首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A capnophilic rumen bacterium Mannheimia succiniciproducens produces succinic acid as a major fermentation end product under CO(2)-rich anaerobic condition. Since succinic acid is produced by carboxylation of C3 compounds during the fermentation, intracellular CO(2) availability is important for efficient succinic acid formation. Here, we investigated the metabolic responses of M. succiniciproducens to the different dissolved CO(2) concentrations (0-260 mM). Cell growth was severely suppressed when the dissolved CO(2) concentration was below 8.74 mM. On the other hand, cell growth and succinic acid production increased proportionally as the dissolved CO(2) concentration increased from 8.74 to 141 mM. The yields of biomass and succinic acid on glucose obtained at the dissolved CO(2) concentration of 141 mM were 1.49 and 1.52 times higher, respectively, than those obtained at the dissolved CO(2) concentration of 8.74 mM. It was also found that the additional CO(2) source provided in the form of NaHCO(3), MgCO(3), or CaCO(3) had positive effects on cell growth and succinic acid production. However, growth inhibition was observed when excessive bicarbonate salts were added. By the comparison of the activities of key enzymes, it was found that PEP carboxylation by PEP carboxykinase (PckA) is the most important for succinic acid production as well as the growth of M. succiniciproducens by providing additional ATP.  相似文献   

2.
To achieve a higher succinic acid productivity and evaluate the industrial applicability, this study used Mannheimia succiniciproducens LPK7 (knock-out: lahA, pflB, pta-ackA), which was recently designed to enhance the productivity of succinic acid and reduce by-product secretion. Anaerobic continuous fermentation of Mannheimia succiniciproducens LPK7 was carried out at different glucose feed concentrations and dilution rates. After extensive fermentation experiments, a succinic acid yield and productivity of 0.38 mol/mol and 1.77 g/l/h, respectively, were achieved with a glucose feed concentration of 18.0 g/l and 0.2 h-1 dilution rate. A similar amount of succinic acid production was also produced in batch culture experiments. Therefore, these optimal conditions can be industrially applied for the continuous production of succinic acid. To examine the quantitative balance of the metabolism, a flux distribution analysis was also performed using the metabolic network model of glycolysis and the pentose phosphate pathway.  相似文献   

3.
A novel three stages continuous fermentation process for the bioproduction of succinic acid at high concentration, productivity and yield using A. succiniciproducens was developed. This process combined an integrated membrane-bioreactor-electrodialysis system. An energetic characterization of A. succiniciproducens during anaerobic cultured in a cell recycle bioreactor was done first. The very low value of Y(ATP) obtained suggests that an ATP dependent mechanism of succinate export is present in A. succiniciproducens. Under the best culture conditions, biomass concentration and succinate volumetric productivity reach values of 42 g/L and 14.8 g/L.h. These values are respectively 28 and 20 times higher compared to batch cultures done in our laboratory. To limit end-products inhibition on growth, a mono-polar electrodialysis pilot was secondly coupled to the cell recycle bioreactor. This system allowed to continuously remove succinate and acetate from the permeate and recycle an organic acids depleted solution in the reactor. The integrated membrane-bioreactor-electrodialysis process produced a five times concentrated succinate solution (83 g/L) compared to the cell recycle reactor system, at a high average succinate yield of 1.35 mol/mol and a slightly lower volumetric productivity of 10.4 g/L.h. The process combined maximal production yield to high productivity and titer and could be economically viable for the development of a biological route for succinic acid production.  相似文献   

4.
Succinic acid is a four-carbon dicarboxylic acid produced as one of the fermentation products of anaerobic metabolism. Based on the complete genome sequence of a capnophilic succinic acid-producing rumen bacterium, Mannheimia succiniciproducens, gene knockout studies were carried out to understand its anaerobic fermentative metabolism and consequently to develop a metabolically engineered strain capable of producing succinic acid without by-product formation. Among three different CO2-fixing metabolic reactions catalyzed by phosphoenolpyruvate (PEP) carboxykinase, PEP carboxylase, and malic enzyme, PEP carboxykinase was the most important for the anaerobic growth of M. succiniciproducens and succinic acid production. Oxaloacetate formed by carboxylation of PEP was found to be converted to succinic acid by three sequential reactions catalyzed by malate dehydrogenase, fumarase, and fumarate reductase. Major metabolic pathways leading to by-product formation were successfully removed by disrupting the ldhA, pflB, pta, and ackA genes. This metabolically engineered LPK7 strain was able to produce 13.4 g/liter of succinic acid from 20 g/liter glucose with little or no formation of acetic, formic, and lactic acids, resulting in a succinic acid yield of 0.97 mol succinic acid per mol glucose. Fed-batch culture of M. succiniciproducens LPK7 with intermittent glucose feeding allowed the production of 52.4 g/liter of succinic acid, with a succinic acid yield of 1.16 mol succinic acid per mol glucose and a succinic acid productivity of 1.8 g/liter/h, which should be useful for industrial production of succinic acid.  相似文献   

5.
A novel succinic acid-producing bacterium was isolated from bovine rumen. The bacterium is a non-motile, non-spore-forming, mesophilic and capnophilic gram-negative rod or coccobacillus. Phylogenetic analysis based on the 16S rRNA sequence and physiological analysis indicated that the strain belongs to the recently reclassified genus Mannheimia as a novel species, and has been named Mannheimia succiniciproducens MBEL55E. Under 100% CO(2) conditions, it grows well in the pH range of 6.0-7.5 and produces succinic acid, acetic acid and formic acid at a constant ratio of 2:1:1. When M. succiniciproducensMBEL55E was cultured anaerobically in medium containing 20 g l(-1) glucose as carbon source, 13.5 g l(-1) of succinic acid was produced.  相似文献   

6.
Hong SH  Kim JS  Lee SY  In YH  Choi SS  Rih JK  Kim CH  Jeong H  Hur CG  Kim JJ 《Nature biotechnology》2004,22(10):1275-1281
The rumen represents the first section of a ruminant animal's stomach, where feed is collected and mixed with microorganisms for initial digestion. The major gas produced in the rumen is CO(2) (65.5 mol%), yet the metabolic characteristics of capnophilic (CO(2)-loving) microorganisms are not well understood. Here we report the 2,314,078 base pair genome sequence of Mannheimia succiniciproducens MBEL55E, a recently isolated capnophilic Gram-negative bacterium from bovine rumen, and analyze its genome contents and metabolic characteristics. The metabolism of M. succiniciproducens was found to be well adapted to the oxygen-free rumen by using fumarate as a major electron acceptor. Genome-scale metabolic flux analysis indicated that CO(2) is important for the carboxylation of phosphoenolpyruvate to oxaloacetate, which is converted to succinic acid by the reductive tricarboxylic acid cycle and menaquinone systems. This characteristic metabolism allows highly efficient production of succinic acid, an important four-carbon industrial chemical.  相似文献   

7.
Succinic acid was produced by fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. When cells were anaerobically cultured in a medium containing 6.5 g/L glycerol, a high succinic acid yield (133%) was obtained while avoiding the formation of by-product acetic acid. The gram ratio of succinic acid to acetic acid was 25.8:1, which is 6.5 times higher than that obtained using glucose (ca. 4:1) as a carbon source. Therefore, succinic acid can be produced with much less by-product formation by using glycerol as a carbon source, which will facilitate its purification. When glucose and glycerol were cofermented with the increasing ratio of glucose to glycerol, the gram ratio of succinic acid to acetic acid and succinic acid yield decreased, suggesting that glucose enhanced acetic acid formation irrespective of the presence of glycerol. Glycerol consumption by A. succiniciproducens required unidentified nutritional components present in yeast extract. By intermittently feeding yeast extract along with glycerol, a high succinic acid yield (160%) could be obtained while still avoiding acetic acid formation. This resulted in the highest ratio of succinic acid to acetic acid (31.7:1).  相似文献   

8.
Mannheimia succiniciproducens MBEL55E isolated from bovine rumen is a capnophilic gram-negative bacterium that efficiently produces succinic acid, an industrially important four carbon dicarboxylic acid. In order to design a metabolically engineered strain which is capable of producing succinic acid with high yield and productivity, it is essential to optimize the whole metabolism at the systems level. Consequently, in silico modeling and simulation of the genome-scale metabolic network was employed for genome-scale analysis and efficient design of metabolic engineering experiments. The genome-scale metabolic network of M. succiniciproducens consisting of 686 reactions and 519 metabolites was constructed based on reannotation and validation experiments. With the reconstructed model, the network structure and key metabolic characteristics allowing highly efficient production of succinic acid were deciphered; these include strong PEP carboxylation, branched TCA cycle, relative weak pyruvate formation, the lack of glyoxylate shunt, and non-PTS for glucose uptake. Constraints-based flux analyses were then carried out under various environmental and genetic conditions to validate the genome-scale metabolic model and to decipher the altered metabolic characteristics. Predictions based on constraints-based flux analysis were mostly in excellent agreement with the experimental data. In silico knockout studies allowed prediction of new metabolic engineering strategies for the enhanced production of succinic acid. This genome-scale in silico model can serve as a platform for the systematic prediction of physiological responses of M. succiniciproducens to various environmental and genetic perturbations and consequently for designing rational strategies for strain improvement.  相似文献   

9.
Mannheimia succiniciproducens MBEL55E isolated from bovine rumen is able to produce a large amount of succinic acid in a medium containing glucose, peptone, and yeast extract. In order to reduce the cost of the medium, whey and corn steep liquor (CSL) were used as substrates for the production of succinic acid by M. succiniciproducens MBEL55E. Anaerobic batch cultures of M. succiniciproducens MBEL55E in a whey-based medium containing CSL resulted in the production of succinic acid with a yield of 71% and productivity of 1.18 g/l/h, which are similar to those obtained in a whey-based medium containing yeast extract (72% and 1.21 g/l/h). Anaerobic continuous culture of M. succiniciproducens MBEL55E in a whey-based medium containing CSL resulted in a succinic acid yield of 69% and a succinic acid productivity as high as 3.90 g/l/h. These results show that succinic acid can be produced efficiently and economically by M. succiniciproducens MBEL55E from whey and CSL.  相似文献   

10.
The culture conditions in CO(2) fixation by Actinobacillus succinogenes for succinic acid production were investigated by a model of available CO(2) in a 3-l fermentor. The results from the model analysis showed that the available CO(2) for succinic acid production in the fermentation broth is the sum of HCO(3) (-), CO(3) (2-), and CO(2) influenced by external culture conditions such as medium components, CO(2) partial pressures, and temperature. The optimized conditions for CO(2) supply in a 3-l fermentor were determined as follows: CO(2) partial pressure and stirring speed were maintained at 0.1 MPa and 200 r min(-1), respectively, with a pH of 6.8 and a temperature of 37°C; 0.15 mol l(-1) NaHCO(3) was added. Under the optimized conditions, a CO(2) fixation rate of 0.57 g l(-1) h(-1) was obtained, and a succinic acid concentration of 51.6 g l(-1) with a yield of 75.8% was reached. These results suggest that optimized conditions of CO(2) supply are effective in high succinic acid production and thus have potential applications in succinic acid production and CO(2) fixation.  相似文献   

11.
The harmful effects of succinic acid and oxidative stress on cell growth were determined during batch fermentation with Mannheimia succiniciproducens LPK7, a powerful succinic acid-producing strain, and conditions were optimized to minimize these effects. In terms of toxicity, the cell concentration decreased as the concentration of succinic acid increased. By changing the pH from 6.5 to 7 during fermentation, the cell concentration increased by about 10%, and the level of succinic acid production was 6% higher than that of the control. In addition, by introducing protectants, the cell concentration increased by about 10%, and the level of succinic acid produced was increased by 3%.  相似文献   

12.
Pérez E  Espinoza R  Laiveniekcs M  Cardemil E 《Biochimie》2008,90(11-12):1685-1692
The stereochemistry of CO(2) addition to phosphoenolpyruvate (PEP) to yield oxaloacetate catalyzed by ATP-dependent Saccharomyces cerevisiae and Anaerobiospirillum succiniciproducens PEP carboxykinases was determined using (Z)-3-fluorophosphoenolpyruvate ((Z)-F-PEP) as a substrate analog. A. succiniciproducens and S. cerevisiae PEP carboxykinases utilized (Z)-F-PEP with 1/14 and 1/47 the respective K(m) values for PEP. On the other hand, in the bacterial and yeast enzymes k(cat) was reduced to 1/67 and 1/48 the value with PEP, respectively. The binding affinity of pyridoxylphosphate-labeled S. cerevisiae and A. succiniciproducens PEP carboxykinases for PEP and (Z)-F-PEP was checked and found to be of similar magnitude for both substrates, suggesting that the lowered K(m) values for the fluorine-containing PEP analog are due to kinetic effects. The lowered k(cat) values when using (Z)-F-PEP as substrate suggest that the electron withdrawing effect of fluorine affects the nucleophilic attack of the double bond of (Z)-F-PEP to CO(2). For the stereochemical analyses, the carboxylation of (Z)-F-PEP was coupled to malate dehydrogenase to yield 3-fluoromalate, which was analyzed by (19)F NMR. The fluoromalate obtained was identified as (2R, 3R)-3-fluoromalate for both the A. succiniciproducens and S. cerevisiae PEP carboxykinases, thus indicating that CO(2) addition to (Z)-F-PEP, and hence PEP, takes place through the 2-si face of the double bond. These results, together with previously published data [Rose, I.A. et al. J. Biol. Chem. 244 (1969) 6130-6133; Hwang, S.H. and Nowak, T. Biochemistry 25 (1986) 5590-5595] indicate that PEP carboxykinases, no matter their nucleotide specificity, catalyze the carboxylation of PEP from the 2-si face of the double bond.  相似文献   

13.
The economical viability of biochemical succinic acid production is a result of many processing parameters including final succinic acid concentration, recovery of succinate, and the volumetric productivity. Maintaining volumetric productivities >2.5 g L?1 h?1 is important if production of succinic acid from renewable resources should be competitive. In this work, the effects of organic acids, osmolarity, and neutralizing agent (NH4OH, KOH, NaOH, K2CO3, and Na2CO3) on the fermentative succinic acid production by Escherichia coli AFP184 were investigated. The highest concentration of succinic acid, 77 g L?1, was obtained with Na2CO3. In general, irrespective of the base used, succinic acid productivity per viable cell was significantly reduced as the concentration of the produced acid increased. Increased osmolarity resulting from base addition during succinate production only marginally affected the productivity per viable cell. Addition of the osmoprotectant glycine betaine to cultures resulted in an increased aerobic growth rate and anaerobic glucose consumption rate, but decreased succinic acid yield. When using NH4OH productivity completely ceased at a succinic acid concentration of ~40 g L?1. Volumetric productivities remained at 2.5 g L?1 h?1 for up to 10 h longer when K‐ or Na‐bases where used instead of NH4OH. The decrease in cellular succinic acid productivity observed during the anaerobic phase was found to be due to increased organic acid concentrations rather than medium osmolarity. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

14.
Batch and continuous cultures of Mannheimia succiniciproducens MBEL55E were carried out in a complex medium containing a NaOH-treated wood hydrolysate for the production of succinic acid. The wood hydrolysate based medium was treated with NaOH before sterilization to reduce the formation of inhibitory compounds. M. succiniciproducens MBEL55E utilized xylose as well as glucose in the wood hydrolysate based medium as a carbon source for the succinic acid production. In batch cultures, the final succinic acid concentration of 11.73 g l−1 was obtained from the pre-treated wood hydrolysate based medium, resulting in a succinic acid yield of 56% and a succinic acid productivity of 1.17 g l−1 h−1, while the corresponding continuous cultures gave the succinic acid yield and productivity of 55% and 3.19 g l−1 h−1, respectively. These results suggest that succinic acid can be produced economically and efficiently by the fermentation of M. succiniciproducens MBEL55E from an inexpensive biomass-based wood hydrolysate.  相似文献   

15.
Summary A comparison of volumetric production rates of acetic acid inAcetobacter aceti M23 was conducted for repeated batch (RB), cell-recycling repeated batch (CRB) and continuous (C) cultures. Best result was obtained with CRB culture. The magnification of productivity was 1.7 (to RB culture) and 3.3 (to C culture) for aiming final acetic acid concentration of 60 g/l and 42 g/l, respectively.  相似文献   

16.
在利用大肠杆菌AFP111厌氧发酵生产丁二酸过程中,随着产物丁二酸的不断积累,菌体活力和产酸能力逐渐降低,而通过回收菌体在新鲜培养基中重复发酵,可延长厌氧发酵时间,但是丁二酸生产效率较低。为了提高菌体回收丁二酸的转化效率,通过在回收菌体时有氧诱导 3 h,以纯水为培养基,进行丁二酸转化发酵。在连续进行 3 批次的发酵后,丁二酸的总产量和最终收率分别为 56.50 g/L和90%,生产速率达到了 0.81 g/(L·h),比未诱导情况下的生产速率提高了13%。  相似文献   

17.
A new succinic acid and lactic acid production bioprocess by Corynebacterium crenatum was investigated in mineral medium under anaerobic conditions. Corynebacterium crenatum cells with sustained acid production ability and high acid volumetric productivity harvested from the glutamic acid fermentation broth were used to produce succinic acid and lactic acid. Compared with the first cycle, succinic acid production in the third cycle increased 120% and reached 43.4 g/L in 10 h during cell-recycling repeated fermentations. The volumetric productivities of succinic acid and lactic acid could maintain above 4.2 g/(L·h) and 3.1 g/(L·h), respectively, for at least 100 h. Moreover, wheat bran hydrolysates could be used for succinic acid and lactic acid production by the recycled C. crenatum cells. The final succinic acid concentration reached 43.6 g/L with a volumetric productivity of 4.36 g/(L·h); at the same time, 32 g/L lactic acid was produced.  相似文献   

18.
The aim of this work was the development of a feed-control for a succinic acid production fed-batch process. The performed batch trials indicated a correlation between succinic acid production and base consumption pH control. Based on the metabolism of Anaerobiospirillum succiniciproducens, a theoretical correlation between base consumption and glucose feed was established and proved in cultivation trials. With the established fed-batch process, the succinic acid yield could be increased to 0.875 (g/g glucose) in comparison to batch processes (0.60) with similar glucose concentrations. Additionally, the results indicate that the osmolarity of the medium has a significant influence on succinic acid production.  相似文献   

19.
Media components play an important role in modulating cell metabolism and improving product titer in mammalian cell cultures. To sustain cell productivity, highly active oxidative metabolism is desired. Here we explored the effect of tricarboxylic acid (TCA) cycle intermediates supplementation on lactate metabolism and productivity in Chinese hamster ovary fed-batch cultures. Direct addition of 5 mM alpha-ketoglutarate (α-KG), malic acid, or succinic acid in the basal medium did not have any significant impact on culture performance. On the other hand, feeding α-KG, malic acid, and succinic acid in the stationary phase, either as a single solution or as a mixture, significantly improved lactate consumption, reduced ammonium accumulation, and led to higher cell specific productivity and antibody titer (~35% increase for the best condition). Delivering those intermediates as an acidic solution for pH control eliminated CO2 sparging and accumulation. Feeding TCA cycle intermediates was also demonstrated to be superior to feeding lactic acid or pyruvic acid in titer improvement. Taken together, feeding TCA cycle intermediates was effective in improving lactate consumption and increasing product titer, which is likely due to enhanced oxidative metabolism in an extended duration.  相似文献   

20.
Acetic acid is by-product from fermentation processes for producing succinic acid using Mannheimia succiniciproducens . To obtain pure succinic acid from the final fermentation broth, acetic acid was selectively removed based on the different extractability of succinic acid and acetic acid with pH using tri-n-octylamine (TOA) as extractant. When successive batch extractions were performed using 0.25 mol TOA kg(-1) dissolved in 1-octanol at pH 5, the mol ratio of succinic acid to acetic acid before extraction was 4.9 and the final ratio after the fourth batch was 9.4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号