首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The X-ray crystallographic structures of the anti-Syrian hamster prion protein (SHaPrP) monoclonal Fab 3F4 alone, as well as the complex with its cognate peptide epitope (SHaPrP 104-113), have been determined to atomic resolution. The conformation of the decapeptide is an Omega-loop. There are substantial alterations in the antibody combining region upon epitope binding. The peptide binds in a U-shaped groove on the Fab surface, with the two specificity determinants, Met109 and Met112, penetrating deeply into separate hydrophobic cavities formed by the heavy and light chain complementarity-determining regions. In addition to the numerous contacts between the Fab and the peptide, two intrapeptide hydrogen bonds are observed, perhaps indicating the structure bound to the Fab exists transiently in solution. This provides the first structural information on a portion of the PrP N-terminal region observed to be flexible in the NMR studies of SHPrP 90-231, SHaPrP 29-231 and mouse PrP 23-231. Antibody characterization of the antigenic surfaces of PrPC and PrPSc identifies this flexible region as a component of the conformational rearrangement that is an essential feature of prion disease.  相似文献   

2.
Numerous enzymes hyperphosphorylate Tau in vivo, leading to the formation of neurofibrillary tangles (NFTs) in the neurons of Alzheimer's disease (AD). Compared with age-matched normal controls, we demonstrated here that the protein levels of WW domain-containing oxidoreductase WOX1 (also known as WWOX or FOR), its Tyr33-phosphorylated form, and WOX2 were significantly down-regulated in the neurons of AD hippocampi. Remarkably knock-down of WOX1 expression by small interfering RNA in neuroblastoma SK-N-SH cells spontaneously induced Tau phosphorylation at Thr212/Thr231 and Ser515/Ser516, enhanced phosphorylation of glycogen synthase kinase 3beta (GSK-3beta) and ERK, and enhanced NFT formation. Also an increased binding of phospho-GSK-3beta with phospho-Tau was observed in these WOX1 knock-down cells. In comparison, increased phosphorylation of Tau, GSK-3beta, and ERK, as well as NFT formation, was observed in the AD hippocampi. Activation of JNK1 by anisomycin further increased Tau phosphorylation, and SP600125 (a JNK inhibitor) and PD-98059 (an MEK1/2 inhibitor) blocked Tau phosphorylation and NFT formation in these WOX1 knock-down cells. Ectopic or endogenous WOX1 colocalized with Tau, JNK1, and GSK-3beta in neurons and cultured cells. 17Beta-estradiol, a neuronal protective hormone, increased the binding of WOX1 and GSK-3beta with Tau. Mapping analysis showed that WOX1 bound Tau via its COOH-terminal short-chain alcohol dehydrogenase/reductase domain. Together WOX1 binds Tau via its short-chain alcohol dehydrogenase/reductase domain and is likely to play a critical role in regulating Tau hyperphosphorylation and NFT formation in vivo.  相似文献   

3.
4.
We have investigated the conformational basis of the expansion transformation that occurs upon maturation of the bacteriophage T4 prohead, by using laser Raman spectroscopy to determine the secondary structure of the major capsid protein in both the precursor and the mature states of the surface lattice. This transformation involves major changes in the physical, chemical, and immunological properties of the capsid and is preceded in vivo by processing of its major protein, gp23 (56 kDa), to gp23* (49 kDa), by proteolysis of its N-terminal gp23-delta domain. The respective secondary structures of gp23 in the unexpanded state, and of gp23* in the expanded state, were determined from the laser Raman spectra of polyheads, tubular polymorphic variants of the capsid. Similar measurements were also made on uncleaved polyheads that had been expanded in vitro and, for reference, on thermally denatured polyheads. We find that, with or without cleavage of gp23, expansion is accompanied by substantial changes in secondary structure, involving a major reduction in alpha-helix content and an increase in beta-sheet. The beta-sheet contents of gp23* or gp23 in the expanded state of the surface lattice, and even of gp23 in the unexpanded state, are sufficient for a domain with the "jellyroll" fold of antiparallel beta-sheets, previously detected in the capsid proteins of other icosahedral viruses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
Phosphorylase kinase (PhK), a Ca(2+)-dependent regulatory enzyme of the glycogenolytic cascade in skeletal muscle, is a 1.3 MDa hexadecameric oligomer comprising four copies of four distinct subunits, termed alpha, beta, gamma, and delta, the last being endogenous calmodulin. The structures of both nonactivated and Ca(2+)-activated PhK were determined to elucidate Ca(2+)-induced structural changes associated with PhK's activation. Reconstructions of both conformers of the kinase, each including over 11,000 particles, yielded bridged, bilobal structures with resolutions estimated by Fourier shell correlation at 24 A using a 0.5 correlation cutoff, or at 18 A by the 3sigma (corrected for D(2) symmetry) threshold curve. Extensive Ca(2+)-induced structural changes were observed in regions encompassing both the lobes and bridges, consistent with changes in subunit interactions upon activation. The relative placement of the alpha, beta, gamma, and delta subunits in the nonactivated three-dimensional structure, relying upon previous two-dimensional localizations, is in agreement with the known effects of Ca(2+) on subunit conformations and interactions in the PhK complex.  相似文献   

7.
Protein tyrosine phosphatases (PTPases) play critical roles in the intracellular signal transduction pathways that regulate cell transformation, growth, and proliferation. The structures of several different PTPases have revealed a conserved active site architecture in which a phosphate-binding loop, together with an invariant arginine, cradle the phosphate of a phosphotyrosine substrate and poise it for nucleophilic attack by an invariant cysteine nucleophile. We previously reported that binding of tungstate to the Yop51 PTPase from Yersinia induced a loop conformational change that moved aspartic acid 356 into the active site, where it can function as a general acid. This is consistent with the aspartic acid donating a proton to the tyrosyl leaving group during the initial hydrolysis step. In this report, using a similar structure of the inactive Cys 403-->Ser mutant of the Yersinia PTPase complexed with sulfate, we detail the structural and functional details of this conformational change. In response to oxyanion binding, small perturbations occur in active site residues, especially Arg 409, and trigger the loop to close. Interestingly, the peptide bond following Asp 356 has flipped to ligate a buried, active site water molecule that also hydrogen bonds to the bound sulfate anion and two invariant glutamines. Loop closure also significantly decreases the solvent accessibility of the bound oxyanion and could effectively shield catalytic intermediates from phosphate acceptors other than water. We speculate that the intrinsic loop flexibility of different PTPases may be related to their catalytic rate and may play a role in the wide range of activities observed within this enzyme family.  相似文献   

8.

Background

Tau phosphorylation and dephosphorylation regulate in a poorly understood manner its physiological role of microtubule stabilization, and equally its integration in Alzheimer disease (AD) related fibrils. A specific phospho-pattern will result from the balance between kinases and phosphatases. The heterotrimeric Protein Phosphatase type 2A encompassing regulatory subunit PR55/Bα (PP2AT55α) is a major Tau phosphatase in vivo, which contributes to its final phosphorylation state. We use NMR spectroscopy to determine the dephosphorylation rates of phospho-Tau by this major brain phosphatase, and present site-specific and kinetic data for the individual sites including the pS202/pT205 AT8 and pT231 AT180 phospho-epitopes.

Methodology/Principal Findings

We demonstrate the importance of the PR55/Bα regulatory subunit of PP2A within this enzymatic process, and show that, unexpectedly, phosphorylation at the pT231 AT180 site negatively interferes with the dephosphorylation of the pS202/pT205 AT8 site. This inhibitory effect can be released by the phosphorylation dependent prolyl cis/trans isomerase Pin1. Because the stimulatory effect is lost with the dimeric PP2A core enzyme (PP2AD) or with a phospho-Tau T231A mutant, we propose that Pin1 regulates the interaction between the PR55/Bα subunit and the AT180 phospho-epitope on Tau.

Conclusions/Significance

Our results show that phosphorylation of T231 (AT180) can negatively influence the dephosphorylation of the pS202/pT205 AT8 epitope, even without an altered PP2A pool. Thus, a priming dephosphorylation of pT231 AT180 is required for efficient PP2AT55α-mediated dephosphorylation of pS202/pT205 AT8. The sophisticated interplay between priming mechanisms reported for certain Tau kinases and the one described here for Tau phosphatase PP2AT55α may contribute to the hyperphosphorylation of Tau observed in AD neurons.  相似文献   

9.
We have shown previously and confirmed in this study that the phospholipase A(2) (PLA(2)) activity of peroxiredoxin 6 (Prdx6) is markedly increased by phosphorylation. This report evaluates the conformation and thermodynamic stability of Prdx6 protein after phosphorylation to understand the physical basis for increased activity. Phosphorylation resulted in decreased negative far-UV CD, strengthened ANS binding, and a lack of rigid tertiary structure, compatible with a change in conformation to that of a molten globule. The ΔG°(D) was 3.3 ± 0.3 kcal mol(-1) for Prdx6 and 1.7 ± 0.7 kcal mol(-1) for pPrdx6, suggesting that phosphorylation destabilizes the protein. Phosphorylation of Prdx6 changed the conformation of the N-terminal domain exposing Trp 33, as determined by tryptophan fluorescence and NaI fluorescence quenching. The kinetics of interaction of proteins with unilamellar liposomes (50:25:15:10 DPPC:egg PC:cholesterol:PG molar ratio) were evaluated with tryptophan fluorescence. pPrdx6 bound to liposomes with a higher affinity (K(d) = 5.6 ± 1.2 μM) than Prdx6 (K(d) = 24.9 ± 4.5 μM). By isothermal titration calorimetry, pPrdx6 bound to liposomes with a large exothermic heat loss (ΔH = -31.49 ± 0.22 kcal mol(-1)). Correlating our conformational studies with the published crystal structure of oxidized Prdx6 suggests that phosphorylation results in exposure of hydrophobic residues, thereby providing accessibility to the sites for liposome binding. Because binding of the enzyme to the phospholipid substrate interface is a requirement for PLA(2) activity, these results indicate that a change in the conformation of Prdx6 upon its phosphorylation is the basis for enhancement of PLA(2) enzymatic activity.  相似文献   

10.
The external loop linking the M2 and M3 transmembrane domains is crucial for coupling agonist binding to channel gating in the glycine receptor chloride channel (GlyR). A substituted cysteine accessibility scan previously showed that glycine activation increased the surface accessibility of 6 contiguous residues (Arg271-Lys276) toward the N-terminal end of the homomeric alpha1 GlyR M2-M3 loop. In the present study we used a similar approach to determine whether the allosteric antagonist, picrotoxin, could impose conformational changes to this domain that cannot be induced by varying agonist concentrations alone. Picrotoxin slowed the reaction rate of a sulfhydryl-containing compound (MTSET) with A272C, S273C, and L274C. Before interpreting this as a picrotoxin-specific conformational change, it was necessary to eliminate the possibility of steric competition between picrotoxin and MTSET. Accordingly, we showed that picrotoxin and the structurally unrelated blocker, bilobalide, were both trapped in the R271C GlyR in the closed state and that a point mutation to the pore-lining Thr6' residue abolished inhibition by both compounds. We also demonstrated that the picrotoxin dissociation rate was linearly related to the channel open probability. These observations constitute a strong case for picrotoxin binding in the pore. We thus conclude that the picrotoxin-specific effects on the M2-M3 loop are mediated allosterically. This suggests that the M2-M3 loop responds differently to the occupation of different binding sites.  相似文献   

11.
12.
The lactose synthase (LS) enzyme is a 1:1 complex of a catalytic component, beta1,4-galactosyltransferse (beta4Gal-T1) and a regulatory component, alpha-lactalbumin (LA), a mammary gland-specific protein. LA promotes the binding of glucose (Glc) to beta4Gal-T1, thereby altering its sugar acceptor specificity from N-acetylglucosamine (GlcNAc) to glucose, which enables LS to synthesize lactose, the major carbohydrate component of milk. The crystal structures of LS bound with various substrates were solved at 2 A resolution. These structures reveal that upon substrate binding to beta4Gal-T1, a large conformational change occurs in the region comprising residues 345 to 365. This repositions His347 in such a way that it can participate in the coordination of a metal ion, and creates a sugar and LA-binding site. At the sugar-acceptor binding site, a hydrophobic N-acetyl group-binding pocket is found, formed by residues Arg359, Phe360 and Ile363. In the Glc-bound structure, this hydrophobic pocket is absent. For the binding of Glc to LS, a reorientation of the Arg359 side-chain occurs, which blocks the hydrophobic pocket and maximizes the interactions with the Glc molecule. Thus, the role of LA is to hold Glc by hydrogen bonding with the O-1 hydroxyl group in the acceptor-binding site on beta4Gal-T1, while the N-acetyl group-binding pocket in beta4Gal-T1 adjusts to maximize the interactions with the Glc molecule. This study provides details of a structural basis for the partially ordered kinetic mechanism proposed for lactose synthase.  相似文献   

13.
A model of oxidative phosphorylation is formulated which accounts for a wide variety of experimental observations of mitochondria in molecular terms.The central feature of the model is the postulated existence of a hypothetical enzymic system called the “proton transfer complex” in the inner membrane that catalyzes group-specific proton transfer reactions between membrane components. Thus, the “proton transfer complex” is assumed to catalyze either the intramembrane proton transfer reactions (e.g., between the electron transfer complex and oligomycin-sensitive ATPase) or the transmembrane proton transfer reactions between the matrix and intracristal spaces. The former appears to be involved in the phosphorylation of matrix ADP and the latter in the active transport of adenine nucleotides and substrates across the inner membrane.  相似文献   

14.
Nakanishi M  Goto Y  Kitade Y 《Proteins》2005,60(1):131-138
RNase L is responsible for the 2-5A host defense system, an RNA degradation pathway present in cells of higher vertebrates that functions in both the antiviral and anticellular activities of interferon. The activity of RNase L is tightly regulated and is exerted only in the presence of 2-5A. The postulated mechanism of its regulation is as follows: the N-terminal half ankyrin-repeat domain masks the C-terminal half nuclease domain in the absence of 2-5A. On binding 2-5A at the ankyrin-repeat domain, RNase L forms a homodimer and removes the ankyrin-repeat domain from the nuclease domain to become the active form. A conformational change in the ankyrin-repeat domain is a key step in this hypothetical mechanism, but there is as yet no evidence for such a change. To clarify the events induced by 2-5A binding, we established procedures for expression and purification of the ankyrin-repeat domain of human RNase L. Fluorescence spectra of the protein showed clear difference in the presence and absence of 2-5A. The alterations in the spectra supported conformational changes of the protein. Time-resolved anisotropy measurements indicated that 2-5A binding led to a significant decrease in the rotational radius of the protein. In addition, 2-5A provided the domain with resistance to protease digestion as a result of a conformational change. These results indicated that the ankyrin-repeat domain of RNase L constricts its structure by binding of 2-5A. This observation suggests a revised model of the 2-5A-induced activation of RNase L.  相似文献   

15.
Brain tau protein is phosphorylated in vitro by cdc2 and MAP2 kinases, obtained through immunoaffinity purification from rat brain extracts. The phosphorylation sites are located on the tau molecule both upstream and downstream of the tubulin-binding motifs. A synthetic peptide comprising residues 194-213 of the tau sequence, which contains the epitope recognized by the monoclonal antibody tau-1, is also efficiently phosphorylated in vitro by cdc2 and MAP2 kinases. Phosphorylation of this peptide markedly reduces its interaction with the antibody tau-1, as it has been described for tau protein in Alzheimer's disease. Both cdc2 and MAP2 kinases are present in brain extracts obtained from Alzheimer's disease patients. Interestingly, the level of cdc2 kinase may be increased in patient brains as compared with non-demented controls. These results suggest a role for cdc2 and MAP2 kinases in phosphorylating tau protein at the tau-1 epitope in Alzheimer's disease.  相似文献   

16.
Both the circular dichroism and fluorescence spectra of the dissociated coat protein subunits from potato virus X changed substantially over the pH range 8 to 4, irreversible changes resulted below pH 4, with tyrosyl and tryptophanyl residues affected most. The titration curves show a pKa of about 5.6 and do not require cooperative interactions between the coat protein subunits, thus they are in marked contrast to titrations of tobacco mosaic virus A-protein. The spectra of the intact virus were little changed between pH 8 and 4 and suggested that the coat protein was locked into a conformation similar to that of the subunits in solution at pH 7. It is proposed that the pH induced conformational change is responsible for determining the acidic branch of the pH profile for reconstitution of potato virus X from its dissociated coat protein subunits and RNA.  相似文献   

17.
The gonococcal lsi-6 locus was cloned and shown by DNA sequence analysis to have homology with the E. coli rfaD gene, which encodes ADP-L-glycero-D-mannoheptose epimerase. This enzyme is involved in the biosynthesis of the lipopolysaccharide precursor ADP-L-glycero-D-mannoheptose. A site-directed frameshift mutation in lsi-6 was constructed by PCR amplification and introduced into the chromosome of Neisseria gonorrhoeae MS11 P+ by transformation. The lipooligosaccharides (LOS) of mutant and parental strains were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The lsi-6 mutant produced LOS components with apparent molecular masses of 2.6 and 3.6 kDa as compared with a 3.6-kDa band of the MS11 P+ strain. The parental LOS phenotype was expressed when a revertant was constructed by transformation of the cloned wild-type gene into the lsi-6 mutant. The immunoreactivity of LOS from parental and constructed strains was examined by SDS-PAGE and Western blotting. Only the parental and reconstructed wild-type strains produced a 3.6-kDa LOS component that reacted with monoclonal antibody 2-1-L8. These results suggest that the lsi-6 locus is involved in gonococcal LOS biosynthesis and that the nonreactive mutant 3.6-kDa LOS component contains a conformational change or altered saccharide composition that interferes with immunoreactivity.  相似文献   

18.
Cooperative binding of ATP and RNA to DEAD-box helicases induces the closed conformation of their helicase core, with extensive interactions across the domain interface. The bound RNA is bent, and its distortion may constitute the first step towards RNA unwinding. To dissect the role of the conformational change in the helicase core for RNA unwinding, we characterized the RNA-stimulated ATPase activity, RNA unwinding and the propensity to form the closed conformer for mutants of the DEAD box helicase YxiN. The ATPase-deficient K52Q mutant forms a closed conformer upon binding of ATP and RNA, but is deficient in RNA unwinding. A mutation in motif III slows down the catalytic cycle, but neither affects the propensity for the closed conformer nor its global conformation. Hence, the closure of the cleft in the helicase core is necessary but not sufficient for RNA unwinding. In contrast, the G303A mutation in motif V prevents a complete closure of the inter-domain cleft, affecting ATP binding and hydrolysis and is detrimental to unwinding. Possibly, the K52Q and motif III mutants still introduce a kink into the backbone of bound RNA, whereas G303A fails to kink the RNA substrate.  相似文献   

19.
20.
Chromogranin A, the major intravesicular protein of adrenal chromaffin granules, bound Ca2+ in a pH-dependent manner. Both the maximal binding and affinity of chromogranin A for Ca2+ were dependent on pH. Chromogranin A bound 670 nmol of Ca2+/mg (32 mol/mol) and 1150 nmol of Ca2+/mg (55 mol/mol) at pH 7.5 and 5.5, respectively, with dissociation constants (Kd) of 2.7 and 4 mM. This pH dependence probably reflects different conformations of the protein at the two pH values. Conformational differences of chromogranin A at two different pH values were demonstrated by limited tryptic digestion patterns confirming previous results obtained by circular dichroism spectroscopy (Yoo, S. H., and Albanesi, J. P. (1990) J. Biol. Chem. 265, 14414-14421). Sedimentation equilibrium studies revealed the native molecular mass of chromogranin A to be 100 kDa at pH 7.5 and 192 kDa at pH 5.5, indicating dimeric and tetrameric states of the protein at the two pH levels. We postulate that the pH- and Ca2(+)-induced conformational changes of chromogranin A may have a role both in the regulation of Ca2+ release of chromaffin granules and in the early stages of secretory vesicle biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号