been shown to play an important role in regulating immune responses to allogeneic antigens. In this study, we explored the role of Tregs in the induction of tolerance in an allogeneic hind limb transplantation model.

Methodology/Principal Findings

Forty-eight Lewis rats were divided into 6 groups. They received isografts and allografts from Brown-Norway hind limbs. Recipients in groups 1 and 2 received isografts and those in the other groups received allografts. The bone components of donor limbs were kept intact in groups 1, 3, and 5 but removed before transplantation into groups 2, 4, and 6. Tapered cyclosporin A (CsA) was administered to recipients in groups 5 and 6 after transplantation. During the 100-day observation period, all isografts survived, but the allografts in groups 3 and 4 were rejected within 8 to 12 days. CsA-treated intact allografts survived rejection-free for more than 100 days, and CsA-treated allografts lacking bone elements were rejected within 2 months. Stable peripheral chimerism and myeloid chimerism were observed in group 5. Declining peripheral chimerism and a lack of myeloid chimerism were observed in group 6. Donor-specific Tregs were exclusively detected in both peripheral blood and in the spleens of long-term recipient rats in group 5, with an increased FoxP3 mRNA expression in the allografts. This was further demonstrated to be responsible for donor-specific hyporeactivity by in vitro one-way mixed lymphocyte reaction (MLR).

Conclusion/Significance

Bone components in the allogeneic hind limbs can induce myeloid chimerism and donor-specific Tregs may be essential to tolerance induction. The bone-removal hind limb model may be a suitable counterpart to the induction of tolerance in the study of limb transplantation.  相似文献   

8.
It is an urgent need to induce and keep the donor-specific immune tolerance without affecting the function of normal immune defense and immune surveillance in clinical organ transplantation. Large number of studies showed that both the establishment of donor-recipient chimerism and the application of antibodies or drugs could obtain the donor-specific immune tolerance in animal transplantation model. However, the former as treatment of clinical practice has a poor feasibility, the latter has a very low success rate in clinical organ transplantation. There is a group of naturally occurring CD4+CD25+ regulatory T cells (Tregs) that mediate immune tolerance by suppressing alloreactive T cells in vivo. These cells are unable to curb the occurrence of allograft rejection owing their low content. And donor-specific Tregs amplified in vitro alone can not induce donor-specific immune tolerance for recipient. Rapamycin (RPM) as a proliferation signal inhibitor, studies have shown it can effectively inhibit allograft rejection and maybe contribute to induction of immune tolerance. But there exist still many dose-dependent adverse reactions which could prevent the establishment of immune tolerance and reduce the life quality of recipients in the clinical application of RPM. Therefore, we speculate a small amount of RPM combined with donor-specific Tregs amplified in vitro may be not only induce the achievement of donor-specific tolerance, but also reduce or eliminate the side effects of RPM in clinical organ transplantation.  相似文献   

9.
CD45 is known to have tyrosine phosphatase activity for signal transduction of T cells. Immunomodulation of CD45 has been tried to prevent T cell-mediated graft rejection in organ transplantation. In vitro study showed that blockade of CD45RB, an alternative splicing isoform of CD45, inhibited proliferative response of T cells after allogeneic stimulation. Treatment with a monoclonal antibody (mAb) against CD45RB induced long-term allograft acceptance in some mouse organ transplantation models. In a rat heart allograft model, a single injection of anti-rat CD45 (RT7) mAb which bound to allomorphic region of RT7 also induced allograft acceptance. CD45/RT7 is also a useful tool of targeting hematopoietic cells, because of the selective expression on all hematopoietic cells. There are two allomorphic forms of CD45 (RT7a and RT7b) in the rat. Using RT7 system, a rat heart allograft model from RT7a donors to RT7b recipients was designed to test functional relevance of graft-associated hematopoietic cells (microchimerism) to allograft acceptance. Then donor-derived hematopoietic cells were selectively depleted using anti-RT7a mAb in vivo. Depletion on day 0 prevented allograft acceptance and was associated with severe acute or chronic graft rejection, while depletion on day 18 after transplantation showed no effect. This experimental study showed a crucial role of microchimerism in induction phase of allograft acceptance. In conclusion, the CD45/RT7 system is not only a target molecule for tolerance induction, but also an useful tool for experimental models in transplantation immunology. In this review, we introduce basic properties of CD45 and recent results with manipulation of CD45.  相似文献   

10.
The alloimmune response against fully MHC-mismatched allografts, compared with immune responses to nominal antigens, entails an unusually large clonal size of alloreactive T cells. Thus, induction of peripheral allograft tolerance established in the absence of immune system ablation and reconstitution is a challenging task in transplantation. Here, we determined whether a reduction in the mass of alloreactive T cells due to apoptosis is an essential initial step for induction of stable allograft tolerance with non-lymphoablative therapy. Blocking both CD28-B7 and CD40-CD40 ligand interactions (co-stimulation blockade) inhibited proliferation of alloreactive T cells in vivo while allowing cell cycle-dependent T-cell apoptosis of proliferating T cells, with permanent engraftment of cardiac allografts but not skin allografts. Treatment with rapamycin plus co-stimulation blockade resulted in massive apoptosis of alloreactive T cells and produced stable skin allograft tolerance, a very stringent test of allograft tolerance. In contrast, treatment with cyclosporine A and co-stimulation blockade abolished T-cell proliferation and apoptosis, as well as the induction of stable allograft tolerance. Our data indicate that induction of T-cell apoptosis and peripheral allograft tolerance is prevented by blocking both signal 1 and signal 2 of T-cell activation.  相似文献   

11.
Treatment of mice with a single donor-specific transfusion (DST) plus a brief course of anti-CD154 mAb to block CD40-mediated signaling uniformly induces donor-specific transplantation tolerance. Survival of islet allografts in treated mice is permanent, but skin grafts eventually fail unless recipients are thymectomized. The nature of the cellular mechanisms involved and the basis for the difference in survival of islet vs skin allografts are not known. In this study, we used CD40 knockout mice to investigate the role of CD40-mediated signaling in each component of the tolerance induction protocol: the DST, the graft, and the host. When CD40-mediated signaling was eliminated in only the DST or the graft, islet allografts were rapidly rejected. However, when CD40 signaling was eliminated in the host, approximately 40% of the islet allografts survived. When CD40 signaling was eliminated in the DST, the graft, and the host, islet grafts survived long term (>84 days), whereas skin allografts were rapidly rejected ( approximately 13 days). We conclude that transplantation tolerance induction in mice treated with DST and anti-CD154 mAb requires blockade of CD40-mediated signaling in the DST, the graft, and the host. Blockade of CD40-mediated signaling is necessary and sufficient for inducing islet allograft tolerance and is necessary but not sufficient for long-term skin allograft survival. We speculate that a requirement for regulatory CD4(+) T cells in skin allograft recipients could account for this differential response to tolerance induction.  相似文献   

12.
mAb therapy directed against a variety of cell surface accessory molecules has been effectively utilized to prolong allograft acceptance in various models of tissue and organ transplantation. The purpose of this study was to determine whether transient therapy directed against the adhesion molecule LFA-1 (CD11a) was sufficient to induce donor-specific tolerance to pancreatic islet allografts. Anti-LFA-1 monotherapy was found to be efficacious in inducing long-term islet allograft acceptance in multiple donor-recipient strain combinations. Graft acceptance following anti-LFA-1 therapy was not simply due to clonal ignorance of donor Ags in that the majority of recipients bearing established islet allografts resisted rejection induced by immunization with donor-type APCs. Furthermore, donor-specific tolerance from anti-LFA-1-treated animals could be transferred to secondary immune-deficient animals. Taken together, these results indicated that transient anti-LFA-1 monotherapy resulted in donor-specific tolerance. In vitro, functionally tolerant animals retained normal anti-donor reactivity as assessed by proliferative, cytotoxic, and cytokine release assays that demonstrated that tolerance was not secondary to general clonal deletion or anergy of donor-reactive T cells. Finally, anti-LFA-1 treatment was effective in both IL-4-deficient and IFN-gamma-deficient recipients, indicating that neither of these cytokines are universally required for allograft acceptance. These results suggest that anti-adhesion-based therapy can induce a nondeletional form of tolerance that is not overtly dependent on the prototypic Th1 and Th2 cytokines, IFN-gamma and IL-4, respectively, in contrast to results in other transplantation models.  相似文献   

13.
Mixed chimerism and donor-specific tolerance are achieved in mice receiving 3 Gy of total body irradiation and anti-CD154 mAb followed by allogeneic bone marrow (BM) transplantation. In this model, recipient CD4 cells are critically important for CD8 tolerance. To evaluate the role of CD4 cells recognizing donor MHC class II directly, we used class II-deficient donor marrow and were not able to achieve chimerism unless recipient CD8 cells were depleted, indicating that directly alloreactive CD4 cells were necessary for CD8 tolerance. To identify the MHC class II(+) donor cells promoting this tolerance, we used donor BM lacking certain cell populations or used positively selected cell populations. Neither donor CD11c(+) dendritic cells, B cells, T cells, nor donor-derived IL-10 were critical for chimerism induction. Purified donor B cells induced early chimerism and donor-specific cell-mediated lympholysis tolerance in both strain combinations tested. In contrast, positively selected CD11b(+) monocytes/myeloid cells did not induce early chimerism in either strain combination. Donor cell preparations containing B cells were able to induce early deletion of donor-reactive TCR-transgenic 2C CD8 T cells, whereas those devoid of B cells had reduced activity. Thus, induction of stable mixed chimerism depends on the expression of MHC class II on the donor marrow, but no requisite donor cell lineage was identified. Donor BM-derived B cells induced early chimerism, donor-specific cell-mediated lympholysis tolerance, and deletion of donor-reactive CD8 T cells, whereas CD11b(+) cells did not. Thus, BM-derived B cells are potent tolerogenic APCs for alloreactive CD8 cells.  相似文献   

14.
Previous work on blockade of CD40-CD40 ligand interaction in mice and primates with anti-CD40 ligand mAbs has resulted in a moderate prolongation of allograft survival without the development of true allograft tolerance. In this study, we show in rats that adenovirus-mediated gene transfer of CD40Ig sequences into the graft resulted in prolonged (>200 days) expression of CD40Ig and in long-term (>300 days) survival. Recipients expressing CD40Ig displayed strongly (>90%) inhibited mixed leukocyte reactions and alloantibody production at early (days 5 and 17) and late time points (>100 day) after transplantation, but showed limited inhibition of leukocyte infiltration and cytokine production as evaluated by immunohistology at early time points (day 5). Recipients of long-surviving hearts showed donor-specific hyporesponsiveness since acceptance of second cardiac allografts was donor specific. Nevertheless, long-term allografts (>100 days) displayed signs of chronic rejection vasculopathy. Occluded vessels showed leukocyte infiltration, mainly composed of CD4(+) and CD8(+) cells, macrophages, and mast cells. These recipients also showed antidonor CTL activity. Recipients expressing CD40Ig did not show nonspecific immunosuppression, as they were able to mount anticognate immune responses that were partially inhibited at early time points and were normal thereafter. We conclude that gene transfer-mediated expression of CD40Ig resulted in a highly efficient inhibition of acute heart allograft rejection in rats. This treatment induced donor-specific inhibition of certain alloreactive mechanisms in the short-, but not the long-term, which resulted in long-term survival of allografts concomitant with the development of chronic rejection.  相似文献   

15.
Previous studies in our laboratory have demonstrated that the presence of the thymus is essential for rapid and stable tolerance induction in allotransplant models. We now report an attempt to induce tolerance to kidney allografts by transplanting donor thymic grafts simultaneously with the kidney in thymectomized recipients. Recipients were thymectomized 3 wk before receiving an organ and/or tissues from a class I-mismatched donor. Recipients received 1) a kidney allograft alone, 2) a composite allogeneic thymokidney (kidney with vascularized autologous thymic tissue under its capsule), or 3) separate kidney and thymic grafts from the same donor. All recipients received a 12-day course of cyclosporine. Thymectomized animals receiving a kidney allograft alone or receiving separate thymic and kidney grafts had unstable renal function due to severe rejection with the persistence of anti-donor cytotoxic T cell reactivity. In contrast, recipients of composite thymokidney grafts had stable renal function with no evidence of rejection histologically and donor-specific unresponsiveness. By postoperative day 14, the thymic tissue in the thymokidney contained recipient-type dendritic cells. By postoperative day 60, recipient-type class I positive thymocytes appeared in the thymic medulla, indicating thymopoiesis. T cells were both recipient and donor MHC-restricted. These data demonstrate that the presence of vascularized-donor thymic tissue induces rapid and stable tolerance to class I-disparate kidney allografts in thymectomized recipients. To our knowledge, this is the first evidence of functional vascularized thymic grafts permitting transplantation tolerance to be induced in a large animal model.  相似文献   

16.
Central transplantation tolerance through hemopoietic chimerism initially requires inhibition of allogeneic stem cell or bone marrow (BM) rejection, as previously achieved in murine models by combinations of T cell costimulation blockade. We have evaluated LFA-1 blockade as part of regimens to support mixed hemopoietic chimerism development upon fully allogeneic BALB/c BM transfer to nonirradiated busulfan-treated B6 recipient mice. Combining anti-LFA-1 with anti-CD40 ligand (CD40L) induced high incidences and levels of stable multilineage hemopoietic chimerism comparable to chimerism achieved with anti-CD40L and everolimus (40-O-(2-hydroxyethyl)-rapamycin) under conditions where neither Ab alone was effective. The combination of anti-LFA-1 with everolimus also resulted in high levels of chimerism, albeit with a lower incidence of stability. Inhibition of acute allograft rejection critically depended on chimerism stability, even if maintained at very low levels around 1%, as was the case for some recipients without busulfan conditioning. Chimerism stability correlated with a significant donor BM-dependent loss of host-derived Vbeta11(+) T cells 3 mo after BM transplantation (Tx). Combinations of anti-CD40L with anti-LFA-1 or everolimus also prevented acute rejection of skin allografts transplanted before established chimerism, albeit not independently of allospecific BMTx. All skin and heart allografts transplanted to stable chimeras 3 and 5 mo after BMTx, respectively, were protected from acute rejection. Moreover, this included prevention of heart allograft vascular intimal thickening ("chronic rejection").  相似文献   

17.
A pure method of drug (cyclophosphamide plus busulfan)-induced skin allograft tolerance in mice that can regularly overcome fully H-2-mismatched barriers in mice has been established. The components of the method are i.v. administration of 1 x 108 allogeneic spleen cells on day 0, i.p. injection of 200 mg/kg CP and 25 mg/kg busulfan on day 2, and i.v. injection of T cell-depleted 1 x 107 bone marrow cells from the same donor on day 3. Recipient B10 (H-2b; IE-) mice prepared with this conditioning developed donor-specific tolerance, and long-lasting survival of skin allografts was shown in almost of the recipient mice. In the tolerant B10 mice prepared with new conditioning, stable multilineage mixed chimerism was observed permanently, and IE-reactive Vbeta11+ T cells were reduced in periphery as seen in untreated B10.D2 (H-2d; IE+) mice. The specific tolerant state was confirmed by the specific abrogation against donor Ag in the assays of CTL activity and MLR and donor-specific acceptance in the second skin grafting. These results demonstrated that the limitation of standard protocol of cyclophosphamide-induced tolerance, which have been reported by us since 1984, can be overcome by the additional treatments with the myelosuppressive drug busulfan, followed by 1 x 107 T cell-depleted bone marrow cells. To our knowledge, this is the first report to induce allograft tolerance with a short course of the Ag plus immunosuppressive drug treatment without any kind of mAbs (pure drug-induced tolerance).  相似文献   

18.
The persistence of donor leukocytes in recipients of organ allografts has been associated with long-term graft acceptance. However, it remains unclear whether this peripheral donor cell microchimerism plays an active role in graft acceptance or is simply a consequence of the maintenance of sufficient immunosuppression to avoid rejection. A model of kidney transplantation between swine leukocyte Ag (SLA)-matched miniature swine, in which tolerance can be established with or without immunosuppressive treatment, has been used to study the correlation between donor leukocyte chimerism and kidney graft acceptance. SLA-identical kidney transplants were performed from animals positive for an allelic pig leukocyte Ag to animals negative for this marker. SLA-identical kidney transplant recipients given a 12-day course of cyclosporine (CyA) (n = 3) became tolerant, showing stable serum creatinine levels (1-2 mg/dl) after cessation of CyA treatment. Donor cell chimerism (0.2-0.7%) was present by FACS in all three animals with peak levels detected at 3 wk. Two control animals receiving SLA-identical kidney grafts without CyA also showed stable serum creatinine levels and became tolerant. However, in neither of these animals could donor leukocytes be detected in the peripheral blood beyond 1 wk following transplantation. In one additional control animal, ureteral obstruction occurred at day 10, and was associated with additional peripheral chimerism, presumably related to inflammation rather than to immune status. These results indicate that the persistence of donor cell chimerism is not a requirement for the maintenance of tolerance to organ allografts in this model.  相似文献   

19.
造血干细胞嵌合体诱导移植免疫耐受   总被引:1,自引:0,他引:1  
陈国安  袁利亚  何飞 《生命科学》2003,15(5):262-265
造血干细胞混合嵌合体是指两个不同基因型个体的骨髓造血干细胞共存的一种状态。在同种异体或异种移植的动物模型中,造血干细胞混合嵌合体巳成功地诱导出针对供者特异性的免疫耐受。现已证实造血干细胞具有否决活性,来自造血干细胞的否决细胞在诱导移植特异性免疫耐受中可能起重要作用。  相似文献   

20.
Transplantation of limb tissue allografts would greatly expand the realm of reconstructive surgery. However, the toxicity of chronic immunosuppression has adversely tilted the risk-benefit balance for clinical transplant. In this study, a procedure was sought to achieve host tolerance to limb tissue allografts through matching of the major histocompatibility complex (MHC) antigens between donor and host swine using only a 12-day course of cyclosporine. Massachusetts General Hospital (MGH) miniature swine were used as a large animal model with defined MHC, and musculoskeletal grafts from the donor hind limb were transplanted heterotopically to the recipient femoral vessels. Allografts from MHC-mismatched donors treated with cyclosporine (n = 4) were rejected in less than 6 weeks by gross inspection and histologic sections. Allografts from MHC-matched, minor antigen mismatched donors not treated with cyclosporine (n = 4) were rejected between 9 and 12 weeks. Allografts from similarly matched donors treated with 12 days of cyclosporine (n = 7) showed no evidence of rejection until sacrifice between 25 and 47 weeks. Thus allograft tolerance was achieved between MHC-matched swine using a limited course of cyclosporine. Demonstration of limb tissue allograft survival in a large animal model without long-term immunosuppression represents an important step toward clinical transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号