首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some mutants defective in chemotaxis show incessant tumbling behavior and are called tumbling mutants. Previously described tumbling mutations lie in two genes, cheB and cheZ (41.5 min on Escherichia coli map). Genetic analysis of various tumbling mutants, however, revealed that two more genetic loci, cheC (43 min) and cheE (99.2 min), could also mutate to produce tumbling mutants. The genetic map around cheC was revised: his flaP flaQ flaR flbD flaA (= cheC) flaE. flbD is a new gene. When cells were starved for methionine, the tumbling mutants changed their swimming behavior depending on the che gene mutated. cheZ mutants, like wild-type bacteria, ceased tumbling shortly after removal of methionine. The tumbling of cheB or cheE mutants was depressed after prolonged methionine starvation in the presence of a constant level of an attractant. cheC tumbling mutants appeared unique in that they did not cease tumbling even when cells were deprived of methionine. By contrast, arsenate treatment of the tumbling mutants resulted in smooth swimming of the cells in every case. These results suggest that two different processes are involved in regulation of tumbling; one requiring methionine and the other requiring some phosphorylated compound.  相似文献   

2.
Z Y Jiang  H Gest    C E Bauer 《Journal of bacteriology》1997,179(18):5720-5727
The chemotaxis gene cluster from the photosynthetic bacterium Rhodospirillum centenum contains five open reading frames (ORFs) that have significant sequence homology to chemotaxis genes from other bacteria. To elucidate the functions of each ORF, we have made various mutations in the gene cluster and analyzed their phenotypic defects. Deletion of the entire che operon (delta che), as well as nonpolar disruptions of cheAY, cheW, and cheR, resulted in a smooth-swimming phenotype, whereas disruption of cheB resulted in a locked tumbly phenotype. Each of these mutants was defective in chemotactic response. Interestingly, disruption of cheY resulted in a slight increase in the frequency of tumbling/reversal with no obvious defects in chemotactic response. In contrast to observations with Escherichia coli and several other bacteria, we found that all of the che mutant cells were capable of differentiating into hyperflagellated swarmer cells when plated on a solid agar surface. When viewed microscopically, the smooth-swimming che mutants exhibited active surface motility but were unable to respond to a step-down in light intensity. Both positive and negative phototactic responses were abolished in all che mutants, including the cheY mutant. These results indicate that eubacterial photosensory perception is mediated by light-generated signals that are transmitted through the chemotaxis signal transduction cascade.  相似文献   

3.
General Nonchemotactic Mutants of CAULOBACTER CRESCENTUS   总被引:8,自引:1,他引:7       下载免费PDF全文
We have examined 35 mutants that have defects in general chemotaxis. Genetic analysis of these mutants resulted in the identification of at least eight che genes located at six different positions on the Caulobacter crescentus chromosome. The cheR, cheB and cheT genes appeared to be located in a three-gene cluster. Mutations in these three genes resulted in the inability of the flagellum to reverse the direction of rotation. Defects in the cheR gene resulted in a loss of the ability to methylate the methyl-accepting chemotaxis proteins. In vitro experiments showed that the lack of in vivo methylation in cheR mutants was due to the absence of methyltransferase activity. Defects in the cheB gene resulted in greatly reduced chemotaxis-associated methylation in vivo and a loss of methylesterase activity in vitro. The specific defects responsible for the lack of a chemotactic response have not been determined for the other identified che genes.  相似文献   

4.
To understand output control in bacterial chemotaxis, we varied the levels of expression of cellular cheY and cheZ genes and found that the overproduction of the corresponding proteins affected Escherichia coli swimming behavior. In the absence of other signal-transducing gene products, CheY overproduction made free-swimming cells tumble more frequently. A plot of the fraction of the population that are tumbling versus the CheY concentration was hyperbolic, with half of the population tumbling at 30 microM (25,000 copies per cell) CheY monomers in the cytosol. Overproduction of aspartate receptor (Tar) by 30-fold had a negligible effect on CheY-induced tumbling, so Tar does not sequester CheY. CheZ overproduction decreased tumbling in all tumbling mutants except certain flaAII(cheC) mutants. In the absence of other chemotaxis gene products, CheZ overproduction inhibited CheY-induced tumbling. Models for CheY as a tumbling signal and CheZ as a smooth-swimming signal to control flagellar rotation are discussed.  相似文献   

5.
M Tsuda  T Iino 《Journal of bacteriology》1983,153(2):1018-1026
Complementation in bacteriophage E79 tv-l-mediated transduction and the phenotypic properties of the flagellar genes in Pseudomonas aeruginosa PAO were investigated by using 195 flagellar mutants of this organism. A total of 15 fla. 1 mot, and 2 che cistrons were identified. At least 5 fla cistrons (fla V to flaZ) and one mot cistron resided in one region, and at least 10 fla cistrons (flaA to flaJ) and two che cistrons (cheA and cheB) resided in another. The flaC mutants exhibited cistron-specific leakiness on motility agar plates. The flaE cistron may be the structural gene for the component protein of the flagellar filament. The cheA mutations, which resulted in pleiotropic phenotypes for flagellar formation, motility, and taxis, belonged to the same complementation group as the flaF mutations; that is, we inferred that cheA and flaF are synonymous.  相似文献   

6.
Aerotaxis in Salmonella typhimurium: role of electron transport   总被引:23,自引:17,他引:6       下载免费PDF全文
Sensory transduction in aerotaxis required electron transport, in contrast to chemotaxis, which is independent of electron transport. Assays for aerotaxis were developed by employing spatial and temporal oxygen gradients imposed independently of respiration. By varying the step increase in oxygen concentration in the temporal assay, the dose-response relationship was obtained for aerotaxis in Salmonella typhimurium. A half-maximal response at 0.4 microM oxygen and inhibition by 5 mM KCN suggested that the "receptor" for aerotaxis is cytochrome o. The response was independent of adenosine triphosphate formation via oxidative phosphorylation but did correlate with changes in membrane potential monitored with the fluorescent cyanine dye diS-C3-(5). Nitrate and fumarate, which are alternative electron acceptors for the respiratory chain in S. typhimurium, inhibited aerotaxis when nitrate reductase and fumarate reductase were induced. These results support the hypothesis that taxis to oxygen, nitrate, and fumarate is mediated by the electron transport system and by changes in the proton motive force. Aerotaxis was normal in Escherichia coli mutants that were defective in the tsr, tar, or trg genes; in S. typhimurium, oxygen did not stimulate methylation of the products of these genes. A cheC mutant which shows an inverse response to chemoattractants also gave an inverse response to oxygen. Therefore, aerotaxis is transduced by a distinct and unidentified signally protein but is focused into the common chemosensory pathway before the step involving the cheC product. When S. typhimurium became anaerobic, the decreased proton motive force from glycolysis supported slow swimming but not tumbling, indicating that a minimum proton motive force was required for tumbling. The bacteria rapidly adapted to the anaerobic condition and resumed tumbling after about 3 min. The adaptation period was much shorter when the bacteria had been previously grown anaerobically.  相似文献   

7.
Myxococcus xanthus co-ordinates cell movement during its complex life cycle using multiple chemotaxis-like signal transduction pathways. These pathways regulate both type IV pilus-mediated social (S) motility and adventurous (A) motility. During a search for new chemoreceptors, we identified the che4 operon, which encodes homologues to a MCP (methyl-accepting chemotaxis protein), two CheWs, a hybrid CheA-CheY, a response regulator and a CheR. Deletion of the che4 operon did not cause swarming or developmental defects in either the wild-type (A(+)S(+)) strain or in a strain sustaining only A motility (A(+)S(-)). However, in a strain displaying only S motility (A(-)S(+)), deletion of the che4 operon or the gene encoding the response regulator, cheY4, caused enhanced vegetative swarming and prevented aggregation and sporulation. In contrast, deletion of mcp4 caused reduced vegetative swarming and enhanced development compared with the parent strain. Single-cell analysis of the motility of the A(-)S(+) parent strain revealed a previously unknown inverse correlation between velocity and reversal frequency. Thus, cells that moved at higher velocities showed a reduced reversal frequency. This co-ordination of reversal frequency and velocity was lost in the mcp4 and cheY4 mutants. The structural components of the S motility apparatus were unaffected in the che4 mutants, suggesting that the Che4 system affects reversal frequency of cells by modulating the function of the type IV pilus.  相似文献   

8.
Rhodospirillum centenum is a photosynthetic bacterium capable of undergoing swim cell to swarm cell differentiation that allows this species to be motile on both liquid and solid media. Previous experiments have demonstrated that the che1 operon is required for the control of chemotactic and phototactic behaviour of both swim and swarm cells. In this report, we analyse the function of a second che-like gene cluster in R. centenum, the che2 gene cluster. In-frame deletion mutants of cheW2, cheB2, cheR2, cheY2, and of the entire che2 operon, exhibit defects in swim and swarm cell motility. Analysis of these strains demonstrates that they are non-motile, and that the non-motile phenotype is resulting from reduced polar and lateral flagella synthesis. Additionally, mutations in mcp2, ORF204, cheA2 and ORF74 remain chemotacticly and phototacticly competent at both high and low growth temperatures. Mutations in these che2 genes result in elevated levels of flagellin proteins giving rise to a hyperflagellate phenotype. We propose a model in which R. centenum utilizes a che-like signal transduction pathway (che2) for regulating flagellum synthesis in order to optimize swim cell-swarm cell differentiation in response to changing environmental conditions.  相似文献   

9.
Direction of flagellar rotation in bacterial cell envelopes   总被引:23,自引:16,他引:7       下载免费PDF全文
Cell envelopes with functional flagella, isolated from wild-type strains of Escherichia coli and Salmonella typhimurium by formation of spheroplasts with penicillin and subsequent osmotic lysis, demonstrate counterclockwise (CCW)-biased rotation when energized with an electron donor for respiration, DL-lactate. Since the direction of flagellar rotation in bacteria is central to the expression of chemotaxis, we studied the cause of this bias. Our main observations were: (i) spheroplasts acquired a clockwise (CW) bias if instead of being lysed they were further incubated with penicillin; (ii) repellents temporarily caused CW rotation of tethered bacteria and spheroplasts but not of their derived cell envelopes; (iii) deenergizing CW-rotating cheV bacteria by KCN or arsenate treatment caused CCW bias; (iv) cell envelopes isolated from CW-rotating cheC and cheV mutants retained the CW bias, unlike envelopes isolated from cheB and cheZ mutants, which upon cytoplasmic release lost this bias and acquired CCW bias; and (v) an inwardly directed, artificially induced proton current rotated tethered envelopes in CCW direction, but an outwardly directed current was unable to rotate the envelopes. It is concluded that (i) a cytoplasmic constituent is required for the expression of CW rotation (or repression of CCW rotation) in strains which are not defective in the switch; (ii) in the absence of this cytoplasmic constituent, the motor is not reversible in such strains, and it probably is mechanically constricted so as to permit CCW sense of rotation only; (iii) the requirement of CW rotation for ATP is not at the level of the motor or the switch but at one of the preceding functional steps of the chemotaxis machinery; (iv) the cheC and cheV gene products are associated with the cytoplasmic membrane; and (v) direct interaction between the switch-motor system and the repellent sensors is improbable.  相似文献   

10.
Both aerobically and photosynthetically grown wild-type Rhodobacter sphaeroides swarmed through soft nutrient agar. However, individual aerobically and photosynthetically grown tethered cells showed different responses to steps in concentrations of some attractants. Photosynthetically grown cells showed little response to a step-up in attractant, but large response to a step-down. Aerobically grown cells showed a large but opposite response to a step-up of chemoeffectors such as succinate and aspartate. The responses in che operon deletion mutants were also investigated and indicated that the aerobic response may depend on the protein products of che operon 1.  相似文献   

11.
Motile but generally nonchemotatic (che) mutants of Escherichia coli were isolated by a simple screening method. A total of 172 independent mutants were examined, and four genes were defined on the basis of mapping and complemenvestigated by determining their null phenotypes with nonsense or bacteriophage Mu-induced mutations. The cheA and cheB products were essential in producing changes of swimming direction and flagellar rotation. The checC product appeared to be an essential component of the flagellum; however, specific mutational alterations of this component allowed flagellar assembly but prevented directional changes in swimming. Since some cheB mutants changed directions incessantly, this gene product may also serve to control the direction of flagellar rotation in response to chemoreceptor signals. Thus most or all of the common elements in the signalling process were involved in the generation and regulation of changes in the direction of flagellar rotation.  相似文献   

12.
Biosynthesis of Amino Sugars by Pseudomonas saccharophila   总被引:11,自引:8,他引:3       下载免费PDF全文
In Escherichia coli, the following genes are involved in motility and chemotaxis. The H gene is the structural gene for flagellin. Mutation in the mot gene results in paralysis of the flagella, and mutation in the fla genes leads to an absence of flagella. The cheA, cheB, and cheC genes are required for chemotaxis. The chromosomal location of these genes has now been determined. The majority are clustered in a small region around uvrC, between his and aroD, in the order his-cheC-H-uvrC-mot-cheA-cheB-aroD. The fla genes are located in the same region, and also between trp and gal. The results indicate that many of the genes are homologous to those which have been studied in Salmonella typhimurium.  相似文献   

13.
14.
Asynchronous switching of flagellar motors on a single bacterial cell   总被引:15,自引:0,他引:15  
R M Macnab  D P Han 《Cell》1983,32(1):109-117
Salmonella possesses several flagella, each capable of counterclockwise and clockwise rotation. Counterclockwise rotation produces swimming, clockwise rotation produces tumbling. Switching between senses occurs stochastically. The rotational sense of individual flagella on a single cell could be monitored under special conditions (partially de-energized cells of cheC and cheZ mutants). Switching was totally asynchronous, indicating that the stochastic process operates at the level of the individual organelle. Coordinated rotation in the flagellar bundle during swimming may therefore derive simply from a high counterclockwise probability enhanced by mechanical interactions, and not from a synchronizing switch mechanism. Different flagella on a given cell had different switching probabilities, on a time scale (greater than 2 min) spanning many switching events. This heterogeneity may reflect permanent structural differences, or slow fluctuations in some regulatory process.  相似文献   

15.
16.
Salmonella typhimurium mutants generally defective in chemotaxis.   总被引:21,自引:16,他引:5       下载免费PDF全文
The mutations of eight chemotaxis-deficient strains of Salmonella typhimurium, including five new mutants in strain LT2, were mapped by P22 transduction in relation to various fla mot deletions in S. abortus-equi. Seven recessive che mutations mapped between motB and flaC: three, all nontumbling, the che region I, adjacent to motB, and four, including one ever-tumbling, in che region II, adjacent to flaC. Mutant che-107, never-tumbling and dominant to wild type, mapped at flaAII, other mutations of which cause either absence of flagella or lack of locomotor function. We surmise that gene flaAII specifies a protein that polymerizes to form an essential component of the basal apparatus (so that absence of gene product prevents formation of flagela); that a component built up from certain mutationally altered proteins cannot transmit (or generate) active rotation of the hook and flagellum, and so causes the Mot (paralysis) phenyotype; and that a component built up from protein with the che-107 alteration permits only counterclockwise rotation, so that the tumble, normally produced by transient clockwise rotation, cannot be effected.  相似文献   

17.
Ampicillin-resistant mutants of class II are determined by a doubling of chromosomally and episomally mediated ampicillin resistance on agar plates. Several mutants were isolated from a female as well as from an Hfr strain. The mutants differed from each other in various properties such as response to colicin E2 and sodium cholate, response to the phages T4 and C21, and fermentation of galactose. By conjugation and transduction experiments, it was shown that mutations in at least four loci gave the class II phenotype. The mutations were found to be in the galU gene, the ctr gene, and two new genes close to mtl denoted lpsA and lpsB. The carbohydrate compositions of the lipopolysaccharides of the mutants were investigated and found to be changed compared to the parent strains. GalU mutants lacked rhamnose and galactose and had 11% glucose compared to the parent strain. The lpsA mutant also lacked rhamnose and had only traces of galactose and 58% glucose, whereas the lpsB mutant contained 14% rhamnose, traces of galactose, and 81% glucose compared to the parent strain.  相似文献   

18.
The growth properties of twelve different amber (am) mutants of bacteriophage T4 gene 43 (DNA polymerase) were examined by using nonpermissive (su(-)) as well as permissive (su(+)) Escherichia coli hosts. It was found that most of these mutants were measurably suppressed in su(-) hosts by translational ambiguity (misreading of codons during protein synthesis). The ability of these mutants to grow in response to this form of weak suppression probably means that the T4 gene 43 DNA polymerase can be effective in supporting productive DNA replication when it is supplied in small amounts. By similar criteria, studies with other phage mutants suggested that the products of T4 genes 62 (uncharacterized), 44 (uncharacterized), 42 (dCMP-hydroxymethylase), and 56 (dCTPase) are also effective in small amounts. Some T4 gene products, such as the product of gene 41 (uncharacterized), seem to be partially dispensable for phage growth since am mutants of such genes do propagate, although weakly, in streptomycin-resistant su(-) hosts which appear to have lost the capacity to suppress am mutations by ambiguity.  相似文献   

19.
G L Hazelbauer  S Harayama 《Cell》1979,16(3):617-625
We have characterized chemotactic mutants of E. coli that appear to be defective in a common linkage of two independent receptors to the central chemotactic components. The mutants do not respond to gradients of ribose or galactose and thus are called trg (taxis to ribose and galactose), after Ordal and Adler (1974b). These trg mutants are indistinguishable from their parent in tactic response to other attractants, swimming pattern, growth rates, and transport of ribose and galactose. The mutant cells contain the usual amounts of ribose and galactose receptors, and those proteins function normally in their other role, transport of their respective ligands. The mutations, generated by insertion of translocatable drug-resistance elements (transposons)8 are located near 31 min on the map of the E. coli chromosome, a locus far removed from the genes coding for the ribose and galactose receptors. Trg mutants do not resemble either specific receptor mutants or che mutants. The nature of the requirement for the trg product in the response to ribose and galactose is not defined, but evidence for interference of tactic signals from the ribose and galactose receptors (Strange and Koshland, 1976) supports the idea that the product functions directly in the transmission of tactic signals from the two receptors to the flagella.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号