首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The previous paper (Biochim. Biophys. Acta 1006 (1989) 272-277) has demonstrated that oligomers of prostaglandin B1 are effective in vitro inhibitors of a wide range of both cell-derived and extracellular phospholipases A2. The present study has investigated the effects of prostaglandin oligomers on agonist-stimulated phospholipase activity on intact human cells. PGBx, an oligomer (n = 6) or PGB1, and PGB-trimer inhibit as much as 95% of the A23187-stimulated release of arachidonic acid from human neutrophils. The effect is dose-dependent, with an IC50 of 4-5 microM; near maximal inhibition is obtained with as little as 1 min of preincubation with PGB-trimer. Consistent with its role as a phospholipase A2 inhibitor, PGB-trimer also inhibits the A23187-stimulated incorporation of [3H]acetate into platelet-activating factor. PGBx and PGB-trimer also inhibit the release of arachidonic acid from human umbilical vein endothelial cells stimulated with histamine, thrombin, or ionophore A23187; inhibition of the basal or unstimulated turnover of both arachidonic acid and oleic acid is also observed. Inhibition by PGB-trimer can be blocked by simultaneous addition of 50 microM albumin; cells preincubated with PGB-trimer are not affected by albumin. Furthermore, removal of exogenous PGB-trimer prior to challenge with A23187 does not reverse the inhibition of either endothelial cells and neutrophils. Thus, prostaglandin B1 oligomers are taken up by human neutrophils and vascular endothelial cells and serve as potent inhibitors of arachidonic acid mobilization. One mechanism for the pharmacological effects of PGBx may be inhibition of cell-associated and extracellular phospholipase A2.  相似文献   

2.
Phorbol myristate acetate (PMA), a tumor-promoting phorbol ester, and the calcium ionophore A23187 synergistically induced the noncytotoxic release of leukotriene B4 (LTB4) and other 5-lipoxygenase products of arachidonic acid metabolism from human neutrophils. Whereas neutrophils incubated with either A23187 (0.4 microM) or PMA (1.6 microM) alone failed to release any 5-lipoxygenase arachidonate products, neutrophils incubated with both stimuli together for 5 min at 37 degrees C released LTB4 as well as 20-COOH-LTB4, 20-OH-LTB4, 5-(S),12-(R)-6-trans-LTB4, 5-(S),12-(S)-6-trans-LTB4, and 5-hydroxyeicosatetraenoic acid, as determined by high pressure liquid chromatography. This synergistic response exhibited concentration dependence on both PMA and A23187. PMA induced 5-lipoxygenase product release at a concentration causing a half-maximal effect of approximately 5 nM in the presence of A23187 (0.4 microM). Competition binding experiments showed that PMA inhibited the specific binding of [3H]phorbol dibutyrate ([3H]PDBu) to intact neutrophils with a 50% inhibitory concentration (IC50) of approximately 8 nM. 1-oleoyl-2-acetyl-glycerol (OAG) also acted synergistically with A23187 to induce the release of 5-lipoxygenase products. 4 alpha-phorbol didecanoate (PDD), an inactive phorbol ester, did not affect the amount of lipoxygenase products released in response to A23187 or compete for specific [3H]PDBu binding. PMA and A23187 acted synergistically to increase arachidonate release from neutrophils prelabeled with [3H]arachidonic acid but did not affect the release of the cyclooxygenase product prostaglandin E2. Both PMA and OAG, but not PDD, induced the redistribution of protein kinase C activity from the cytosol to the membrane fraction of neutrophils, a characteristic of protein kinase C activation. Thus, activation of protein kinase C may play a physiologic role in releasing free arachidonate substrate from membrane phospholipids and/or in modulating 5-lipoxygenase activity in stimulated human neutrophils.  相似文献   

3.
When human neutrophils, previously labeled in their phospholipids with [14C]arachidonate, were stimulated with the Ca2+-ionophore, A23187, plus Ca2+ in the presence of [3H]acetate, these cells released [14C]arachidonate from membrane phospholipids, produced 5-hydroxy-6,8,11,14-[14C]eicosatetraenoic acid (5-HETE) and 14C-labeled 5S,12R-dihydroxy-6-cis,8,10-trans, 14-cis-eicosatetraenoic acid ([14C]leukotriene B4), and incorporated [3H]acetate into platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine). Ionophore A23187-induced formation of these radiolabeled products was greatly augmented by submicromolar concentrations of exogenous 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE), 5-HETE, and leukotriene B4. In the absence of ionophore A23187, these arachidonic acid metabolites were virtually ineffective. Nordihydroguaiaretic acid (NDGA) and several other lipoxygenase/cyclooxygenase inhibitors (butylated hydroxyanisole, 3-amino-1-(3-trifluoromethylphenyl)-2-pyrazoline and 1-phenyl-2-pyrazolidinone) caused parallel inhibition of [14C]arachidonate release and [3H]PAF formation in a dose-dependent manner. Specific cyclooxygenase inhibitors, such as indomethacin and naproxen, did not inhibit but rather slightly augmented the formation of these products. Furthermore, addition of 5-HPETE, 5-HETE, or leukotriene B4 (but not 8-HETE or 15-HETE) to neutrophils caused substantial relief of NDGA inhibition of [3H]PAF formation and [14C]arachidonate release. As opposed to [3H]acetate incorporation into PAF, [3H]lyso-PAF incorporation into PAF by activated neutrophils was little affected by NDGA. In addition, NDGA had no effect on lyso-PAF:acetyl-CoA acetyltransferase as measured in neutrophil homogenate preparations. It is concluded that in activated human neutrophils 5-lipoxygenase products can modulate PAF formation by enhancing the expression of phospholipase A2.  相似文献   

4.
Human neutrophils synthesize platelet-activating factor (PAF) and leukotriene B4 (LTB4) when stimulated with the Ca2+ ionophore A23187. These processes are enhanced to a variable extent by phorbol 12-myristate 13-acetate (PMA), a direct activator of protein kinase C. The long chain amines sphingosine, stearylamine (Hannun, Y.A., Loomis, C.R., Merrill, A.H., Jr., and Bell, R.M. (1986) J. Biol. Chem. 261, 12604-12609), and palmitoylcarnitine competitively inhibit activation of purified protein kinase C in vitro and inhibit protein kinase C-mediated activation of the respiratory burst in human neutrophils (Wilson, E., Olcott, M.C., Bell, R.M., Merrill, A.H., Jr., and Lambeth, J.D. (1986) J. Biol. Chem. 261, 12616-12623). These amines were found to inhibit A23187-induced PAF and LTB4 synthesis. Inhibition of PAF and LTB4 synthesis occurred in parallel; half-maximal inhibition by sphingosine occurred at 7 microM, with complete inhibition at 15 microM. PMA by itself did not induce the synthesis of PAF or LTB4, although it did enhance PAF and LTB4 synthesis at suboptimal concentrations of A23187. PMA reversed long chain amine inhibition of PAF and LTB4 accumulation. Reversal of the inhibition of PAF and LTB4 accumulation occurred in parallel, was concentration-dependent, and was complete by approximately 3 x 10(-8) M PMA. The inactive 4 alpha-phorbol didecanoate ester did not reverse inhibition at these concentrations. Sphingosine completely prevented the A23187-induced release of [3H]arachidonate and its various metabolites from [3H]arachidonate-labeled cells. PMA, but not 4 alpha-phorbol didecanoate, restored arachidonate release and its metabolism. Therefore, while activation of protein kinase C is not sufficient to induce PAF and LTB4 synthesis, its action appears to be required to couple a rise in intracellular Ca2+ to their synthesis. This coupling occurs at the level of the initial reaction in the production of lipid mediators, a phospholipase A2-like activity that mobilizes the two substrates 1-O-alkyl-sn-glycero-3-phosphocholine and arachidonic acid from complex lipids.  相似文献   

5.
We have previously demonstrated synergistic potentiation of secretion by phorbol 12-myristate 13-acetate (PMA) and platelet agonists such as thrombin and the thromboxane mimetic, U46619, with short (less than 2 min) pre-incubations of PMA, despite inhibition of agonist-induced [Ca2+]i mobilization and arachidonate/thromboxane release. In this study, the effect of PMA on 5-hydroxytryptamine secretion in relation to arachidonate/thromboxane B2 release induced by collagen as well as the 'weak agonists', ADP, adrenaline and platelet-activating factor (PAF), was investigated using human platelet-rich plasma. Short incubations (10-30 s) with PMA (400 nM) before agonist addition caused an inhibition (60-100%) of 5-hydroxy[14C]tryptamine secretion and thromboxane B2 formation in response to maximally effective doses of ADP (10 microM), adrenaline (10 microM) and PAF (0.5 microM) but potentiated collagen-induced 5-hydroxy[14C]tryptamine secretion and [3H]arachidonate/thromboxane release. However, a longer pre-incubation with PMA (5 min) caused a significant reduction (20-50%) in the extent of collagen-induced 5-hydroxy[14C]tryptamine secretion and thromboxane B2 formation as seen earlier with thrombin, although collagen-induced [3]arachidonate release was still unaffected. Pretreatment of platelets with the cyclo-oxygenase inhibitor, indomethacin (10 microM), abolished 5-hydroxy[14C]tryptamine secretion in response to the weak agonists and reduced collagen (2.5-10 micrograms/ml) -induced secretion by 50-90%, depending on the collagen concentration. Addition of PMA (400 nM) 10 s before these agonists in indomethacin-treated platelets resulted in synergistic interactions between agonist and PMA leading to enhanced 5-hydroxy[14C]tryptamine secretion, although this was notably less than the synergism observed previously between thrombin and PMA or U46619 and PMA. The results suggest that the effect of short incubations with PMA on 5-hydroxytryptamine secretion induced by 'thromboxane-dependent' agonists, such as those examined in this study, is determined by the effect on agonist-induced thromboxane synthesis. However, when endogenous thromboxane synthesis is blocked, weak agonists as well as collagen can synergize with PMA at potentiating 5-hydroxytryptamine secretion, albeit to a weaker extent than thrombin or U46619. The results also suggest that PMA has differential effects on arachidonate release induced by collagen and thrombin.  相似文献   

6.
Neomycin is a potent agent for arachidonic acid release in human platelets   总被引:6,自引:0,他引:6  
Neomycin (10 microM - 1 mM) was found to induce considerable release of [3H]arachidonic acid from phosphatidylinositol, phosphatidylcholine and phosphatidylethanolamine in saponin-permeabilized human platelets prelabeled with [3H]arachidonic acid. The magnitude of arachidonate liberation was almost equal to that induced by A23187 (400 nM) or even greater than that caused by thrombin (1 U/ml). Moreover, neomycin enhanced arachidonic acid release induced by thrombin. Since no significant formation of diacylglycerol and phosphatidic acid via phospholipase C was observed, the arachidonate liberation was considered to be mainly catalyzed by phospholipase A2 action. Addition of neomycin (100 microM) to 45Ca2+-preloaded platelets elicited 45Ca2+ mobilization from intracellular stores. These results indicate evidence that neomycin evokes Ca2+ mobilization from internal stores, which leads to activation of phospholipase A2 to release arachidonic acid in human platelets.  相似文献   

7.
This study has investigated the effect of supplementation of vascular endothelial cells with arachidonate and other polyunsaturated fatty acids on the agonist-stimulated synthesis of platelet activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine; 1-alkyl-2-acetyl-GPC). Incubation of calf pulmonary artery endothelial cells for 48 h in medium containing 40 microM arachidonate resulted in a 2-3-fold enhancement of [3H]acetate incorporation into 1-radyl-2[3H]acetyl-GPC in response to either bradykinin or calcium ionophore A23187. The effects of arachidonate supplementation were both dose- and time-dependent, requiring a minimum exogenous arachidonate concentration of 2.5 microM and an incubation time of 4-6 h. Eicosapentaenoate and docosahexaenoate also enhanced the synthesis of 1-radyl-2-[3H]acetyl-GPC, but were less potent than arachidonate; alpha-linolenate, linoleate and oleate were without effect. Although not effective as an agonist, phorbol myristate acetate potentiated A23187- and bradykinin-stimulated synthesis of 1-radyl-2-[3H]acetyl-GPC. The effects of arachidonate supplementation were synergistic with potentiation by phorbol myristate acetate. Sphingosine inhibited agonist-stimulated incorporation of [3H]acetate into 1-radyl-2-[3H]acetyl-GPC both in the presence and absence of PMA. Characterization of the radiolabeled material indicated that the primary product was the acyl analogue of PAF (1-acyl-2-acetyl-GPC) rather than PAF. The results from this study suggest that agonist-stimulated synthesis of 1-radyl-2-acetyl-GPC in vascular endothelial cells is modulated both by cellular fatty acyl composition and activation of protein kinase C. Enrichment of vascular endothelial cells with fatty acids, which are mobilized by agonist-stimulated phospholipase A2, may enhance subsequent deacylation of choline phospholipids and, thus, increase synthesis of both 1-acyl-2-acetyl-GPC and PAF.  相似文献   

8.
It has recently been demonstrated that the chemotactic peptide N-formyl-Met-Leu-Phe activates phospholipase D (PLD) in dimethyl sulfoxide-differentiated HL-60 granulocytes to produce phosphatidic acid (PA) and, in the presence of ethanol, phosphatidylethanol (PEt) (Pai, J.-K., Siegel, M. I., Egan, R. W., and Billah, M. M. (1988) J. Biol. Chem. 263, 12472-12477). We now report that biologically active phorbol esters, a cell-permeable diacylglycerol, 1-oleoyl-2-acetylglycerol (OAG), and calcium ionophore A23187 are also potent inducers of PLD in these HL-60 granulocytes. HL-60 granulocytes have been selectively labeled in 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine (alkyl-PC) with 32P by incubating the cells with alkyl-[32P]lyso-phosphatidylcholine (PC). When these labeled cells are treated with phorbol 12-myristate 13-acetate (PMA), phorbol 12,13-dibutyrate, OAG, or A23187, alkyl-[32P]PA is formed. Because cellular ATP has not been labeled with 32P, the formation of alkyl-[32P]PA conclusively demonstrates PLD activation by these agents. In the presence of 0.5% ethanol, phorbol esters, OAG, and A23187 also induce formation of alkyl-[32P]PEt, demonstrating that the activated PLD catalyzes transphosphatidylation between the phosphatidyl moiety of the alkyl-[32P]PC and ethanol. Formation of alkyl-[32P]PA and alkyl-[32P]PEt in response to these various agents occurs in a time- and dose-dependent manner and exhibits differential Ca2+ requirements. Based on experiments with both [3H]alkyl-PC and alkyl-[32P]PC, it is concluded that alkyl-PA and alkyl-PEt formed in response to PMA, OAG, or A23187 are derived exclusively from PLD action on alkyl-PC. Furthermore, subthreshold concentrations of PMA (0.5-2.0 nM) or OAG (1.0-25 microM) combined with subthreshold levels of A23187 (15-60 nM) induce the formation of alkyl-[32P]PA and alkyl-[32P]PEt, suggesting that receptor-mediated activation of PLD might involve cooperative interactions between Ca2+ and diglyceride. Although PLD is activated by agents that also activate protein kinase C, the protein kinase C inhibitor, K252a, inhibits PMA-induced protein phosphorylation but causes only partial inhibition of PLD activation. We conclude that phorbol esters, OAG, and A23187 activate PLD in HL-60 granulocytes via protein kinase-independent as well as protein kinase-dependent mechanisms.  相似文献   

9.
This present report describes the effect of H-7, a protein kinase C inhibitor, on the release of oleic, linoleic and arachidonic acids in A23187-stimulated neutrophils. Surprisingly, the inhibitor potentiated the release of all three unsaturated fatty acids in neutrophils stimulated with A23187 alone. In contrast, released oleic acid, linoleic acid and arachidonic acid in phorbol 12-myristate 13-acetate-primed neutrophils were attenuated by 35, 47 and 33%, respectively, in the presence of H-7 (300 microM). Phorbol 12-myristate 13-acetate (PMA) had no effect on A23187-stimulated release of saturated fatty acids. Both PMA and H-7 when used alone had no effect on the release of saturated or unsaturated fatty acids. We, therefore, conclude that H-7 may have effects other than inhibiting PMA-primed responses including superoxide generation, degranulation and arachidonic acid release in human neutrophils.  相似文献   

10.
Protein tyrosine phosphorylation in rabbit peritoneal neutrophils was examined by immunoblotting with antibodies specific for phosphotyrosine. Stimulation of the neutrophils with chemotactic factor fMet-Leu-Phe (10 nM) caused rapid increases of tyrosine phosphorylation of several proteins with apparent molecular masses of (Group A) 54-58 kDa and 100-125 kDa and (Group B) 36-41 kDa. Stimulation of Group A proteins was observed by fMet-Leu-Phe (10 nM, maximum at 20 s) and A23187 (1 microM, 1 min). Stimulation of Group B proteins was observed by fMet-Leu-Phe (ED50 0.15 nM, 1 min), leukotriene B4 (ED50 0.15 nM, 1 min), phorbol 12-myristate 13-acetate (PMA) (ED50 25 ng/ml, 10 min) and partially by ionophore A23187 (1 microM, 1 min). Pretreatment of the cell with the protein kinase inhibitor H-7 (25 microM, 5 min) and PMA (0.1 microgram/ml, 3 min) partially inhibited the fMet-Leu-Phe effect. However, pretreatment of the cells with quin 2/AM (20 microM, 10 min) completely inhibited the fMet-Leu-Phe effect. The results indicate that rapid regulation of tyrosine phosphorylation is an early event occurring in stimulated neutrophils. Furthermore the effect of fMet-Leu-Phe on tyrosine phosphorylation may require Ca2+ mobilization and may partially require the activity of H-7-sensitive protein kinases.  相似文献   

11.
Both 1,2-diacyl- and 1-O-alkyl-2-acylglycerols are formed during stimulation of human neutrophils (PMN), and both can prime respiratory burst responses for stimulation by the chemotactic peptide, N-formyl-Met-Leu-Phe (fMLP); however, mechanisms of priming are unknown. Arachidonic acid (AA) release through phospholipase A2 activation and metabolism by 5-lipoxygenase are important activities of PMN during inflammation and could be involved in the process of primed stimulation. Therefore, we have examined the ability of diacyl- and alkylacylglycerols to act as priming agents for AA release and metabolism in human neutrophils. After prelabeling PMN phospholipids with [3H]AA, priming was tested by incubating human PMN with the diacylglycerol, 1-oleoyl-2-acetylglycerol (OAG), or its alkylacyl analog, 1-O-delta 9-octadecenyl-2-acetylglycerol (EAG) before stimulating with fMLP. fMLP (1 microM), OAG (20 microM), or EAG (20 microM) individually caused little or no release of labeled AA. However, after priming PMN with the same concentrations of either OAG or EAG, stimulation with 1 microM fMLP caused rapid (peak after 1 min) release of 6-8% of [3H]AA from cellular phospholipids; total release was similar with either diglyceride. Priming cells with OAG also enhanced conversion of released AA to leukotriene B4 (LTB4) and 5-hydroxyeicosatetraenoic acid (5-HETE) upon subsequent fMLP stimulation, but AA metabolites were not increased in EAG-primed PMN. If fMLP was replaced with the calcium ionophore A23187 (which directly causes release of AA and production of LTB4 and 5-HETE), priming by both diglycerides again enhanced release of [3H]AA, but only OAG priming increased lipoxygenase activity. Indeed, EAG pretreatment markedly reduced LTB4 and 5-HETE production. Thus, both diglycerides prime release of AA from membrane phospholipids but have opposite actions on the subsequent metabolism of AA.  相似文献   

12.
OAG-stimulated superoxide (O2) production by HL-60 granulocytes showed enantiomeric specificity but reached a maximum of only 5% of that produced by either phorbol myristate acetate (PMA) or phorbol dibutyrate (PDBu). At 10-100 microM, OAG displaced specifically-bound [3H]PDBu from intact HL-60 cells by only 25%, suggesting limited cell penetration. OAG (10-100 microM) also inhibited PDBu-stimulated O2 production by 25%; this inhibition was enantiomerically specific. However, at a lower concentration (3 microM), both enantiomers of OAG fully blocked O2 production stimulated by PMA (0.5 microM). This inhibition is probably artefactual, due to the hydrophobic PMA physically associating with OAG in the extracellular fluid.  相似文献   

13.
Peripheral blood neutrophils from patients with allergic rhinitis and from normal subjects were incubated for 5 min at 37 degrees C with 0.15 microM calcium ionophore A23187 in the absence or presence of exogenous arachidonic acid (2.5 to 10 microM). In neutrophils from allergic patients, the leukotriene B4 (LTB4) level was significantly increased by exogenous arachidonic acid in a concentration-dependent manner (16.2 +/- 4.2 and 38.1 +/- 6.8 pmol/5 min per 2 X 10(6) cells in the absence and presence of 10 microM arachidonic acid, respectively; P less than 0.005; n = 8). The LTB4 level in neutrophils from healthy subjects was only 0.97 +/- 0.17 pmol/5 min per 2 x 10(6) cells (n = 5) and was not enhanced by exogenous arachidonate. When cells from allergic patients were challenged in the presence of exogenous [1-14C]arachidonic acid, released LTB4 was radiolabeled and the incorporated radioactivity increased with the labeled arachidonate concentration. Labeled LTB4 was never detectable after incubating neutrophils from normal donors with exogenous labeled arachidonate. When neutrophils were incubated with [1-14C]arachidonate for 1 h, the different lipid pools of the two cell populations were labeled but both types of neutrophils produced unlabeled LTB4 in response to ionophore stimulation. The hydrolysis of choline and ethanolamine phospholipids into diacyl-, alkenylacyl- and alkylacyl-species revealed that solely the alkylacyl-subclass of phosphatidylcholine was unlabeled. We conclude (i) that neutrophils from allergic patients stimulated by low ionophore concentration produce more LTB4 than neutrophils from healthy subjects and incorporate exogenous arachidonate, (ii) that endogenous arachidonate converted to LTB4 by the 5-lipoxygenase pathway may provide only from 1-O-alkyl-2-arachidonoyl-glycero-3-phosphocholine.  相似文献   

14.
The role of protein kinase C in phospholipase A2 (PLA2) activation in rat basophilic leukemia cells (RBL-2H3) and macrophages was investigated. 12-O-Tetradecanoyl phorbol 13-acetate (TPA) doubled ionomycin-induced PLA2 activity, assessed by [3H]arachidonate release. Protein kinase C inhibitors, staurosporine and K252a (100 nM) or H-7 (15 micrograms/ml) inhibited ionomycin-stimulation of PLA2 activity by 62, 75 and 80%, respectively. Down-regulation of protein kinase C by prolonged treatment with TPA inhibited Ca2(+)-ionophore A23187 or antigen-stimulation of [3H]arachidonate release by 80%. We examined whether the inhibitory effect of dexamethasone (DEX) on PLA2 activity is related to modulation of protein kinase C activity. The 50% inhibition by DEX of ionomycin elevation of [3H]arachidonate release was almost overcome by addition of TPA. The Ca2+ ionophore and antigen-induced increase in [3H]TPA binding to intact RBL cells was not impaired by DEX. However, DEX markedly reduced phosphorylation of several proteins. 1-Oleoyl-2-acetyl-glycerol (OAG) had a sustained stimulatory effect on PLA2 activity in isolated plasma membranes derived from treated bone-marrow intact mouse macrophages, while both DEX and staurosporine reduced elevated PLA2 activity by 68 and 84%, respectively. The results support an essential role for protein kinase C in regulation of PLA2 activity.  相似文献   

15.
The order of potency of retinoids as inhibitors of A23187-induced production of leukotriene B4 (LTB4) in human polymorphonuclear leukocytes (PMN) was retinoic acid greater than retinal greater than retinol. However, the conversion of exogenous arachidonate (AA) to LTB4 by PMN homogenates was inhibited in the rank order retinol greater than retinal much greater than retinoic acid. The agreement between active concentrations of retinol in these two systems is consistent with this compound acting directly to inhibit AA metabolism: this is not so for the other retinoids. The order of potency for inhibition of phorbol dibutyrate (PDBu)-stimulated superoxide (O-2) production in HL60 granulocytes was retinol greater than retinoic acid much greater than retinal (inactive); neither retinol nor retinal displaced [3H]PDBu from HL60 cells. We conclude that inhibition of LTB4 production by retinoic acid and retinal is neither through inhibition of AA metabolism nor through inhibition of protein kinase C.  相似文献   

16.
Oligomers of prostaglandin B1 inhibited phospholipase A2 extracted from human neutrophils in a dose-dependent manner (IC50 = 5 microM), while the monomer was not inhibitory at concentrations of 10 microM or less. The inhibitory activity of PGB1 oligomers increased with increasing polymer size; PGB dimer had approximately one-half the maximal inhibitory activity of PGBx, while a trimer was almost as inhibitory as a tetramer and PGBx (n = 6). PGBx as an oil or as a water-soluble sodium-salt-inhibited Ca2(+)-dependent phospholipase A2 from snake venom, bovine pancreas, human neutrophil and platelet, human synovial fluid, and human sperm with IC50 values ranging from 0.5-7.5 microM. Inhibition was independent of added Ca2+ and was independent of substrate phospholipid concentration. Interaction of purified snake venom phospholipase A2 (Naja mocambique) with PGBx resulted in dose-dependent quenching of the enzyme's tryptophan fluorescence; 50% quench was noted with a molar ratio of PGBx/enzyme of 1.5. Inhibition of phospholipase A2 activity by PGBx was relieved in a dose-dependent manner by either defatted or untreated bovine serum albumin. PGBx is a potent in vitro inhibitor of a wide spectrum of phospholipases A2, and as illustrated in the accompanying paper, has profound inhibitory effects on arachidonic acid mobilization in human neutrophils and vascular endothelial cells. Modulation of cellular and extracellular phospholipases A2, and the bioactive transmitters generated by this catalytic event, may be a basic mechanism by which oligomers of prostaglandin B1 exert their reported membrane-protective effects.  相似文献   

17.
Sphingoid long-chain bases (sphinganine and sphingosine) have recently been shown to inhibit protein kinase C both in vitro [Y. Hannun et al. (1986) J. Biol. Chem. 261, 12604-12609] and in intact human neutrophils, in which they block activation of the superoxide-generating respiratory burst [E. Wilson et al. (1986) J. Biol. Chem. 261, 12616-12623]. In the present study we have used sphingosine to investigate the pathways for agonist-induced secretion of neutrophil granule contents. Induction of secretion of the specific granule component lactoferrin by a variety of agonists [phorbol 12-myristate-13-acetate (PMA), formyl-methionyl-leucyl-phenylalanine (fMLP), and calcium ionophore A23187] was completely inhibited by sphingosine with an ED50 of 6 to 10 microM. PMA-induced secretion of lysozyme (present in both the azurophilic and specific granules) was completely blocked with an ED50 of 10 microM, whereas fMLP-induced secretion was only about 50% inhibited. Secretion of the azurophilic granule proteins beta-glucuronidase and myeloperoxidase was activated by fMLP and A23187, but not by PMA, and was not affected by sphingosine. The use of A23187 in the presence of sphingosine allowed differentiation between calcium activation of protein kinase C-dependent versus-independent pathways. The effect of sphingosine was not mediated by neutralizing intracellular acidic compartments, since treatment of neutrophils with inhibitory concentrations of sphingosine did not significantly alter the uptake of labeled methylamine. We conclude that at least two mechanisms participate in the regulation of specific and azurophilic granule secretion, respectively: a protein kinase C-dependent pathway and a calcium-dependent pathway which does not involve protein kinase C.  相似文献   

18.
The sensitivity of the 5-lipoxygenase to inhibition by 5,8,11,14-eicosatetraynoic acid (ETYA) is species- and/or tissue-dependent. Guinea pig peritoneal polymorphonuclear leukocytes prelabeled with [3H]arachidonic acid and stimulated with ionophore A23187 formed 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE), as well as several dihydroxy fatty acids, including 5(S),12(R)-dihydroxy-6,8,10-(cis/trans/trans)-14-(cis)-eicosatetraenoic acid. ETYA (40 microM) did not inhibit, but, rather, increased the incorporation of 3H label into 5-HETE. In contrast, ETYA markedly inhibited the formation of radiolabeled dihydroxy acid metabolites by the A23187-stimulated cells. Assay of products from polymorphonuclear leukocytes incubated with exogenous arachidonic acid plus A23187, by reverse phase high performance liquid chromatography combined with ultraviolet absorption, showed a concentration-dependent inhibition of the formation of dihydroxy acid metabolite by ETYA (1-50 microM) and an increase in 5-HETE levels (maximum of 2- to 3-fold). The latter finding was verified by stable isotope dilution assay with deuterated 5-HETE as the internal standard. Another lipoxygenase inhibitor, nordihydroguaiaretic acid, potently inhibited the formation of both 5-HETE and dihydroxy acids, with an IC50 of 2 microM. The data suggest that ETYA can inhibit the enzymatic step whereby 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid is converted to leukotriene A4 in guinea pig polymorphonuclear leukocytes.  相似文献   

19.
In cultured human 1321N1 astrocytoma cells, muscarinic receptor stimulation leads to phosphoinositide hydrolysis, formation of inositol phosphates, and mobilization of intracellular Ca2+. Treatment of these cells with 1 microM 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) completely blocks the carbachol-stimulated formation of [3H]inositol mono-, bis-, and trisphosphate ( [3H]InsP, [3H]InsP2, and [3H]InsP3). The concentrations of PMA that give half-maximal and 100% inhibition of carbachol-induced [3H]InsP formation are 3 nM and 0.5 microM, respectively. Inactive phorbol esters (4 alpha-phorbol 12,13-didecanoate and 4 beta-phorbol), at 1 microM, do not inhibit carbachol-stimulated [3H]InsP formation. The KD of the muscarinic receptor for [3H]N-methyl scopolamine is unchanged by PMA treatment, while the IC50 for carbachol is modestly increased. PMA treatment also abolishes carbachol-induced 45Ca2+ efflux from 1321N1 cells. The concomitant loss of InsP3 formation and Ca2+ mobilization is strong evidence in support of a causal relationship between these two responses. In addition, our finding that PMA blocks hormone-stimulated phosphoinositide turnover suggests that there may be feedback regulation of phosphoinositide metabolism through the Ca2+- and phospholipid-dependent protein kinase.  相似文献   

20.
Previous studies have demonstrated an inhibition of agonist-induced inositol phospholipid breakdown and intracellular Ca2+ ([Ca2+]i) mobilization by phorbol esters in platelets. In this study, we have examined the effect of phorbol 12-myristate 13-acetate (PMA) on agonist-induced granule secretion and correlated it with agonist-induced [Ca2+]i mobilization, arachidonate and thromboxane (Tx) release in human platelets. With increasing times of incubation with PMA (10 s-5 min), the rise in [Ca2+]i induced by thrombin and the TxA2 mimetic, U46619, was increasingly inhibited (90-100% with 5 min incubation) and, correlating with this, thrombin-induced [3H]arachidonate, TxB2 and beta-thromboglobulin (beta TG) release were also inhibited. In addition, the conversion of exogenously added arachidonate to TxB2 was inhibited (50-80%) by a 10 s-5 min pretreatment with PMA. However, secretion of 5-hydroxy[14C]tryptamine (5HT) induced by thrombin or U46619 was not inhibited by 10 s-2 min incubations with PMA and, on the contrary, with low agonist concentrations, was potentiated by PMA in the absence of a significant rise in [Ca2+]i or endogenous Tx formation, to levels significantly greater than or equal to the sum of that obtained when agonist and PMA were added separately. With longer times of incubation with PMA (5 min), these synergistic effects became less pronounced as inhibitory effects of PMA on agonist-induced [14C]5HT secretion became apparent. The results indicate that, while PMA may cause an inhibition of agonist-induced [Ca2+]i mobilization resulting in an inhibition of agonist-induced arachidonate, TxB2 and beta TG release, its effects on agonist-induced 5HT secretion may be complicated by [Ca2+]i-independent synergistic effects of agonist and PMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号