首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B P Cho  F A Beland  M M Marques 《Biochemistry》1992,31(40):9587-9602
Proton NMR studies were conducted on the complementary 15-mer duplex d(5'-TACTCTTCTTGACCT).(5'-AGGTCAAGAAGAGTA) (designated as unmodified 15-mer duplex) spanning a portion of the mouse c-Ha-ras protooncogene centered around codon 61. Identical studies were carried out on the same sequence, after specific modification with a reactive derivative of the carcinogen 4-aminobiphenyl (ABP), which resulted in incorporation of a single N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP) adduct in the noncoding strand (designated as ABP-modified 15-mer duplex). The adduct was located at the position corresponding to the first base of codon 61. The NMR data for the unmodified 15-mer duplex were fully consistent with a standard right-handed B-type DNA duplex conformation, with the possible exception of the frayed terminal base pairs. The ABP-modified 15-mer duplex was found to adopt one major conformation, although at least one additional conformation could be detected especially near room temperature. The major form, which exhibited strikingly similar NOE patterns as to those of the parent oligomer, both in H2O and D2O spectra, assumed a standard Watson-Crick base pairing throughout the entire length of the duplex, including the modification site and its flanking base pairs. Although some local perturbation of the helix could be detected in the vicinity of the modified guanosine, the NOE distance constraints established that the helix was globally right-handed and that the glycosidic torsion angles had the normal anti orientation, both at the modified base and its partner cytidine. Furthermore, the absence of strong NOE interactions between protons in the ABP moiety, which was rapidly rotating, and the nucleic acid protons was consistent with positioning of the arylamine moiety in the major groove of a weakly distorted double-helical structure. Although insufficient data prevented a detailed characterization of the minor conformer(s), the observation of significant shieldings for all the arylamine protons indicated a different orientation at the modified site in the minor contributor(s), possibly with extensive stacking between the ABP fragment and the neighboring bases.  相似文献   

2.
Singlet oxygen-induced mutations in M13 lacZ phage DNA   总被引:9,自引:0,他引:9       下载免费PDF全文
The mutagenic consequences of damages to M13 mp19 RF DNA produced by singlet oxygen have been determined in a forward mutational system capable of detecting all classes of mutagenic events. When the damaged M13 mp19 RF DNA is used to transfect competent E. coli JM105 cells, a 16.6-fold increase in mutation frequency is observed at 5% survivors when measured as a loss of alpha-complementation. The enhanced mutagenicity is largely due to single-nucleotide substitutions, frameshift events and double-mutations. The single-nucleotide substitutions occur in the regulatory and in the structural part of the lacZ gene under the predominant form of a G:C to T:A transversion. The spectrum of mutations detected among the M13 lacZ phages surviving the singlet oxygen treatment is totally different from those appearing spontaneously. SOS induction mediated through u.v.-irradiation of bacteria leads to an increase of the mutation frequency in the M13 surviving to the singlet oxygen treatment. The mutation spectrum in this case is a mixture between those observed with the spontaneous mutants and the mutants induced by singlet oxygen. Lesions introduced in the M13 mp19 RF DNA can be partly repaired by the enzymatic machinery of the bacteria. It turns out that excision-repair and SOS repair are probably involved in the removal of these lesions by singlet oxygen.  相似文献   

3.
The duplex genome of Escherichia coli virus M13mp10 was modified at a unique site to contain N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG8-ABP), the major carcinogen-DNA adduct of the human bladder carcinogen 4-aminobiphenyl. A tetradeoxynucleotide containing a single dG8-ABP residue was synthesized by reacting 5'-d(TpGpCpA)-3' with N-acetoxy-N-(trifluoracetyl)-4-aminobiphenyl, followed by high-performance liquid chromatography purification of the principal reaction product 5'-d(TpG8-ABPpCpA)-3' (yield 15-30%). Characterization by fast atom bombardment mass spectrometry confirmed the structure as an intact 4-aminobiphenyl-modified tetranucleotide, while 1H nuclear magnetic resonance spectroscopy established the site of substitution and the existence of ring stacking between the carcinogen residue and DNA bases. Both 5'-d(TpG8-ABPpCpA)-3' and 5'-d(TpGpCpA)-3' were 5'-phosphorylated by use of bacteriophage T4 polynucleotide kinase and were incorporated into a four-base gap uniquely positioned in the center of the recognition site for the restriction endonuclease PstI, in an otherwise duplex genome of M13mp10. In the case of the adducted tetranucleotide, dG8-ABP was located in the minus strand at genome position 6270. Experiments in which the tetranucleotides were 5' end labeled with [32P]phosphate revealed the following: the adducted oligomer, when incubated in a 1000-fold molar excess in the presence of T4 DNA ligase and ATP, was found to be incorporated into the gapped DNA molecules with an efficiency of approximately 30%, as compared to the unadducted d(pTpGpCpA), which was incorporated with 60% ligation efficiency; radioactivity from the 5' end of each tetranucleotide was physically mapped to a restriction fragment that contained the PstI site and represented 0.2% of the genome; the presence of the lesion within the PstI recognition site inhibited the ability of PstI to cleave the genome at this site; in genomes in which ligation occurred, T4 DNA ligase was capable of covalently joining both modified and unmodified tetranucleotides to the gapped structures on both the 5' and the 3' ends with at least 90% efficiency. Evidence also is presented showing that the dG8-ABP-modified tetranucleotide was stable to the conditions of the recombinant DNA techniques used to insert it into the viral genome.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The in vivo mutagenic properties of 2-aminoimidazolone and 5-guanidino-4-nitroimidazole, two products of peroxynitrite oxidation of guanine, are reported. Two oligodeoxynucleotides of identical sequence, but containing either 2-aminoimidazolone or 5-guanidino-4-nitroimidazole at a specific site, were ligated into single-stranded M13mp7L2 bacteriophage genomes. Wild-type AB1157 Escherichia coli cells were transformed with the site-specific 2-aminoimidazolone- and 5-guanidino-4-nitroimidazole-containing genomes, and analysis of the resulting progeny phage allowed determination of the in vivo bypass efficiencies and mutational signatures of the DNA lesions. 2-Aminoimidazolone was efficiently bypassed and 91% mutagenic, producing almost exclusively G to C transversion mutations. In contrast, 5-guanidino-4-nitroimidazole was a strong block to replication and 50% mutagenic, generating G to A, G to T, and to a lesser extent, G to C mutations. The G to A mutation elicited by 5-guanidino-4-nitroimidazole implicates this lesion as a novel source of peroxynitrite-induced transition mutations in vivo. For comparison, the error-prone bypass DNA polymerases were overexpressed in the cells by irradiation with UV light (SOS induction) prior to transformation. SOS induction caused little change in the efficiency of DNA polymerase bypass of 2-aminoimidazolone; however, bypass of 5-guanidino-4-nitroimidazole increased nearly 10-fold. Importantly, the mutation frequencies of both lesions decreased during replication in SOS-induced cells. These data suggest that 2-aminoimidazolone and 5-guanidino-4-nitroimidazole in DNA are substrates for one or more of the SOS-induced Y-family DNA polymerases and demonstrate that 2-aminoimidazolone and 5-guanidino-4-nitroimidazole are potent sources of mutations in vivo.  相似文献   

5.
A single 7,8-dihydro-8-oxoguanine (G8-OXO; 8-hydroxyguanine) adduct in the lacZ alpha gene of bacteriophage M13 DNA induces a targeted G-->T transversion after replication in Escherichia coli (Biochemistry, 29, 7024-7031 (1990)). This mutation is thought to be due to the facile formation during DNA synthesis of a G8-OXO.base pair, where G8-OXO is in the syn conformation about the deoxyglycosyl bond. A related modified purine, 7,8-dihydro-8-oxoadenine (A8-OXO; 8-hydroxyadenine), is an abundant product found in irradiated and oxidized DNAs. Similar to G8-OXO, as a mononucleoside A8-OXO assumes the syn conformation. This work has assessed the relative mutagenicities of A8-OXO and G8-OXO in the same experimental system. A deoxypentanucleotide containing A8-OXO [d(GCT-A8-OXOG)] was synthesized. After 5'-phosphorylation with [gamma-32P] ATP, the oligomer was ligated into a duplex M13mp19-derived genome at a unique NheI restriction site. Genomes containing either A8-OXO (at position 6275, [+] strand) or G8-OXO (position 6276) were denatured with heat and introduced into E.coli DL7 cells. Analysis of phage DNA from mutant plaques obtained by plating immediately after transformation (infective centers assay) revealed that G8-OXO induced G-->T transversions at an apparent frequency of approximately 0.3%. The frequency and spectrum of mutations observed in DNA sequences derived from 172 mutant plaques arising from the A8-OXO-modified DNA were almost indistiguishable from those generated from transfection of an adenine-containing control genome. We conclude that A8-OXO is at least an order of magnitude less mutagenic than G8-OXO in E.coli cells with normal DNA repair capabilities.  相似文献   

6.
The DNA adducts were analyzed by 32P-postlabeling method following exposure of human uroepithelial cells (HUC) to N-hydroxy-4-aminobiphenyl (N-OH-ABP), the proximate metabolite of the human bladder carcinogen 4-aminobiphenyl (ABP). TLC of the postlabeled products on the first dimension revealed several products, the majority of which stayed close to the origin and were earlier identified as the 3',5' -bisphospho derivatives of N-(deoxyguanosin-8-yl)-4-aminobiphenyl and N-(deoxyadenosin-8-yl)-4-aminobiphenyl (Carcinogenesis 13 (1993) 955; Carcinogenesis 16 (1995) 295). Here we report characterization of two additional adducts that amounted to less than 5% of the total adducts. Autoradiography of D1 chromatogram of the postlabeled products of calf thymus DNA chemically interacted with N-OH-ABP under acidic conditions revealed two adducts, #1 and #2, with R(f) values of about 0.2 and 0.3, respectively. Two adducts with D1 thin layer chromatographic properties similar to those of adducts #1 and #2 were obtained on postlabeling analyses of products generated by chemical interaction of N-acetoxy-4-aminobiphenyl (N-OAc-ABP) with deoxyguanosine-3' -monophosphate (dGp). Based on proton NMR and mass spectroscopic analyses of the synthetic products derived from N-OAc-ABP, the chemical structures of adducts #1 and #2 have been identified as 3-(deoxyguanosin-N(2)-yl)-4-aminobiphenyl, and N-(deoxyguanosin-N(2)-yl)-4-aminobiphenyl, respectively. Both of these adducts were insensitive to digestion with nuclease P1. 32P-Postlabeling analysis of the nuclease P1 enriched DNA hydrolysate of HUC cells treated with N-OH-ABP showed the presence of adduct #2 but not adduct #1. Adduct #2 was also detected in calf thymus DNA incubated with HUC cytosol and N-OH-ABP in the presence of acetyl CoA. These results suggest that in the target cells for ABP carcinogenesis in vivo, N-OH-ABP is bioactivated by acetyl CoA-dependent acyltransferases to reactive arylnitrenium ions that covalently interact at N(2)-position of deoxyguanosine in DNA.  相似文献   

7.
Summary In vitro photosensitization by visible light in the presence of methylene blue (MB-light) produces lesions in M13mpl8 lacZ phage DNA, the lethal and mutagenic potential of which was analyzed after transfection into various bacterial hosts. Mutagenesis was determined with a forward mutation assay using the lacZ gene of M13mp18 as a target. When, MB-light-treated double-stranded (ds) M13mp18 DNA was used to transfect wild-type cells which were not induced for SOS functions, a fivefold increase in mutation frequency was observed at 10% survival compared to that observed with untreated DNA. Mutation frequency obtained with MB-light-treated ds M13mp18 DNA was greater when transfected into the uvrA fpg-1 double mutant than that seen in uvrA, fpg-1, or umuC single mutants or in the wild-type. Sequence analysis shows that in the wild-type strain, MB-light treatment of ds M13mp18 DNA results mostly in single base substitutions. The most frequent base change is the GCTA transversion. MB-light treatment of single-stranded (ss) M13mp18 DNA also results in an increased mutation frequency after transfection into the wild-type strain, yielding mostly GT transversions. Our results show that MB-light-induced mutagenesis is at least partially independent of the induction of SOS functions in Escherichia coli. The mutation spectra suggest that 8-oxo-7,8-dihydroguanine is the major promutagenic lesion in DNA.  相似文献   

8.
Closed circular double stranded M13mp19 DNA containing a site-specifically placed HMT (4'-hydroxymethyl-4-5'-8-trimethylpsoralen) monoadduct or crosslink was synthesized in vitro. The damaged DNA were scored for loss of infectivity by transfection into repair proficient or deficient E. coli and into SOS induced E. coli. Mutant phages were detected by the loss of alpha-complementation between the viral and the host Lac Z genes or by the acquisition of resistance to kpn I digestion. Our results indicate that HMT mutagenesis is targeted and that deletion or transversion of the modified thymidine is the predominant sequence change elicited by a monoadduct or a crosslink. Transfection of the monoadducted DNA into a Uvr A deficient strain did not change the mutation pattern but did increase the respective mutation frequencies. Transfection of the crosslinked DNA into a SOS induced host resulted in the appearence of other types of mutations attributable to an increase in both targeted and untargeted mutations.  相似文献   

9.
2-Chloroacetaldehyde (CAA), a metabolite of the carcinogenic industrial chemical vinyl chloride, reacts with single-stranded DNA to form the cyclic etheno lesions predominantly at adenine and cytosine. In both ethenoadenine and ethenocytosine, normal Watson-Crick hydrogen-bonding atoms are compromised. We have recently shown that CAA adduction leads to efficient mutagenesis in Escherichia coli predominantly at cytosines, and less efficiently at adenines. About 80% of the mutations at cytosines were C-to-T transitions, and the remainder were C-to-A transversions, a result similar to that of many noninstructional DNA lesions opposite which adenine residues are preferentially incorporated. It is widely believed that noninstructional lesions stop replication and depend on SOS functions for efficient mutagenesis. We have examined the effects of in vitro CAA adduction of the lacZ alpha gene of phage M13AB28 on in vivo mutagenesis in SOS-(UV)-induced E. coli. CAA adduction was specifically directed to a part of the lacZ sequence within M13 replicative form DNA by a simple experimental strategy, and the DNA was transfected into appropriate unirradiated or UV-irradiated cells. Mutant progeny were defined by DNA sequencing. In parallel in vitro experiments, the effects of CAA adduction on DNA replication by E. coli DNA polymerase I large (Klenow) fragment were examined. Our data do not suggest a strong SOS dependence for mutagenesis at cytosine lesions. While adenine lesions remain much less mutagenic than cytosine lesions, mutation frequency at adenines is increased by SOS. SOS induction does not significantly alter the specificity of base changes at cytosines or adenines.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The synthetic oligonucleotide heptamer 5'-ATCCGTC-3' was reacted in vitro with N-acetoxy-N-(trifluoroacetyl)-2-aminofluorene and the resulting product isolated by reverse-phase high-performance liquid chromatography (HPLC). This purified oligonucleotide, which was shown by chemical and enzymatic analysis to be a heptamer containing a single N-(deoxyguanin-8-yl)-2-aminofluorene adduct, was then used to situate the putatively mutagenic aminofluorene lesion within the genome of M13 mp9 by ligating it into a complementary single-stranded region located at a specific site in the negative strand of the duplex M13 mp9 DNA molecule. The presence of the adduct at the anticipated location was confirmed by taking advantage of the facts that AF adducts inhibit many restriction enzymes when located in or near their restriction sites and that the AF moiety should be contained within the HincII recognition sequence on M13 mp9 DNA. Upon attempted cleavage of the M13 DNA containing the site-specific AF adduct with HincII, we find that the large majority of the DNA remained circular, demonstrating the incorporation of the AF adduct in high yield into the DNA molecule at this location. This system should prove useful in vivo for the study of mutagenesis by chemical carcinogens and in vitro to study the interaction of purified DNA metabolizing proteins with a template containing a site-specific lesion.  相似文献   

11.
Gas chromatography/isotope dilution-mass spectrometry with selected ion monitoring (GC/IDMS-SIM) was used to measure oxidised bases in hypoxanthine/xanthine oxidase/Fe3+/EDTA modified ss M13 mp18 phage DNA. A dose-dependent increase of oxidised bases content in DNA was observed with the biggest augmentation of FapyGua, thymine glycol and FapyAde. The amount of 8-OH-Gua was relatively high both in non-oxidised and oxidised DNA, and increased to the same extent as FapyAde and ThyGly. DNA oxidation caused a dramatic decrease in phage survival after transfection to E. coli. Survival was improved 2.8-fold after induction of the SOS system by UV irradiation of bacteria and mutation frequency of the lacZ gene in SOS conditions increased 7-fold over that in non-irradiated bacteria. Spectrum of mutations was different from those reported previously and mutations were distributed rather randomly within M13 lacZ sequence, which was in contrast to previous findings, where with non-chelated metal ions other types of mutations were found in several clusters. Thus, conditions of DNA oxidation and accessibility of metal ions for DNA bases might be important factors for generating different DNA damages and mutations. Major base substitutions found both in SOS-induced and non-induced E. coli but with higher mutation frequency in SOS-induced cells were C-->A (approximately 20-fold increase in SOS-conditions), G-->A (9-fold increase) and G-->C (4.5-fold increase). Very few G-->T transitions were found. A particularly large group of A-->G transitions appeared only in SOS-induced bacteria and was accompanied by augmentation of FapyAde content in the phage DNA with undetectable 2-OH-Ade. It is then possible that imidazole ring-opened adenine mimics guanine during DNA replication and pairs with cytosine yielding A-->G transitions in SOS-induced bacteria.  相似文献   

12.
The toxicity and mutagenicity of three DNA adducts formed by the anticancer drug cis-diamminedichloroplatinum(II) (cis-DDP or cisplatin) were investigated in Escherichia coli. The adducts studied were cis-[Pt(NH3)2(d(GpG))] (G*G*), cis-[Pt(NH3)2(d(ApG))] (A*G*) and cis-[Pt(NH3)2(d(GpTpG))] (G*TG*), which collectively represent approximately 95% of the DNA adducts reported to form when the drug damages DNA. Oligonucleotide 24-mers containing each adduct were positioned at a known site within the viral strand of single stranded M13mp7L2 bacteriophage DNA. Following transfection into E. coli DL7 cells, the genomes containing the G*G*, A*G* and G*TG* adducts had survival levels of 5.2 +/- 1.2, 22 +/- 2.6 and 14 +/- 2.5% respectively, compared to unmodified genomes. Upon SOS induction, the survival of genomes containing the G*G* and A*G* adducts increased to 31 +/- 5.4 and 32 +/- 4.9% respectively. Survival of the genome containing the G*TG* adduct did not increase upon SOS induction. In SOS induced cells, the G*G* and A*G* adducts gave rise predominantly to G-->T and A-->T transversions respectively, targeted to the 5' modified base. In addition, A-->G transitions were detected for the A*G* adduct and low levels of tandem mutations at the 5' modified base as well as the adjacent 5' base were also observed for both adducts. The A*G* adduct was more mutagenic than the G*G* adduct, with a mutation frequency of 6% compared to 1.4% for the latter adduct. No cis-[Pt(NH3)2)2+ intrastrand crosslink-specific mutations were observed for the G*TG* adduct.  相似文献   

13.
J Ross  R Doisy  M S Tang 《Mutation research》1988,201(1):203-212
Double-stranded replicative form (RFI) DNA of bacteriophage M13 strain M13mp10 which carries partial lacZ gene has been modified in vitro to various extents with N-hydroxy-2-amino-fluorene (N-OH-AF) and then transfected into E. coli cells. High-performance liquid chromatography (HPLC) analysis results demonstrate that the sole adduct (95%) formed in modified DNA is N-(deoxyguanosine-8-yl)-2-aminofluorene (dG-C8-AF). Approximately 20 adducts per RFI molecule constitute 1 lethal event when plaque-forming ability is assayed on E. coli cells which have received no prior SOS induction. The mutagenicity of dG-C8-AF adducts was assayed by measuring loss of beta-galactosidase activity as a function of adducts per molecule. A dose-dependent increase in Lac- mutants was observed, with a 4-fold increase in mutants per survivor at 30 adducts/molecule. The mutations produced, characterized by DNA sequencing, occur predominantly at either G or C positions different from those observed in the spontaneous mutant spectrum. Restriction-mapping results show that in our assay system, dG-C8-AF adducts induce a previously unreported recombinogenic activity.  相似文献   

14.
The forward mutation of the lacZ part of the bacteriophage M13mp8 has been used to study the fidelity of the 9S DNA polymerase alpha from calf thymus during in vitro replication of single-stranded DNA. Errors leading to a loss of alpha-complementation were identified by DNA sequencing. The overall mutation rate of the lacZ target sequence was in the range of 1:300-1:1000 which is more than one order of magnitude higher than the spontaneous mutation rate. In a mutL host the mutation rate was nearly threefold higher as compared to the wildtype host. Base substitutions comprise 86% of the errors whereas base deletions amount to 12%. The addition of a base was detected only in one mutant out of 71 sequenced ones. The frameshift mutations occurred predominantly in runs of the same base. The frequencies of individual base substitution are in the order of 2 X 10(-4)-4 X 10(-4) for most of the mismatches. Mutations involving dCTP:T and dGTP:T mismatches are observed with a lower frequency, those involving dTTP:C mismatches with a higher frequency.  相似文献   

15.
Mechanisms of frameshift mutagenesis by aflatoxin B1-2,3-dichloride   总被引:6,自引:0,他引:6  
In order to characterize frameshift mutagenesis by aflatoxin B1-2,3-dichloride (AFB1Cl2), we have introduced a +1 (BK8) or a -1 (HS8) frameshift within the lacZ alpha gene segment contained in the phage M13mp8 to obtain lacZ alpha- derivatives. BK8 or HS8 replicative form DNA was modified with AFB1Cl2 in vitro, transfected into appropriate Escherichia coli hosts and lacZ alpha+ revertants scored and defined by DNA sequencing. The -1 frameshift (BK8) results suggest the following. (1) The E. coli recA gene is not absolutely required for AFB1Cl2-induced frameshift mutagenesis; however, in recA+ cells, ultraviolet light (SOS) induction enhances AFB1Cl2 mutagenesis, but such ultraviolet induction is not required. The plasmid pGW270 (mucAB+) significantly enhances the AFB1Cl2-induced frameshift mutagenesis. The uvrABC+ excision system plays a major role in the repair of AFB1Cl2-induced damage. (2) Sequence analysis reveals that AFB1Cl2 induces two classes of -1 frameshift mutations: the simple class in which the frameshift is due to the loss of one base-pair, and the complex class in which the loss of a base-pair is coupled to a vicinal base substitution. Both types of mutations occur predominantly at G.C runs, which are hotspots for AFB1Cl2 damage. The complex mutations appear to be concerted events targeted by a single AFB1Cl2 adduct. The frequency of these complex mutations is significantly enhanced by mucAB activity. In this system, recA activity is required for generation of significant levels of complex mutations. An analysis of the +1 frameshifts (HS8) reveals that AFB1Cl2 induces +1 frameshifts with an efficiency comparable to that for -1 frameshifts. Most +1 frameshifts occur by the addition of a base, and a third of the additions are complex mutations because they are accompanied by at least one base substitution. All simple additions occur at G.C runs; however, in a striking contrast to spontaneous insertions, a majority of the induced events introduce an A.T pair at these sites. Our data suggest a model for the generation of base substitution as well as simple and complex frameshift mutations induced by AFB1Cl2. To the extent determined, the frameshift specificity of aflatoxin B1 activated by metabolic enzymes is similar to that of AFB1Cl2.  相似文献   

16.
The Escherichia coli tyrosine amber suppressor tRNA gene, supF, has been utilized as a mutagenic target in several shuttle-vector plasmids. Data on mutagenic inactivation of suppressor activity was obtained from induced mutagenesis experiments with plasmids pZ189 and p3AC, and from studies on alterations of the supF gene transduced into E. coli. 162 single or tandem base-substitution mutations that reduce or eliminate suppressor activity were identified at 86 sites within 158 base pairs. The 2 transition and 4 transversion mutations possible in double-stranded DNA were all detectable. At 56 sites two different inactivating mutations were found; and at 20 sites all 3 possible base substitution mutations inactivated suppressor function. Most of the mutations were clustered within the mature tRNA region: 144 of the base-substitution mutations were found at 74 sites within the 85-bp mature tRNA region. Insertions of 1 or 2 bases at 4 sites and deletions of 1 to 3 bases at 15 sites were found to inactivate supF function. A few silent mutations which do not inactivate suppressor function were found: single base-substitutions at 4 sites, 14 pairs of silent double mutations, and a large deletion including the promoter region. The supF gene is thus an extremely sensitive target for mutagenic inactivation in shuttle-vector plasmids.  相似文献   

17.
B Tudek  S Boiteux    J Laval 《Nucleic acids research》1992,20(12):3079-3084
Guanine residues methylated at the N-7 position (7-MeGua) are susceptible to cleavage of the imidazole ring yielding 2,6-diamino-4-hydroxy-5N-methyl-formamidopyrimidine (Fapy-7-MeGua). The presence of Fapy-7-MeGua in DNA template causes stops in DNA synthesis in vitro by E. coli DNA polymerase I. The biological consequences of Fapy-7-MeGua lesions for survival and mutagenesis were investigated using single-stranded M13mp18 phage DNA. Fapy-7-MeGua lesions were generated in vitro in phage DNA by dimethylsulfate (DMS) methylation and subsequent ring opening of 7-MeGua by treatment with NaOH (DMS-base). The presence of Fapy-7-MeGua residues in M13 phage DNA correlated with a significant decrease in transfection efficiency and an increase in mutation frequency in the lacZ gene, when transfected into SOS-induced JM105 E.coli cells. Sequencing analysis revealed unexpectedly, that mutation rate at guanine sites was only slightly increased, suggesting that Fapy-7-MeGua was not responsible for the overall increase in the mutagenic frequency of DMS-base treated DNA. In contrast, mutation frequency at adenine sites yielding A----G transitions was the most frequent event, 60-fold increased over DMS induced mutations. These results show that treatment with alkali of methylated single-stranded DNA generates a mutagenic adenine derivative, which mispairs with cytosine in SOS induced bacteria. The results also imply that the Fapy-7-MeGua in E. coli cells is primarily a lethal lesion.  相似文献   

18.
Angelicin- plus near-UV-induced mutations were umuC dependent in Escherichia coli K-12. Angelicin, a monofunctional psoralen derivative, is believed to damage DNA almost exclusively at pyrimidine bases. To broaden our knowledge about the mutagenic specificity of SOS-dependent mutagens, we determined the mutational specificity of 233 suppressible lacI mutations induced by angelicin. More than 90% of the nonsense mutations arose via transversion substitutions. The three most frequently mutated sites were at A-T base pairs and accounted for more than one-third of all induced nonsense mutations. The two hottest sites were at the only occurrences of the 5'-TATA-3' tetranucleotide in lacI, a sequence expected to be a preferred binding site for a psoralen. Both A-T-to-T-A and A-T-to-C-G transversions were well induced by angelicin treatment, but the frequency of each transversion depended on the particular site. We also detected significant induction of transversion mutations at G-C sites. The induction of transversions by an SOS-dependent mutagen that generates lesions at pyrimidines supports the idea that DNA lesions influence the selection of bases that are incorporated via the process of SOS repair.  相似文献   

19.
4-Nitroquinoline-1-oxide is a potent mutagen and carcinogen which induces two main guanine adducts at positions C8 and N2. In ds or ss damaged DNA the ratio C8/N2 adducts is 1:2 and 8-10:1, respectively. In bacteria and yeast 4NQO has been shown to be a base substitution mutagen acting at G residues inducing mainly G to A transitions. We determined the mutational spectrum induced by the 4NQO metabolite, acetoxy-4-aminoquinoline 1-oxide, in the M13lacZ'/E. coli lacZ delta M15 alpha complementation assay using ssDNA. Among 68 Ac-4HAQO induced mutants, G to Pyr transversion was the most frequent base substitution observed. By comparison with dsDNA based systems, our data suggest that dGuo-C8-AQO induces G to Pyr transversions. A mechanism to explain how this lesion may induce transversions is proposed.  相似文献   

20.
5-Amino-4-imidazolecarboxamide is a mutagen in E. coli   总被引:1,自引:0,他引:1  
5-Amino-4-imidazolecarboxamide (5A4IC), the base moiety of a common intermediate in de novo purine biosynthesis, was found to be mutagenic in E. coli. Using a series of mutants in the tryptophan synthetase A gene, 5A4IC was observed to cause transition and transversion mutations at similar levels. At 400 micrograms/ml in the growth medium, it stimulates the base substitution GC----AT 4.8-fold; AT----GC 20-fold; AT----CG (2 sites) an average of 6.0-fold; AT----TA 7.8-fold; and GC----CG 6.1-fold. The transversion GC----TA was not tested. In contrast to the base, 5-amino-4-imidazolecarboxamide riboside is not mutagenic at a similar molar concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号